Search results for: Learning and Facilitation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7273

Search results for: Learning and Facilitation

2563 DH-Students Promoting Underage Asylum Seekers' Oral Health in Finland

Authors: Eeva Wallenius-Nareneva, Tuula Toivanen-Labiad

Abstract:

Background: Oral health promotion event was organised for forty Afghanistan, Iraqi and Bangladeshi underage asylum seekers in Finland. The invitation to arrange this coaching occasion was accepted in the Degree Programme in Oral Hygiene in Metropolia. The personnel in the reception center found the need to improve oral health among the youngsters. The purpose was to strengthen the health literacy of the boys in their oral self-care and to reduce dental fears. The Finnish studies, especially the terminology of oral health was integrated to coaching with the help of interpreters. Cooperative learning was applied. Methods: Oral health was interactively discussed in four study group sessions: 1. The importance of healthy eating habits; - Good and bad diets, - Regular meals, - Acid attack o Xylitol. 2. Oral diseases − connection to general health; - Aetiology of gingivitis, periodontitis and caries, - Harmfulness of smoking 3. Tools and techniques for oral self-care; - Brushing and inter dental cleaning. 4. Sharing earlier dental care experiences; - Cultural differences, - Dental fear, - Regular check-ups. Results: During coaching deficiencies appeared in brushing and inter dental cleaning techniques. Some boys were used to wash their mouth with salt justifying it by salt’s antiseptic properties. Many brushed their teeth by vertical movements. The boys took feedback positively when a demonstration with model jaws revealed the inefficiency of the technique. The advantages of fluoride tooth paste were advised. Dental care procedures were new and frightening for many boys. Finnish dental care system was clarified. The safety and indolence of the treatments and informed consent were highlighted. Video presentations and the dialog lowered substantially the threshold to visit dental clinic. The occasion gave the students means for meeting patients from different cultural and language backgrounds. The information hidden behind the oral health problems of the asylum seekers was valuable. Conclusions: Learning dental care practices used in different cultures is essential for dental professionals. The project was a good start towards multicultural oral health care. More experiences are needed before graduation. Health education themes should be held simple regardless of the target group. The heterogeneity of the group does not pose a problem. Open discussion with questions leading to the theme works well in clarifying the target group’s knowledge level. Sharing own experiences strengthens the sense of equality among the participants and encourages them to express own opinions. Motivational interview method turned out to be successful. In the future coaching occasions must confirm active participation of everyone. This could be realized by dividing the participants to even smaller groups. The different languages impose challenges but they can be solved by using more interpreters. Their presence ensures that everyone understands the issues properly although the use of plain and sign languages are helpful. In further development, it would be crucial to arrange a rehearsal occasion to the same participants in two/three months’ time. This would strengthen the adaption of self-care practices and give the youngsters opportunity to pose more open questions. The students would gain valuable feedback regarding the effectiveness of their work.

Keywords: cooperative learning, interactive methods, motivational interviewing, oral health promotion, underage asylum seekers

Procedia PDF Downloads 288
2562 Background Knowledge and Reading Comprehension in ELT Classes: A Pedagogical Perspective

Authors: Davoud Ansari Kejal, Meysam Sabour

Abstract:

For long, there has been a belief that a reader can easily comprehend a text if he is strong enough in vocabulary and grammatical knowledge but there was no account for the ability of understanding different subjects based on readers’ understanding of the surrounding world which is called world background knowledge. This paper attempts to investigate the reading comprehension process applying the schema theory as an influential factor in comprehending texts, in order to prove the important role of background knowledge in reading comprehension. Based on the discussion, some teaching methods are suggested for employing world background knowledge for an elaborated teaching of reading comprehension in an active learning environment in EFL classes.

Keywords: background knowledge, reading comprehension, schema theory, ELT classes

Procedia PDF Downloads 453
2561 Sinhala Sign Language to Grammatically Correct Sentences using NLP

Authors: Anjalika Fernando, Banuka Athuraliya

Abstract:

This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired community

Keywords: Sinhala sign language, sign Language, NLP, LSTM, NMT

Procedia PDF Downloads 103
2560 Contextual Sentiment Analysis with Untrained Annotators

Authors: Lucas A. Silva, Carla R. Aguiar

Abstract:

This work presents a proposal to perform contextual sentiment analysis using a supervised learning algorithm and disregarding the extensive training of annotators. To achieve this goal, a web platform was developed to perform the entire procedure outlined in this paper. The main contribution of the pipeline described in this article is to simplify and automate the annotation process through a system of analysis of congruence between the notes. This ensured satisfactory results even without using specialized annotators in the context of the research, avoiding the generation of biased training data for the classifiers. For this, a case study was conducted in a blog of entrepreneurship. The experimental results were consistent with the literature related annotation using formalized process with experts.

Keywords: sentiment analysis, untrained annotators, naive bayes, entrepreneurship, contextualized classifier

Procedia PDF Downloads 394
2559 Comparative Quantitative Study on Learning Outcomes of Major Study Groups of an Information and Communication Technology Bachelor Educational Program

Authors: Kari Björn, Mikael Soini

Abstract:

Higher Education system reforms, especially Finnish system of Universities of Applied Sciences in 2014 are discussed. The new steering model is based on major legislative changes, output-oriented funding and open information. The governmental steering reform, especially the financial model and the resulting institutional level responses, such as a curriculum reforms are discussed, focusing especially in engineering programs. The paper is motivated by management need to establish objective steering-related performance indicators and to apply them consistently across all educational programs. The close relationship to governmental steering and funding model imply that internally derived indicators can be directly applied. Metropolia University of Applied Sciences (MUAS) as a case institution is briefly introduced, focusing on engineering education in Information and Communications Technology (ICT), and its related programs. The reform forced consolidation of previously separate smaller programs into fewer units of student application. New curriculum ICT students have a common first year before they apply for a Major. A framework of parallel and longitudinal comparisons is introduced and used across Majors in two campuses. The new externally introduced performance criteria are applied internally on ICT Majors using data ex-ante and ex-post of program merger.  A comparative performance of the Majors after completion of joint first year is established, focusing on previously omitted Majors for completeness of analysis. Some new research questions resulting from transfer of Majors between campuses and quota setting are discussed. Practical orientation identifies best practices to share or targets needing most attention for improvement. This level of analysis is directly applicable at student group and teaching team level, where corrective actions are possible, when identified. The analysis is quantitative and the nature of the corrective actions are not discussed. Causal relationships and factor analysis are omitted, because campuses, their staff and various pedagogical implementation details contain still too many undetermined factors for our limited data. Such qualitative analysis is left for further research. Further study must, however, be guided by the relevance of the observations.

Keywords: engineering education, integrated curriculum, learning outcomes, performance measurement

Procedia PDF Downloads 240
2558 On Early Verb Acquisition in Chinese-Speaking Children

Authors: Yating Mu

Abstract:

Young children acquire native language with amazing rapidity. After noticing this interesting phenomenon, lots of linguistics, as well as psychologists, devote themselves to exploring the best explanations. Thus researches on first language acquisition emerged. Early lexical development is an important branch of children’s FLA (first language acquisition). Verb, the most significant class of lexicon, the most grammatically complex syntactic category or word type, is not only the core of exploring syntactic structures of language but also plays a key role in analyzing semantic features. Obviously, early verb development must have great impacts on children’s early lexical acquisition. Most scholars conclude that verbs, in general, are very difficult to learn because the problem in verb learning might be more about mapping a specific verb onto an action or event than about learning the underlying relational concepts that the verb or relational term encodes. However, the previous researches on early verb development mainly focus on the argument about whether there is a noun-bias or verb-bias in children’s early productive vocabulary. There are few researches on general characteristics of children’s early verbs concerning both semantic and syntactic aspects, not mentioning a general survey on Chinese-speaking children’s verb acquisition. Therefore, the author attempts to examine the general conditions and characteristics of Chinese-speaking children’s early productive verbs, based on data from a longitudinal study on three Chinese-speaking children. In order to present an overall picture of Chinese verb development, both semantic and syntactic aspects will be focused in the present study. As for semantic analysis, a classification method is adopted first. Verb category is a sophisticated class in Mandarin, so it is quite necessary to divide it into small sub-types, thus making the research much easier. By making a reasonable classification of eight verb classes on basis of semantic features, the research aims at finding out whether there exist any universal rules in Chinese-speaking children’s verb development. With regard to the syntactic aspect of verb category, a debate between nativist account and usage-based approach has lasted for quite a long time. By analyzing the longitudinal Mandarin data, the author attempts to find out whether the usage-based theory can fully explain characteristics in Chinese verb development. To sum up, this thesis attempts to apply the descriptive research method to investigate the acquisition and the usage of Chinese-speaking children’s early verbs, on purpose of providing a new perspective in investigating semantic and syntactic features of early verb acquisition.

Keywords: Chinese-speaking children, early verb acquisition, verb classes, verb grammatical structures

Procedia PDF Downloads 366
2557 The Acquisition of Spanish L4 by Learners with Croatian L1, English L2 and Italian L3

Authors: Barbara Peric

Abstract:

The study of acquiring a third and additional language has garnered significant focus within second language acquisition (SLA) research. Initially, it was commonly viewed as merely an extension of second language acquisition (SLA). However, in the last two decades, numerous researchers have emphasized the need to recognize the unique characteristics of third language acquisition (TLA). This recognition is crucial for understanding the intricate cognitive processes that arise from the interaction of more than two linguistic systems in the learner's mind. This study investigates cross-linguistic influences in the acquisition of Spanish as a fourth language by students who have Croatian as a first language (L1). English as a second language (L2), and Italian as a third language (L3). Observational data suggests that influence or transfer of linguistic elements can arise not only from one's native language (L1) but also from non-native languages. This implies that, for individuals proficient in multiple languages, the native language doesn't consistently hold a superior position. Instead, it should be examined alongside other potential sources of linguistic transfer. Earlier studies have demonstrated that high proficiency in a second language can significantly impact cross-linguistic influences when acquiring a third and additional language. Among the extensively examined factors, the typological relationship stands out as one of the most scrutinized variables. The goal of the present study was to explore whether language typology and formal similarity or proficiency in the second language had a more significant impact on L4 acquisition. Participants in this study were third-year undergraduate students at Rochester Institute of Technology’s subsidiary in Croatia (RIT Croatia). All the participants had exclusively Croatian as L1, English as L2, Italian as L3 and were learning Spanish as L4 at the time of the study. All the participants had a high level of proficiency in English and low level of proficiency in Italian. Based on the error analysis the findings indicate that for some types of lexical errors such as coinage, language typology had a more significant impact and Italian language was the preferred source of transfer despite the law proficiency in that language. For some other types of lexical errors, such as calques, second language proficiency had a more significant impact, and English language was the preferred source of transfer. On the other hand, Croatian, Italian, and Spanish are more similar in the area of morphology due to higher degree of inflection compared to English and the strongest influence of the Croatian language was precisely in the area of morphology. The results emphasize the need to consider linguistic resemblances between the native language (L1) and the third and additional language as well as the learners' proficiency in the second language when developing successful teaching strategies for acquiring the third and additional language. These conclusions add to the expanding knowledge in the realm of Second Language Acquisition (SLA) and offer practical insights for language educators aiming to enhance the effectiveness of learning experiences in acquiring a third and additional language.

Keywords: third and additional language acquisition, cross-linguistic influences, language proficiency, language typology

Procedia PDF Downloads 54
2556 Peer Corrective Feedback on Written Errors in Computer-Mediated Communication

Authors: S. H. J. Liu

Abstract:

This paper aims to explore the role of peer Corrective Feedback (CF) in improving written productions by English-as-a- foreign-language (EFL) learners who work together via Wikispaces. It attempted to determine the effect of peer CF on form accuracy in English, such as grammar and lexis. Thirty-four EFL learners at the tertiary level were randomly assigned into the experimental (with peer feedback) or the control (without peer feedback) group; each group was subdivided into small groups of two or three. This resulted in six and seven small groups in the experimental and control groups, respectively. In the experimental group, each learner played a role as an assessor (providing feedback to others), as well as an assessee (receiving feedback from others). Each participant was asked to compose his/her written work and revise it based on the feedback. In the control group, on the other hand, learners neither provided nor received feedback but composed and revised their written work on their own. Data collected from learners’ compositions and post-task interviews were analyzed and reported in this study. Following the completeness of three writing tasks, 10 participants were selected and interviewed individually regarding their perception of collaborative learning in the Computer-Mediated Communication (CMC) environment. Language aspects to be analyzed included lexis (e.g., appropriate use of words), verb tenses (e.g., present and past simple), prepositions (e.g., in, on, and between), nouns, and articles (e.g., a/an). Feedback types consisted of CF, affective, suggestive, and didactic. Frequencies of feedback types and the accuracy of the language aspects were calculated. The results first suggested that accurate items were found more in the experimental group than in the control group. Such results entail that those who worked collaboratively outperformed those who worked non-collaboratively on the accuracy of linguistic aspects. Furthermore, the first type of CF (e.g., corrections directly related to linguistic errors) was found to be the most frequently employed type, whereas affective and didactic were the least used by the experimental group. The results further indicated that most participants perceived that peer CF was helpful in improving the language accuracy, and they demonstrated a favorable attitude toward working with others in the CMC environment. Moreover, some participants stated that when they provided feedback to their peers, they tended to pay attention to linguistic errors in their peers’ work but overlook their own errors (e.g., past simple tense) when writing. Finally, L2 or FL teachers or practitioners are encouraged to employ CMC technologies to train their students to give each other feedback in writing to improve the accuracy of the language and to motivate them to attend to the language system.

Keywords: peer corrective feedback, computer-mediated communication (CMC), second or foreign language (L2 or FL) learning, Wikispaces

Procedia PDF Downloads 244
2555 An Architectural Model of Multi-Agent Systems for Student Evaluation in Collaborative Game Software

Authors: Monica Hoeldtke Pietruchinski, Andrey Ricardo Pimentel

Abstract:

The teaching of computer programming for beginners has been presented to the community as a not simple or trivial task. Several methodologies and research tools have been developed; however, the problem still remains. This paper aims to present multi-agent system architecture to be incorporated to the educational collaborative game software for teaching programming that monitors, evaluates and encourages collaboration by the participants. A literature review has been made on the concepts of Collaborative Learning, Multi-agents systems, collaborative games and techniques to teach programming using these concepts simultaneously.

Keywords: architecture of multi-agent systems, collaborative evaluation, collaboration assessment, gamifying educational software

Procedia PDF Downloads 462
2554 Classification of Red, Green and Blue Values from Face Images Using k-NN Classifier to Predict the Skin or Non-Skin

Authors: Kemal Polat

Abstract:

In this study, it has been estimated whether there is skin by using RBG values obtained from the camera and k-nearest neighbor (k-NN) classifier. The dataset used in this study has an unbalanced distribution and a linearly non-separable structure. This problem can also be called a big data problem. The Skin dataset was taken from UCI machine learning repository. As the classifier, we have used the k-NN method to handle this big data problem. For k value of k-NN classifier, we have used as 1. To train and test the k-NN classifier, 50-50% training-testing partition has been used. As the performance metrics, TP rate, FP Rate, Precision, recall, f-measure and AUC values have been used to evaluate the performance of k-NN classifier. These obtained results are as follows: 0.999, 0.001, 0.999, 0.999, 0.999, and 1,00. As can be seen from the obtained results, this proposed method could be used to predict whether the image is skin or not.

Keywords: k-NN classifier, skin or non-skin classification, RGB values, classification

Procedia PDF Downloads 246
2553 Positive Outcomes of Internship for Students Majoring in Mathematics

Authors: Irina Peterburgsky

Abstract:

We have been working on finding internship positions for our math and computer science majors. Among many other positive outcomes of internship for students majoring in mathematics, there are: students see new applications of mathematics to real life and see new scientific problems; they learn new methods, tools, etc. that they have not seen in their classes; they appreciate the power of mathematics that increases their interest in learning mathematics; they make decisions to take more advanced math courses; students understand better what their potentials, strong points, and limitations are; learn what work ethic is; learn how to work as a member of a team at a workplace; understand better how to offer their help and how to ask for help; start building their professional relationship; build self-confidence as young professionals, and what is the most important - they get a better understanding of their goals in their future professional careers.

Keywords: internship, mathematics, positive outcoms for students, workplace

Procedia PDF Downloads 179
2552 Specialised Centres in TERI Knowledge Resource Centre

Authors: Pallavi Singh

Abstract:

Developing library knowledge centres involves transforming traditional library spaces into dynamic, interactive environments that support collaborative learning, digital literacy, and access to various resources. Knowledge centres, also known as knowledge hubs or centres of excellence, play a crucial role in organizations and communities by serving as repositories of expertise and information. The Energy and Resources Institute (TERI) is a research organisation dedicated to sustainable community solutions. TERI Knowledge Resource Center is also aligned with the objective of the host organization within TERI; there are several specialized knowledge centers dedicated to various aspects of sustainability, energy, climate change, environmental management, green mobility, etc.

Keywords: knowledge centres, environmental management, green mobility, energy

Procedia PDF Downloads 5
2551 The Way of the English Use of Businessmen for the ASEAN Economic Community in Chonburi Province

Authors: Kittivate Boonyopakorn

Abstract:

The purposes of this study were to investigate the method of the English use of the businessmen and to study their behavior of the utilization for the ASEAN economic community. The participants were divided into the three types of the merchants including the construction contractors, the construction material traders, and SME entrepreneurs. Survey questionnaires and interviews were used in this study. The findings showed that in the type of traders, 23 of the participants are construction contractors, 121 are construction material traders, and 206 are SME entrepreneurs. The study of English in language institute is highly 51.4%. The use of Google in translating English into Thai is 41.7%. Learning English themselves is 41.1% respectively. The businessmen study English for readiness for their trade.

Keywords: way of rnglish use, businessmen, ASEAN economic community, Chonburi province

Procedia PDF Downloads 240
2550 “Self-efficacy, Task value and Metacognitive Self-regulation as Predictors of English Language Achievement”

Authors: Omar Baissane and, Hassan Zaid

Abstract:

The purpose of this study was to determine whether self-efficacy, task value, and metacognitive self-regulation predict students’ English language achievement among Vietnamese high school students. In this non-experimental quantitative study, 403 Vietnamese random participants were required to fill out the Motivated Strategies for Learning Questionnaire to measure self-efficacy, task value and metacognitive self-regulation. Criterion for English language achievement was the final grade that students themselves reported. The results revealed that, unlike metacognitive self-regulation, self-efficacy and task value were significantly correlated with language achievement. Moreover, the findings showed that self-efficacy was the only significant predictor of language achievement.

Keywords: language achievement, metacognitive self-regulation, predictor, self-efficacy, task value

Procedia PDF Downloads 95
2549 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms

Authors: Julio Vega

Abstract:

Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.

Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node

Procedia PDF Downloads 127
2548 Using Mining Methods of WEKA to Predict Quran Verb Tense and Aspect in Translations from Arabic to English: Experimental Results and Analysis

Authors: Jawharah Alasmari

Abstract:

In verb inflection, tense marks past/present/future action, and aspect marks progressive/continues perfect/completed actions. This usage and meaning of tense and aspect differ in Arabic and English. In this research, we applied data mining methods to test the predictive function of candidate features by using our dataset of Arabic verbs in-context, and their 7 translations. Weka machine learning classifiers is used in this experiment in order to examine the key features that can be used to provide guidance to enable a translator’s appropriate English translation of the Arabic verb tense and aspect.

Keywords: Arabic verb, English translations, mining methods, Weka software

Procedia PDF Downloads 271
2547 Challenges Encountered by Small Business Owners in Building Their Social Media Marketing Competency

Authors: Nilay Balkan

Abstract:

Introductory statement: The purpose of this study is to understand how small business owners develop social media marketing competency, the challenges they encounter in doing so, and establish the social media training needs of such businesses. These challenges impact the extent to which small business owners build effective social media knowledge and, in turn, impact their ability to implement effective social media marketing into their business practices. This means small businesses are not fully able to benefit from social media, such as benefits to customer relationship management or increasing brand image, which would support the overall business operations for these businesses. This research is part one of a two-phased study. The first phase aims to establish the challenges small business owners face in building social media marketing competency and their specific training needs. Phase two will then focus in more depth on the barriers and challenges emerging from phase one. Summary of Methodology: Interviews with ten small business owners were conducted from various sectors, including fitness, tourism, food, and drinks. These businesses were located in the central belt of Scotland, which is an area with the highest population and business density in Scotland. These interviews were in-depth and semi-structured, with the purpose of being investigative and understanding the phenomena from the lived experience of the small business owners. A purposive sampling was used, where small business owners fulfilling certain criteria were approached to take part in the interviews. Key findings: The study found four ways in which small business owners develop their social media competency (informal methods, formal methods, learning through a network, and experimenting) and the various challenges they face with these methods. Further, the study established four barriers impacting the development of social media marketing competency among the interviewed small business owners. In doing so, preliminary support needs have also emerged. Concluding statement: The contribution of this study is to understand the challenges small business owners face when learning how to use social media for business purposes and identifying their training needs. This understanding can help the development of specific and tailored support. In addition, specific and tailored training can support small businesses in building competency. This supports small businesses to progress to the next stage of their development, which could be to further their digital transformation or grow their business. The insights from this study can be used to support business competitiveness and support small businesses to become more resilient. Moreover, small businesses and entrepreneurs share some similar characteristics, such as limited resources and conflicting priorities, and the findings of this study may be able to support entrepreneurs in their social media marketing strategies as well.

Keywords: small business, marketing theory and applications, social media marketing, strategic management, digital competency, digitalisation, marketing research and strategy, entrepreneurship

Procedia PDF Downloads 90
2546 AI Applications in Accounting: Transforming Finance with Technology

Authors: Alireza Karimi

Abstract:

Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.

Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance

Procedia PDF Downloads 62
2545 Designing AI-Enabled Smart Maintenance Scheduler: Enhancing Object Reliability through Automated Management

Authors: Arun Prasad Jaganathan

Abstract:

In today's rapidly evolving technological landscape, the need for efficient and proactive maintenance management solutions has become increasingly evident across various industries. Traditional approaches often suffer from drawbacks such as reactive strategies, leading to potential downtime, increased costs, and decreased operational efficiency. In response to these challenges, this paper proposes an AI-enabled approach to object-based maintenance management aimed at enhancing reliability and efficiency. The paper contributes to the growing body of research on AI-driven maintenance management systems, highlighting the transformative impact of intelligent technologies on enhancing object reliability and operational efficiency.

Keywords: AI, machine learning, predictive maintenance, object-based maintenance, expert team scheduling

Procedia PDF Downloads 57
2544 Modern Information Security Management and Digital Technologies: A Comprehensive Approach to Data Protection

Authors: Mahshid Arabi

Abstract:

With the rapid expansion of digital technologies and the internet, information security has become a critical priority for organizations and individuals. The widespread use of digital tools such as smartphones and internet networks facilitates the storage of vast amounts of data, but simultaneously, vulnerabilities and security threats have significantly increased. The aim of this study is to examine and analyze modern methods of information security management and to develop a comprehensive model to counteract threats and information misuse. This study employs a mixed-methods approach, including both qualitative and quantitative analyses. Initially, a systematic review of previous articles and research in the field of information security was conducted. Then, using the Delphi method, interviews with 30 information security experts were conducted to gather their insights on security challenges and solutions. Based on the results of these interviews, a comprehensive model for information security management was developed. The proposed model includes advanced encryption techniques, machine learning-based intrusion detection systems, and network security protocols. AES and RSA encryption algorithms were used for data protection, and machine learning models such as Random Forest and Neural Networks were utilized for intrusion detection. Statistical analyses were performed using SPSS software. To evaluate the effectiveness of the proposed model, T-Test and ANOVA statistical tests were employed, and results were measured using accuracy, sensitivity, and specificity indicators of the models. Additionally, multiple regression analysis was conducted to examine the impact of various variables on information security. The findings of this study indicate that the comprehensive proposed model reduced cyber-attacks by an average of 85%. Statistical analysis showed that the combined use of encryption techniques and intrusion detection systems significantly improves information security. Based on the obtained results, it is recommended that organizations continuously update their information security systems and use a combination of multiple security methods to protect their data. Additionally, educating employees and raising public awareness about information security can serve as an effective tool in reducing security risks. This research demonstrates that effective and up-to-date information security management requires a comprehensive and coordinated approach, including the development and implementation of advanced techniques and continuous training of human resources.

Keywords: data protection, digital technologies, information security, modern management

Procedia PDF Downloads 28
2543 Developing Gifted Students’ STEM Career Interest

Authors: Wing Mui Winnie So, Tian Luo, Zeyu Han

Abstract:

To fully explore and develop the potentials of gifted students systematically and strategically by providing them with opportunities to receive education at appropriate levels, schools in Hong Kong are encouraged to adopt the "Three-Tier Implementation Model" to plan and implement the school-based gifted education, with Level Three refers to the provision of learning opportunities for the exceptionally gifted students in the form of specialist training outside the school setting by post-secondary institutions, non-government organisations, professional bodies and technology enterprises. Due to the growing concern worldwide about low interest among students in pursuing STEM (Science, Technology, Engineering, and Mathematics) careers, cultivating and boosting STEM career interest has been an emerging research focus worldwide. Although numerous studies have explored its critical contributors, little research has examined the effectiveness of comprehensive interventions such as “Studying with STEM professional”. This study aims to examine the effect on gifted students’ career interest during their participation in an off-school support programme designed and supervised by a team of STEM educators and STEM professionals from a university. Gifted students were provided opportunities and tasks to experience STEM career topics that are not included in the school syllabus, and to experience how to think and work like a STEM professional in their learning. Participants involved 40 primary school students joining the intervention programme outside the normal school setting. Research methods included adopting the STEM career interest survey and drawing tasks supplemented with writing before and after the programme, as well as interviews before the end of the programme. The semi-structured interviews focused on students’ views regarding STEM professionals; what’s it like to learn with a STEM professional; what’s it like to work and think like a STEM professional; and students’ STEM identity and career interest. The changes in gifted students’ STEM career interest and its well-recognised significant contributors, for example, STEM stereotypes, self-efficacy for STEM activities, and STEM outcome expectation, were collectively examined from the pre- and post-survey using T-test. Thematic analysis was conducted for the interview records to explore how studying with STEM professional intervention can help students understand STEM careers; build STEM identity; as well as how to think and work like a STEM professional. Results indicated a significant difference in STEM career interest before and after the intervention. The influencing mechanism was also identified from the measurement of the related contributors and the analysis of drawings and interviews. The potential of off-school support programme supervised by STEM educators and professionals to develop gifted students’ STEM career interest is argued to be further unleashed in future research and practice.

Keywords: gifted students, STEM career, STEM education, STEM professionals

Procedia PDF Downloads 74
2542 Evolution of Web Development Progress in Modern Information Technology

Authors: Abdul Basit Kiani

Abstract:

Web development, the art of creating and maintaining websites, has witnessed remarkable advancements. The aim is to provide an overview of some of the cutting-edge developments in the field. Firstly, the rise of responsive web design has revolutionized user experiences across devices. With the increasing prevalence of smartphones and tablets, web developers have adapted to ensure seamless browsing experiences, regardless of screen size. This progress has greatly enhanced accessibility and usability, catering to the diverse needs of users worldwide. Additionally, the evolution of web frameworks and libraries has significantly streamlined the development process. Tools such as React, Angular, and Vue.js have empowered developers to build dynamic and interactive web applications with ease. These frameworks not only enhance efficiency but also bolster scalability, allowing for the creation of complex and feature-rich web solutions. Furthermore, the emergence of progressive web applications (PWAs) has bridged the gap between native mobile apps and web development. PWAs leverage modern web technologies to deliver app-like experiences, including offline functionality, push notifications, and seamless installation. This innovation has transformed the way users interact with websites, blurring the boundaries between traditional web and mobile applications. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.

Keywords: progressive web applications (PWAs), web security, machine learning (ML), web frameworks, advancement responsive web design

Procedia PDF Downloads 52
2541 Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)

Authors: Ghada Ben Brahim, Aicha El Rabia, Mohamed Hedi Inoubli

Abstract:

Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods.

Keywords: mio-plio-quaternary aquifer, Southeastern Tunisia, geophysical methods, hydrogeological analysis, artificial intelligence

Procedia PDF Downloads 13
2540 Enterprise Risk Management: A Future Outlook

Authors: Ruchi Agarwal, Jake Ansell

Abstract:

Austerity impacts on all aspects of society. Companies into the future will have to be more capable of dealing with the risks they face. Enterprise Risk Management (ERM) has widely been accepted in recent years as an approach to manage risks within businesses. ERM attempts to tackle risk holistically with gains from opportunities in a managing risk and reduction in the risk of failure. The paper reviews merits and demerits of approaches to risk management in regard to antifragility. A qualitative study has investigated current practices and the problems with ERM implementation by interviewing over 25 chief risk officers and senior management. The findings indicate the gap in ERM description, understanding, and implementation. The paper suggests risk learning and expertise knowledge supports development of effective enterprise risk management by designing systems with inherent resilience.

Keywords: risk management, interviews, antifragility, failure

Procedia PDF Downloads 559
2539 Brainbow Image Segmentation Using Bayesian Sequential Partitioning

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning

Procedia PDF Downloads 484
2538 Data Presentation of Lane-Changing Events Trajectories Using HighD Dataset

Authors: Basma Khelfa, Antoine Tordeux, Ibrahima Ba

Abstract:

We present a descriptive analysis data of lane-changing events in multi-lane roads. The data are provided from The Highway Drone Dataset (HighD), which are microscopic trajectories in highway. This paper describes and analyses the role of the different parameters and their significance. Thanks to HighD data, we aim to find the most frequent reasons that motivate drivers to change lanes. We used the programming language R for the processing of these data. We analyze the involvement and relationship of different variables of each parameter of the ego vehicle and the four vehicles surrounding it, i.e., distance, speed difference, time gap, and acceleration. This was studied according to the class of the vehicle (car or truck), and according to the maneuver it undertook (overtaking or falling back).

Keywords: autonomous driving, physical traffic model, prediction model, statistical learning process

Procedia PDF Downloads 260
2537 Coping Strategies of Female English Teachers and Housewives to Face the Challenges Associated to the COVID-19 Pandemic Lockdown

Authors: Lisseth Rojas Barreto, Carlos Muñoz Hernández

Abstract:

The COVID-19 pandemic led to many abrupt changes, including a prolonged lockdown, which brought about work and personal challenges to the population worldwide. Among the most affected populations are women who are workers and housewives at the same time, and especially those who are also parenting. These women were faced with the challenge to perform their usual varied roles during the lockdown from the same physical space, which inevitably had strong repercussions for each of them. This paper will present some results of a research study whose main objective was to examine the possible effects that the COVID-19 pandemic lockdown may have caused in the work, social, family, and personal environments of female English teachers who are also housewives and, by extension in the teaching and learning processes that they lead. Participants included five female English language teachers of a public foreign language school, they are all married, and two of them have children. Similarly, we examined some of the coping strategies these teachers used to tackle the pandemic-related challenges in their different roles, especially those used for their language teaching role; coping strategies are understood as a repertoire of behaviors in response to incidents that can be stressful for the subject, possible challenging events or situations that involve emotions with behaviors and decision-making of people which are used in order to find a meaning or positive result (Lazarus &Folkman, 1986) Following a qualitative-case study design, we gathered the data through a survey and a focus group interview with the participant teachers who work at a public language school in southern Colombia. Preliminary findings indicate that the circumstances that emerged as a result of the pandemic lockdown affected the participants in different ways, including financial, personal, family, health, and work-related issues. Among the strategies that participants found valuable to deal with the novel circumstances, we can highlight the reorganization of the household and work tasks and the increased awareness of time management for the household, work, and leisure. Additionally, we were able to evidence that the participants faced the circumstances with a positive view. Finally, in order to cope with their teaching duties, some participants acknowledged their lack of computer or technology literacy in order to deliver their classes online, which made them find support from their students or more knowledgeable peers to cope with it. Others indicated that they used strategies such as self-learning in order to get acquainted and be able to use the different technological tools and web-based platforms available.

Keywords: coping strategies, language teaching, female teachers, pandemic lockdown

Procedia PDF Downloads 106
2536 ​​An Overview and Analysis of ChatGPT 3.5/4.0​

Authors: Sarah Mohammed, Huda Allagany, Ayah Barakat, Muna Elyas

Abstract:

This paper delves into the history and development of ChatGPT, tracing its evolution from its inception by OpenAI to its current state, and emphasizing its design improvements and strategic partnerships. It also explores the performance and applicability of ChatGPT versions 3.5 and 4 in various contexts, examining its capabilities and limitations in producing accurate and relevant responses. Utilizing a quantitative approach, user satisfaction, speed of response, learning capabilities, and overall utility in academic performance were assessed through surveys and analysis tools. Findings indicate that while ChatGPT generally delivers high accuracy and speed in responses, the need for clarification and more specific user instructions persists. The study highlights the tool's increasing integration across different sectors, showcasing its potential in educational and professional settings.

Keywords: artificial intelligence, chat GPT, analysis, education

Procedia PDF Downloads 49
2535 Concept of a Low Cost Gait Rehabilitation Robot for Children with Neurological Dysfunction

Authors: Mariana Volpini, Volker Bartenbach, Marcos Pinotti, Robert Riener

Abstract:

Restoration of gait ability is an important task in the rehabilitation of people with neurological disorders presenting a great impact in the quality of life of an individual. Based on the motor learning concept, robotic assisted treadmill training has been introduced and found to be a feasible and promising therapeutic option in neurological rehabilitation but unfortunately it is not available for most patients in developing countries due to the high cost. This paper presents the concept of a low cost rehabilitation robot to help consolidate the robotic-assisted gait training as a reality in clinical practice in most countries. This work indicates that it is possible to build a simpler rehabilitation device respecting the physiological trajectory of the ankle.

Keywords: bioengineering, gait therapy, low cost rehabilitation robot, rehabilitation robotics

Procedia PDF Downloads 429
2534 Target Training on Chinese as a Tonal Language for Better Communication

Authors: Qi Wang

Abstract:

Accurate pronunciation is the first condition of communication. Compared with the alphabetic languages, Chinese is more difficult for the foreigners to study as a second language, due to the tonal language with the meaningful characters as the written system, especially speaking. This research first presents the statistics of the typical errors of the pronunciations, based on the data of our two- year program of graduate students, which shown 90% of their speaking with strong foreign accents and no obvious change of the pitches, even if they could speak Chinese fluently. Second part, analyzed the caused reasons in the learning and teaching processes. Third part, this result of this research, based the theory of Chinese prosodic words, shown that the earlier the students get trained on prosodics at the beginning and suprasegmentals at intermediate and advanced levels, the better effects for them to communicate in Chinese as a second language.

Keywords: second language, prosodic word, foot, suprasegmental

Procedia PDF Downloads 462