Search results for: ratio of the L6/L7 length
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6829

Search results for: ratio of the L6/L7 length

2149 Tempo-Spatial Pattern of Progress and Disparity in Child Health in Uttar Pradesh, India

Authors: Gudakesh Yadav

Abstract:

Uttar Pradesh is one of the poorest performing states of India in terms of child health. Using data from the three round of NFHS and two rounds of DLHS, this paper attempts to examine tempo-spatial change in child health and care practices in Uttar Pradesh and its regions. Rate-ratio, CI, multivariate, and decomposition analysis has been used for the study. Findings demonstrate that child health care practices have improved over the time in all regions of the state. However; western and southern region registered the lowest progress in child immunization. Nevertheless, there is no decline in prevalence of diarrhea and ARI over the period, and it remains critically high in the western and southern region. These regions also poorly performed in giving ORS, diarrhoea and ARI treatment. Public health services are least preferred for diarrhoea and ARI treatment. Results from decomposition analysis reveal that rural area, mother’s illiteracy and wealth contributed highest to the low utilization of the child health care practices consistently over the period of time. The study calls for targeted intervention for vulnerable children to accelerate child health care service utilization. Poor performing regions should be targeted and routinely monitored on poor child health indicators.

Keywords: Acute Respiratory Infection (ARI), decomposition, diarrhea, inequality, immunization

Procedia PDF Downloads 286
2148 Analysis of Bridge-Pile Foundation System in Multi-layered Non-Linear Soil Strata Using Energy-Based Method

Authors: Arvan Prakash Ankitha, Madasamy Arockiasamy

Abstract:

The increasing demand for adopting pile foundations in bridgeshas pointed towardsthe need to constantly improve the existing analytical techniques for better understanding of the behavior of such foundation systems. This study presents a simplistic approach using the energy-based method to assess the displacement responses of piles subjected to general loading conditions: Axial Load, Lateral Load, and a Bending Moment. The governing differential equations and the boundary conditions for a bridge pile embedded in multi-layered soil strata subjected to the general loading conditions are obtained using the Hamilton’s principle employing variational principles and minimization of energies. The soil non-linearity has been incorporated through simple constitutive relationships that account for degradation of soil moduli with increasing strain values.A simple power law based on published literature is used where the soil is assumed to be nonlinear-elastic and perfectly plastic. A Tresca yield surface is assumed to develop the soil stiffness variation with different strain levels that defines the non-linearity of the soil strata. This numerical technique has been applied to a pile foundation in a two - layered soil strata for a pier supporting the bridge and solved using the software MATLAB R2019a. The analysis yields the bridge pile displacements at any depth along the length of the pile. The results of the analysis are in good agreement with the published field data and the three-dimensional finite element analysis results performed using the software ANSYS 2019R3. The methodology can be extended to study the response of the multi-strata soil supporting group piles underneath the bridge piers.

Keywords: pile foundations, deep foundations, multilayer soil strata, energy based method

Procedia PDF Downloads 122
2147 1H-NMR Spectra of Diesel-Biodiesel Blends to Evaluate the Quality and Determine the Adulteration of Biodiesel with Vegetable Oil

Authors: Luis F. Bianchessi, Gustavo G. Shimamoto, Matthieu Tubino

Abstract:

The use of biodiesel has been diffused in Brazil and all over the world by the trading of biodiesel (B100). In Brazil, the diesel oil currently being sold is a blend, containing 7% biodiesel (B7). In this context, it is necessary to develop methods capable of identifying this blend composition, especially regarding the biodiesel quality used for making these blends. In this study, hydrogen nuclear magnetic resonance spectra (1H-NMR) are proposed as a form of identifying and confirming the quality of type B10 blends (10% of biodiesel and 90% of diesel). Furthermore, the presence of vegetable oils, which may be from fuel adulteration or as an evidence of low degree of transesterification conversion during the synthesis of B100, may also be identified. Mixtures of diesel, vegetable oils and their respective biodiesel were prepared. Soybean oil and macauba kernel oil were used as raw material. The diesel proportion remained fixed at 90%. The other proportion (10%) was varied in terms of vegetable oil and biodiesel. The 1H-NMR spectra were obtained for each one of the mixtures, in order to find a correlation between the spectra and the amount of biodiesel, as well as the amount of residual vegetable oil. The ratio of the integral of the methylenic hydrogen H-2 of glycerol (exclusive of vegetable oil) with respect to the integral of the olefinic hydrogens (present in vegetable oil and biodiesel) was obtained. These ratios were correlated with the percentage of vegetable oil in each mixture, from 0% to 10%. The obtained correlation could be described by linear relationships with R2 of 0.9929 for soybean biodiesel and 0.9982 for macauba kernel biodiesel. Preliminary results show that the technique can be used to monitor the biodiesel quality in commercial diesel-biodiesel blends, besides indicating possible adulteration.

Keywords: biodiesel, diesel, biodiesel quality, adulteration

Procedia PDF Downloads 607
2146 Morphometric Parametersand Evaluation of Male Persian Fallow Deer Semen

Authors: Behrang Ekrami, Amin Tamadon, Iman Razeghian Jahromi, Darioush Moghadas, Mehdi Ghahremani-Seno, Mostafa Ghaderi-Zefrehei, Ahmad Sodagar Amiri, Taheri Reza

Abstract:

Persian fallow deer (Dama dama mesopotamica) is belonging to the family Cervidae and is only found in a few protected areas in the northwest, north, and southwest of Iran. The aims of this study were analysis of inbreeding and morphometric parameters of semen in male Persian fallow deer to investigate the cause of reduced fertility of this endangered species in Dasht-e-Naz National Refuge, Sari, Iran. The Persian fallow deer semen was collected from four adult bucks randomly during the breeding and non-breeding season from five dehorned and horned deer's by an artificial vagina. Twelve blood samples was taken from Persian fallow deer and mitochondrial DNA was extracted, amplified, extracted, sequenced and then were considered for genetic analysis. The Persian fallow deer semen, both with normal and abnormal spermatozoa, is similar to that of domestic ruminants but very smaller and difficult to observe at the primary observation. The post-mating season collected ejaculates contained abnormal spermatozoa, debris and secretion of accessory glands in horned bucks and accessory glands secretion free of any spermatozoa in dehorned or early velvet budding bucks. Microscopic evaluation in all four bucks during the mating season showed the mean concentration of 9×106 spermatozoa/ml. The mean ± SD of age, testes length and testes width was 4.60 ± 1.52 years, 3.58 ± 0.32 and 1.86 ± 0.09 cm, respectively. The results identified 1120 loci (assuming each nucleotide as locus) in which 377 were polymorphic. In conclusion, reduced fertility of male Persian fallow deer may be caused by inbreeding of the protected herd in a limited area of Dasht-e-Naz National Refuge.

Keywords: Persian fallow deer, genetic analysis, spermatozoa, reproductive characteristics

Procedia PDF Downloads 582
2145 Correlation between Speech Emotion Recognition Deep Learning Models and Noises

Authors: Leah Lee

Abstract:

This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.

Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16

Procedia PDF Downloads 61
2144 Treatment of Type 2 Diabetes Mellitus: Physicians’ Adherence to the American Diabetes Association Guideline in Central Region, Saudi Arabia

Authors: Ibrahim Mohammed

Abstract:

Background: Diabetes mellitus is a chronic disease that can cause devastating secondary complications, reducing the quality and length of life as well as increasing medical costs for the patient and society. The guidelines recommend both clinical and preventive strategies for diabetes management and are regularly updated. The aim of the study is to assess the level of adherence of physicians to American Diabetes Association Guidelines. Method: Observational multicenter retrospective study will be conducted among different hospitals in the central region. Patient data will be collected from the records of the last three years (2017- 2020). Records will be selected randomly after a complete randomized design. The study focuses on the management of type 2 according to ADA not changed in the last three updating; those standards; all patients should be taking Metformin 1500 to 2000 mg/day as recommended dose and should be received a high dose of statin if the high risk to ASCVD or moderate statin if not at risk, patients with hypertension and diabetes should taking ACE or ARBS. Result: The study aimed to evaluate the commitment of physicians in the central region to the ADA. Out of the 153 selected patients, only 17 % were able to control their diabetes with an average A1c below 7. ADA stated that to reach the minimum benefit of using Metformin, the daily dose should be between 1500 and 2000 mg. Results showed that 110 patients were on Metformin, where 68% of them were on the recommended dose. ADA recommended the intake of high statin for diabetic patients with ASCVD risk, while diabetic patients without ASCVD risk should be on a moderate statin. Results showed that 61.5% of patients with ASCVD risk were at high statin while only 36% of patients without ASCVD risk were at moderate statin. Results showed that 89 patients have hypertension, and 80% of them are getting ACE/ARBs as recommended by the ADA. Recommendation: It is necessary to implement periodic training courses for some physicians to enhance and update their knowledge.

Keywords: American Diabetic Association, diabetes mellitus, atherosclerotic cardiovascular disease, ACE inhibitors

Procedia PDF Downloads 73
2143 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication

Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti

Abstract:

In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.

Keywords: grinding, MQL, precision grinding, Taguchi optimization, titanium alloy

Procedia PDF Downloads 261
2142 Isolation Enhancement of Compact Dual-Band Printed Multiple Input Multiple Output Antenna for WLAN Applications

Authors: Adham M. Salah, Tariq A. Nagem, Raed A. Abd-Alhameed, James M. Noras

Abstract:

Recently, the demand for wireless communications systems to cover more than one frequency band (multi-band) with high data rate has been increased for both fixed and mobile services. Multiple Input Multiple Output (MIMO) technology is one of the significant solutions for attaining these requirements and to achieve the maximum channel capacity of the wireless communications systems. The main issue associated with MIMO antennas especially in portable devices is the compact space between the radiating elements which leads to limit the physical separation between them. This issue exacerbates the performance of the MIMO antennas by increasing the mutual coupling between the radiating elements. In other words, the mutual coupling will be stronger if the radiating elements of the MIMO antenna are closer. This paper presents a low–profile dual-band (2×1) MIMO antenna that works at 2.4GHz, 5.3GHz and 5.8GHz for wireless local area networks (WLAN) applications. A neutralization line (NL) technique for enhancing the isolation has been used by introducing a strip line with a length of λg/4 at the isolation frequency (2.4GHz) between the radiating elements. The overall dimensions of the antenna are 33.5 x 36 x 1.6 mm³. The fabricated prototype shows a good agreement between the simulated and measured results. The antenna impedance bandwidths are 2.38–2.75 GHz and 4.4–6 GHz for the lower and upper band respectively; the reflection coefficient and mutual coupling are better than -25 dB in both lower and higher bands. The MIMO antenna performance characteristics are reported in terms of the scattering parameters, envelope correlation coefficient (ECC), total active reflection coefficient, capacity loss, antenna gain, and radiation patterns. Analysis of these characteristics indicates that the design is appropriate for the WLAN terminal applications.

Keywords: ECC, neutralization line, MIMO antenna, multi-band, mutual coupling, WLAN

Procedia PDF Downloads 121
2141 Parametric Investigation of Wire-Cut Electric Discharge Machining on Steel ST-37

Authors: Mearg Berhe Gebregziabher

Abstract:

Wire-cut electric discharge machining (WEDM) is one of the advanced machining processes. Due to the development of the current manufacturing sector, there has been no research work done before about the optimization of the process parameters based on the availability of the workpiece of the Steel St-37 material in Ethiopia. Material Removal Rate (MRR) is considered as the experimental response of WCEDM. The main objective of this work is to investigate and optimize the process parameters on machining quality that gives high MRR during machining of Steel St-37. Throughout the investigation, Pulse on Time (TON), Pulse off Time (TOFF) and Velocities of Wire Feed (WR) are used as variable parameters at three different levels, and Wire tension, flow rate, type of dielectric fluid, type of the workpiece and wire material and dielectric flow rate are keeping as constants for each experiment. The Taguchi methodology, as per Taguchi‟ 's standard L9 (3^3) Orthogonal Array (OA), has been carried out to investigate their effects and to predict the optimal combination of process parameters over MRR. Signal to Noise ratio (S/N) and Analysis of Variance (ANOVA) were used to analyze the effect of the parameters and to identify the optimum cutting parameters on MRR. MRR was measured by using the Electronic Balance Model SI-32. The results indicated that the most significant factors for MRR are TOFF, TON and lastly WR. Taguchi analysis shows that, the optimal process parameters combination is A2B2C2, i.e., TON 6μs, TOFF 29μs and WR 2 m/min. At this level, the MRR of 0.414 gram/min has been achieved.

Keywords: ANOVA, MRR, parameter, Taguchi Methode

Procedia PDF Downloads 18
2140 Kinetic Evaluation of Biodegradability of Paint Shop Wastewater of a Bus Production Factory

Authors: Didem Güven, Oytun Hanhan, Elif Ceren Aksoy, Emine Ubay Çokgör

Abstract:

This paper presents a biological treatability study ofpaintshopwastewaterof a bus factory by an anoxic/aerobic sequencing batch reactor.A lab scale 14L SBR system was implementedto investigate carbon and nitrogen removal performance frompaint shop waste streams combined with domestic and process wastewater of a bus production factory in Istanbul (Turkey).The wastewater collected from decanters of the paint boots and pre-treatmentplant was usedforthefeeding of SBR. The reactor was operated with a total hydraulic retention time of 24 hrs, and a total sludge age of 18.7 days. Initially the efficiency and stability of the reactor were studied when fed with main wastewater stream to simulate the current wastewater treatment plant. Removal efficiency of 57% nitrogen and 90% COD were obtained. Once the paint shop wastewater was introduced to mainstream feeding with a ratio of 1:5, nitrification completely, carbon removal were partially inhibited. SBR system was successful to handle even at very high COD concentrations of paint shop wastewater after feeding of 2 months, with an average effluent COD of 100 mg/L. For the determination of kinetic parameters, respirometric analysis was also conducted with/without paint shop wastewater addition. Model simulation indicated lower maximum specific growth and hydrolysis rates when paint shop wastewater was mixed with the mainstream wastewater of the factory.

Keywords: biological treatability, nitrogen removal, paint shop wastewater, sequencing batch reactor

Procedia PDF Downloads 283
2139 Numerical Investigation of Cold Formed C-Section-Purlins with Different Opening Shapes

Authors: Mohamed M. El-heweity, Ahmed Shamel Fahmy, Mostafa Shawky, Ahmed Sherif

Abstract:

Cold-formed steel (CFS) lipped channel sections are popular as load-bearing members in building structures. These sections are used in the construction industry because of their high strength-to-weight ratio, lightweight, quick production, and ease of construction, fabrication, transportation, and handling. When those cold formed sections with high slenderness ratios are subjected to compression bending, they do not reach failure when reaching their ultimate bending stress, however, they sustain much higher loads due stress re-distribution. Hence, there is a need to study the sectional nominal capacity of CFS lipped channel beams with different web openings subjected to pure bending and uniformly distributed loads. By using finite element (FE) simulations using ANSYS APDL for numerical analysis. The results were verified and compared to previous experimental results. Then a parametric study was conducted and validated FE model to investigate the effect of different openings shapes on their nominal capacities. The results have revealed that CFS sections with hexagonal openings and intermediate notch can resist higher nominal capacities when compared to other sectional openings.

Keywords: cold-formed steel, nominal capacity, finite element, lipped channel beam, numerical study, web opening

Procedia PDF Downloads 84
2138 Reallocation of Bed Capacity in a Hospital Combining Discrete Event Simulation and Integer Linear Programming

Authors: Muhammed Ordu, Eren Demir, Chris Tofallis

Abstract:

The number of inpatient admissions in the UK has been significantly increasing over the past decade. These increases cause bed occupancy rates to exceed the target level (85%) set by the Department of Health in England. Therefore, hospital service managers are struggling to better manage key resource such as beds. On the other hand, this severe demand pressure might lead to confusion in wards. For example, patients can be admitted to the ward of another inpatient specialty due to lack of resources (i.e., bed). This study aims to develop a simulation-optimization model to reallocate the available number of beds in a mid-sized hospital in the UK. A hospital simulation model was developed to capture the stochastic behaviours of the hospital by taking into account the accident and emergency department, all outpatient and inpatient services, and the interactions between each other. A couple of outputs of the simulation model (e.g., average length of stay and revenue) were generated as inputs to be used in the optimization model. An integer linear programming was developed under a number of constraints (financial, demand, target level of bed occupancy rate and staffing level) with the aims of maximizing number of admitted patients. In addition, a sensitivity analysis was carried out by taking into account unexpected increases on inpatient demand over the next 12 months. As a result, the major findings of the approach proposed in this study optimally reallocate the available number of beds for each inpatient speciality and reveal that 74 beds are idle. In addition, the findings of the study indicate that the hospital wards will be able to cope with 14% demand increase at most in the projected year. In conclusion, this paper sheds a new light on how best to reallocate beds in order to cope with current and future demand for healthcare services.

Keywords: bed occupancy rate, bed reallocation, discrete event simulation, inpatient admissions, integer linear programming, projected usage

Procedia PDF Downloads 131
2137 Assessment of Analytical Equations for the Derivation of Young’s Modulus of Bonded Rubber Materials

Authors: Z. N. Haji, S. O. Oyadiji, H. Samami, O. Farrell

Abstract:

The prediction of the vibration response of rubber products by analytical or numerical method depends mainly on the predefined intrinsic material properties such as Young’s modulus, damping factor and Poisson’s ratio. Such intrinsic properties are determined experimentally by subjecting a bonded rubber sample to compression tests. The compression tests on such a sample yield an apparent Young’s modulus which is greater in magnitude than the intrinsic Young’s modulus of the rubber. As a result, many analytical equations have been developed to determine Young’s modulus from an apparent Young’s modulus of bonded rubber materials. In this work, the applicability of some of these analytical equations is assessed via experimental testing. The assessment is based on testing of vulcanized nitrile butadiene rubber (NBR70) samples using tensile test and compression test methods. The analytical equations are used to determine the intrinsic Young’s modulus from the apparent modulus that is derived from the compression test data of the bonded rubber samples. Then, these Young’s moduli are compared with the actual Young’s modulus that is derived from the tensile test data. The results show significant discrepancy between the Young’s modulus derived using the analytical equations and the actual Young’s modulus.

Keywords: bonded rubber, quasi-static test, shape factor, apparent Young’s modulus

Procedia PDF Downloads 160
2136 Development of Heating Elements Based on Fe₂O₃ Reduction Products by Waste Active Sludge

Authors: Abigail Parra Parra, Jorge L. Morelos Hernandez, Pedro A. Marquez Agilar, Marina Vlasova, Jesus Colin De La Cruz

Abstract:

Carbothermal reduction of metal oxides is widely used both in metallurgical processes and in the production of oxygen-free refractory ceramics. As a rule, crushed coke and graphite are used as a reducing agent. The products of carbonization of organic compounds are among the innovative reducing agents. The aim of this work was to study the process of reduction of iron oxide (hematite) down to iron by waste active sludge (WAS) carbonization products. WAS was chosen due to the accumulation of a large amount of this type of waste, soil pollution, and the relevance of the development of technologies for its disposal. The studies have shown that the temperature treatment of mixtures WAS-Fe₂O₃ in the temperature range 900-1000 ºC for 1-5 hours under oxygen deficiency is described by the following scheme: WAS + Fe₂O₃→ C,CO + Fe₂O₃→ C + FexO → Fe (amorphous and crystalline). During the heat treatment of the mixtures, strong samples are formed. The study of the electrical conductive properties of such samples showed that, depending on the ratio of the components in the initial mixtures, it is possible to change the values of electrical resistivity from 5.6 Ω‧m to 151.6 Ω‧m When a current is passed through the samples, they are heated from 240 to 378ºC. Thus, based on WAS-Fe₂O₃ mixtures, heating elements can be created that can be used to heat ceramics and concrete.

Keywords: Fe₂O₃, reduction, waste activate sludge, electroconductivity

Procedia PDF Downloads 125
2135 Numerical Simulation of Convective and Transport Processes in the Nocturnal Atmospheric Surface Layer

Authors: K. R. Sreenivas, Shaurya Kaushal

Abstract:

After sunset, under calm & clear-sky nocturnal conditions, the air layer near the surface containing aerosols cools through radiative processes to the upper atmosphere. Due to this cooling, surface air-layer temperature can fall 2-6 degrees C lower than the ground-surface temperature. This unstable convection layer, on the top, is capped by a stable inversion-boundary layer. Radiative divergence, along with the convection within the surface layer, governs the vertical transport of heat and moisture. Micro-physics in this layer have implications for the occurrence and growth of the fog layer. This particular configuration, featuring a convective mixed layer beneath a stably stratified inversion layer, exemplifies a classic case of penetrative convection. In this study, we conduct numerical simulations of the penetrative convection phenomenon within the nocturnal atmospheric surface layer and elucidate its relevance to the dynamics of fog layers. We employ field and laboratory measurements of aerosol number density to model the strength of the radiative cooling. Our analysis encompasses horizontally averaged, vertical profiles of temperature, density, and heat flux. The energetic incursion of the air from the mixed layer into the stable inversion layer across the interface results in entrainment and the growth of the mixed layer, modeling of which is the key focus of our investigation. In our research, we ascertain the appropriate length scale to employ in the Richardson number correlation, which allows us to estimate the entrainment rate and model the growth of the mixed layer. Our analysis of the mixed layer and the entrainment zone reveals a close alignment with previously reported laboratory experiments on penetrative convection. Additionally, we demonstrate how aerosol number density influences the growth or decay of the mixed layer. Furthermore, our study suggests that the presence of fog near the ground surface can induce extensive vertical mixing, a phenomenon observed in field experiments.

Keywords: inversion layer, penetrative convection, radiative cooling, fog occurrence

Procedia PDF Downloads 59
2134 Potential of Intercropping Corn and Cowpea to Ratooned Sugarcane for Food and Forage

Authors: Maricon E. Gepolani, Edna A. Aguilar, Pearl B. Sanchez, Enrico P. Supangco

Abstract:

Intercropping farming system and biofertilizer application are sustainable agricultural practices that increase farm productivity by improving the yield performance of the components involved in the production system. Thus, this on-farm trial determined the yield and forage quality of corn and cowpea with and without biofertilizer application when intercropped with ratooned sugarcane. Intercropping corn and cowpea without biofertilizer application had no negative effect on the vegetative growth of sugarcane. However, application of biofertilizer on intercrops decreased tiller production at 117 days after stubble shaving (DASS), consequently reducing the estimated tonnage yield of sugarcane. The yield of intercrops and forage production of Cp3 cowpea variety increased when intercropped to ratooned sugarcane. In contrast, intercropping PSB 97-92 corn variety to ratooned sugarcane reduced its forage production, but when biofertilizer was applied to intercropped Cp5 cowpea variety, the forage production increased. Profitability (income equivalent ratio) of intercropping for both corn and cowpea are higher than monocropping and are thus suitable intercrops to ratooned sugarcane. Unaffected tiller count (a determinant of sugarcane tonnage yield) when biofertilizer was not applied to intercrops and a reduced tiller count with biofertilizer application to intercrops implies the need to develop a nutrient management practices specific for intercropping systems.

Keywords: biofertilizer, corn, cowpea, intercropping system, ratooned sugarcane

Procedia PDF Downloads 116
2133 Scoliosis Effect towards of Incidence of the Secondary Osteoarthritis on the Knee in Athletes at the National Sports Cibubur Hospital on July 2013-April 2014

Authors: Basuki Supartono, Nunuk Nugrohowati, Ryan Gamma Andiraldi

Abstract:

Osteoarthritis of the knee can occur due to scoliosis. The purpose of this study is to determine the effect of scoliosis cause secondary osteoarthritis on the knee. This research use an analytic cross-sectional design. The total sample of 92 athletes scoliosis taken by simple random sampling technique. The data obtained were analyzing with Chi-square test, Fisher and Prevalence Ratio. The results of analysis show that there are influences on the incidence of scoliosis secondary osteoarthritis on the knee in athletes at the National Sports Hospital. Based on the criteria in the Cobbs angle had the results (p = 0.022 (p <0.05)), moderate Cobbs angle degree were 7.5 times more at risk of causing secondary osteoarthritis on the knee than a mild degree. While the shape of the curve scoliosis is getting results (p = 0.038 (p <0.05)), the shape of the S curve scoliosis 3.2 times more at risk of causing secondary osteoarthritis on the knee than the curve C. It can be concluded that there is significant influence between the Cobbs angle, shape of the curve scoliosis on the incidence of secondary osteoarthritis on the knee in National Sports Cibubur Hospital on July 2013- April 2014

Keywords: Cobbs angle, curve shape scoliosis, secondary osteoarthritis on the knee, analytic cross-sectional design

Procedia PDF Downloads 478
2132 Biodiesel Production from Broiler Chicken Waste

Authors: John Abraham, Ramesh Saravana Kumar, Francis, Xavier, Deepak Mathew

Abstract:

Broiler slaughter waste has become a major source of pollution throughout the world. Utilization of broiler slaughter waste by dry rendering process produced Rendered Chicken Oil (RCO) a cheap raw material for biodiesel production and Carcass Meal a feed ingredient for pets and fishes. Conversion of RCO into biodiesel may open new vistas for generating wealth from waste besides controlling the major havoc of environmental pollution. A two-step process to convert RCO to good quality Biodiesel was invented. Acid catalysed esterification of FFA followed by base catalysed transesterification of triglycerides was carried out after meticulously standardising the methanol molar ratio, catalyst concentration, reaction temperature and reaction time to obtain the maximum biodiesel yield of 97.62% and lowest glycerol yield of 6.96%. RCO biodiesel blended was tested in a Mahindra Scorpio CRDI engine. The results revealed that the blending of commercial diesel with 20% RCO biodiesel lead to less engine wear, a quieter engine and better fuel economy. The better lubricating qualities of RCO B20 prevented over heating of engine, which prolongs the engine life. The blending of biodiesel at 20% to commercial diesel can reduce the import of costly crude oil and simultaneously, substantially reduce the engine emissions as proved by significantly lower smoke levels, thus mitigating climatic changes.

Keywords: broiler waste, rendered chicken oil, biodiesel, engine testing

Procedia PDF Downloads 411
2131 Preparing Curved Canals Using Mtwo and RaCe Rotary Instruments: A Comparison Study

Authors: Mimoza Canga, Vito Malagnino, Giulia Malagnino, Irene Malagnino

Abstract:

Objective: The objective of this study was to compare the effectiveness of Mtwo and RaCe rotary instruments, in cleaning and shaping root canals curvature. Material and Method: The present study was conducted on 160 simulated canals in resin blocks, with an angle curvature 15°-30°. These 160 simulated canals were divided into two groups, where each group consisted of 80 blocks. Each group was divided into two subgroups (n=40 canals each). The simulated canals subgroups were prepared with Mtwo and RaCe rotary nickel-titanium instruments. The root canals were measured at four different points of reference, starting at 13 mm from the orifice. In the first group, the canals were prepared using Mtwo rotary system (VDW, Munich, Germany). The Mtwo files used were: 10/0.04, 15/0.05, 20/0.06, and 25/0.06. These instruments entered in the full length of the canal. Each file was rotated in the canal until it reached the apical point. In the second group, the canals were prepared using RaCe instruments (La Chaux-De-Fonds, Switzerland), performing the crown down technique, using the torque electric control motor (VDWCO, Munich, Germany), with 600 RPM and 2n/cm as follow: ≠40/0.10, ≠35/0.08, ≠30/0.06, ≠25/0.04, ≠25/0.02. The data were recorded using SPSS version 23 software (Microsoft, IL, USA). Data analysis was done using ANOVA test. Results: The results obtained by using the Mtwo rotary instruments, showed that these instruments were able to clean and shape in the right-to-left motion curved canals, at different levels, without any deviation, and in perfect symmetry, with a P-value=0.000. The data showed that the greater the depth of the root canal, the greater the deviations of the RaCe rotary instruments. These deviations occurred in three levels, which are: S2(P=0.004), S3( P=0.007), S4(P=0.009). The Mtwo files can go deeper and create a greater angle in S4 level (21°-28°), compared to RaCe instruments with an angle equal to 19°-24°. Conclusion: The present study noted a clinically significant difference between Mtwo rotary instruments and RaCe rotary files used for the canal preparation and indicated that Mtwo instruments are a better choice for the curved canals.

Keywords: canal curvature, canal preparation, Mtwo, RaCe, resin blocks

Procedia PDF Downloads 105
2130 Tribological Aspects of Advanced Roll Material in Cold Rolling of Stainless Steel

Authors: Mohammed Tahir, Jonas Lagergren

Abstract:

Vancron 40, a nitrided powder metallurgical tool Steel, is used in cold work applications where the predominant failure mechanisms are adhesive wear or galling. Typical applications of Vancron 40 are among others fine blanking, cold extrusion, deep drawing and cold work rolls for cluster mills. Vancron 40 positive results for cold work rolls for cluster mills and as a tool for some severe metal forming process makes it competitive compared to other type of work rolls that require higher precision, among others in cold rolling of thin stainless steel, which required high surface finish quality. In this project, three roll materials for cold rolling of stainless steel strip was examined, Vancron 40, Narva 12B (a high-carbon, high-chromium tool steel alloyed with tungsten) and Supra 3 (a Chromium-molybdenum tungsten-vanadium alloyed high speed steel). The purpose of this project was to study the depth profiles of the ironed stainless steel strips, emergence of galling and to study the lubrication performance used by steel industries. Laboratory experiments were conducted to examine scratch of the strip, galling and surface roughness of the roll materials under severe tribological conditions. The critical sliding length for onset of galling was estimated for stainless steel with four different lubricants. Laboratory experiments result of performance evaluation of resistance capability of rolls toward adhesive wear under severe conditions for low and high reductions. Vancron 40 in combination with cold rolling lubricant gave good surface quality, prevents galling of metal surfaces and good bearing capacity.

Keywords: Vancron 40, cold rolling, adhesive wear, galling, surface finish, lubricant, stainless steel

Procedia PDF Downloads 518
2129 Toxicological Effects of Atmospheric Fine Particulate Matter on Human Bronchial Epithelial Cells: Metabolic Activation, Genotoxicity and Epigenetic Modifications

Authors: M. Borgie, Z. Dagher, F. Ledoux, A. Verdin, F. Cazier, H. Greige, P. Shirali, D. Courcot

Abstract:

In October 2013, the International Agency for Research on Cancer (IARC) classified outdoor air pollution and fine particulate matter (PM2.5) as carcinogenic to humans. Despite the clearly relationship established by epidemiological studies between PM exposure and the onset of respiratory and cardiovascular diseases, uncertainties remain about the physiopathological mechanisms responsible for these diseases. The aim of this work was to evaluate the toxicological effects of two samples of atmospheric PM2.5 collected at urban and rural sites on human bronchial epithelial cells, BEAS-2B, especially to investigate the metabolic activation of organic compounds, the alteration of epigenetic mechanisms (i.e. microRNAs genes expression), the phosphorylation of H2AX and the telomerase activity. Our results showed a significant increase in CYP1A1, CYP1B1, and AhRR genes expression, miR-21 gene expression, H2AX phosphorylation and telomerase activity in BEAS-2B cells after their exposure to PM2.5, both in a dose and site-dependent manner. These results showed that PM2.5, especially urban PM, are able to induce the expression of metabolizing enzymes which can provide metabolic biotransformation of organic compounds into more toxic and carcinogenic metabolites, and to induce the expression of the oncomiR miR-21 which promotes cell growth and enhances tumor invasion and metastasis in lung cancer. In addition, our results have highlighted the role of PM2.5 in the activation of telomerase, which can maintain the telomeres length and subsequently preventing cell death, and have also demonstrated the ability of PM2.5 to induce DNA breaks and thus to increase the risk of mutations or chromosomal translocations that lead to genomic instability. All these factors may contribute to cell abnormalities, and thus the development of cancer.

Keywords: BEAS-2B cells, carcinogenesis, epigenetic alterations and genotoxicity, PM2.5

Procedia PDF Downloads 370
2128 Thermal and Starvation Effects on Lubricated Elliptical Contacts at High Rolling/Sliding Speeds

Authors: Vinod Kumar, Surjit Angra

Abstract:

The objective of this theoretical study is to develop simple design formulas for the prediction of minimum film thickness and maximum mean film temperature rise in lightly loaded high-speed rolling/sliding lubricated elliptical contacts incorporating starvation effect. Herein, the reported numerical analysis focuses on thermoelastohydrodynamically lubricated rolling/sliding elliptical contacts, considering the Newtonian rheology of lubricant for wide range of operating parameters, namely load characterized by Hertzian pressure (PH = 0.01 GPa to 0.10 GPa), rolling speed (>10 m/s), slip parameter (S varies up to 1.0), and ellipticity ratio (k = 1 to 5). Starvation is simulated by systematically reducing the inlet supply. This analysis reveals that influences of load, rolling speed, and level of starvation are significant on the minimum film thickness. However, the maximum mean film temperature rise is strongly influenced by slip in addition to load, rolling speed, and level of starvation. In the presence of starvation, reduction in minimum film thickness and increase in maximum mean film temperature are observed. Based on the results of this study, empirical relations are developed for the prediction of dimensionless minimum film thickness and dimensionless maximum mean film temperature rise at the contacts in terms of various operating parameters.

Keywords: starvation, lubrication, elliptical contact, traction, minimum film thickness

Procedia PDF Downloads 380
2127 Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation

Authors: Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Cv. Petrova, Georgi V. Avdeev, Diana D. Nihtianova, Krasimir I. Ivanov, Tatyana T. Tabakova

Abstract:

Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al2O3 supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH3OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La2O3, MnO2 and Cu1.5Mn1.5O4. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes.

Keywords: Cu-Mn-La oxide catalysts, carbon oxide, VOCs, deep oxidation

Procedia PDF Downloads 245
2126 Utilization of Waste Glass Powder in Mortar

Authors: Suhaib Salahuddin Alzubair Suliman

Abstract:

This paper examines the mechanical strength of different binders including pure ordinary Portland cement (OPC) and others having OPC supplemented by two maximum sizes of waste glass powder (GP) of 75-μm and 150μm. Chemical analysis of the GPs using PCEDX test analysis has revealed it silica (SiO2 ) content % is 86.883 and Calcium oxide (CaO) is 12.203%while there are traces of other impurities . Furthermore, the specific gravity of GP was measured. The experiments have been conducted on 63 specimens mortar made with standard sand with 20%,25%, and 30% of GP levels of substituting OPC. The specimens are tested at 3, 7 and 28 days for compressive strength and flexural strength. The specimens made with maximum GP size of 75-μm have outperformed the control OPC mortar at 28 days test age than size 150-μm at various replacement levels. In addition to that, the mechanical strengths were evaluated compressive strength and flexural strength tests were conducted for GPs. The findings from this study indicated that the mortars modified with GP 75μm and replacement ratio of 20% showed an improvement in compressive strength and flexural strength compared to the control mortar at the 28 days of curing with significant development between 7 and 28 days. Mortar with GP size 75-μm containing 30% & 20% replacement of cement have exhibited the highest flexural strength among all mortar mixtures. The improvement in the mechanical strength of the mortars modified with GP can be attributed to the pozzolanic property of GPs, which leads to a more densified microstructure and improved interfacial bonding between sand and cement paste matrix in mortars.

Keywords: glass powder, pozzolana, compressive strength, flexural strength, mortar

Procedia PDF Downloads 52
2125 Improving the Quality of Casava Peel-Leaf Mixture through Fermentation with Rhizopus oligosporusas Poultry Ration

Authors: Mirnawati, G. Ciptaan, Ferawati

Abstract:

This study aims to improve the quality of the cassava peel-leaf mixture (CPLM) through fermentation with Rhizopus oligosporusas poultry ration. This research is an experimental study using a completely randomized design (CRD) with four treatments and five replications. The treatments were cassava peel-leaf mixture (CPLM) fermented with Rhizopus oligosporus. The treatments were a combination of cassava peel and leaves with the ratio of; A (9:1), B (8:2), C (7:3), and D (6:4). The observed variables were protease enzyme activity, crude protein, crude fiber, nitrogen retention, digestibility of crude fiber, and metabolic energy. The results of the diversity analysis showed that there was a very significant (p < 0.01) effect on protease activity, crude protein, crude fiber, nitrogen retention, digestibility of crude fiber, and energy metabolism of fermented CPLM. Based on the results of the study, it can be concluded that CPLM (6:4) fermented with Rhizopus oligosporus gave the best results seen from protease activity 7,25 U/ml, 21.23% crude protein, 19.80% crude fiber, 59.65% nitrogen retention, 62.99% crude fiber digestibility and metabolic energy 2671 Kcal/kg.

Keywords: quality, Casava peel-leaf mixture, fermentation, Rhizopus oligosporus

Procedia PDF Downloads 167
2124 Study of Electro-Chemical Properties of ZnO Nanowires for Various Application

Authors: Meera A. Albloushi, Adel B. Gougam

Abstract:

The development in the field of piezoelectrics has led to a renewed interest in ZnO nanowires (NWs) as a promising material in the nanogenerator devices category. It can be used as a power source for self-powered electronic systems with higher density, higher efficiency, longer lifetime, as well as lower cost of fabrication. Highly aligned ZnO nanowires seem to exhibit a higher performance compared with nonaligned ones. The purpose of this study was to develop ZnO nanowires and to investigate their electrical and chemical properties for various applications. They were grown on silicon (100) and glass substrates. We have used a low temperature and non-hazardous method: aqueous chemical growth (ACG). ZnO (non-doped) and AZO (Aluminum doped) seed layers were deposited using RF magnetron sputteringunder Argon pressure of 3 mTorr and deposition power of 180 W, the times of growth were selected to obtain thicknesses in the range of 30 to 125 nm. Some of the films were subsequently annealed. The substrates were immersed tilted in an equimolar solution composed of zinc nitrate and hexamine (HMTA) of 0.02 M and 0.05 M in the temperature range of 80 to 90 ᵒC for 1.5 to 2 hours. The X-ray diffractometer shows strong peaks at 2Ө = 34.2ᵒ of ZnO films which indicates that the films have a preferred c-axis wurtzite hexagonal (002) orientation. The surface morphology of the films is investigated by atomic force microscope (AFM) which proved the uniformity of the film since the roughness is within 5 nm range. The scanning electron microscopes(SEM) (Quanta FEG 250, Quanta 3D FEG, Nova NanoSEM 650) are used to characterize both ZnO film and NWs. SEM images show forest of ZnO NWs grown vertically and have a range of length up to 2000 nm and diameter of 20-300 nm. The SEM images prove that the role of the seed layer is to enhance the vertical alignment of ZnO NWs at the pH solution of 5-6. Also electrical and optical properties of the NWs are carried out using Electrical Force Microscopy (EFM). After growing the ZnO NWs, developing the nano-generator is the second step of this study in order to determine the energy conversion efficiency and the power output.

Keywords: ZnO nanowires(NWs), aqueous chemical growth (ACG), piezoelectric NWs, harvesting enery

Procedia PDF Downloads 311
2123 Comparison of Stationary and Two-Axis Tracking System of 50MW Photovoltaic Power Plant in Al-Kufra, Libya: Landscape Impact and Performance

Authors: Yasser Aldali

Abstract:

The scope of this paper is to evaluate and compare the potential of LS-PV (Large Scale Photovoltaic Power Plant) power generation systems in the southern region of Libya at Al-Kufra for both stationary and tracking systems. A Microsoft Excel-VBA program has been developed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency of the system for stationary system and for tracking system. The results for energy production show that the total energy output is 114GWh/year for stationary system and 148 GWh/year for tracking system. The average module efficiency for the stationary system is 16.6% and 16.2% for the tracking system. The values of electricity generation capacity factor (CF) and solar capacity factor (SCF) for stationary system were found to be 26% and 62.5% respectively and 34% and 82% for tracking system. The GCR (Ground Cover Ratio) for a stationary system is 0.7, which corresponds to a tilt angle of 24°. The GCR for tracking system was found to be 0.12. The estimated ground area needed to build a 50MW PV plant amounts to approx. 0.55 km2 for a stationary PV field constituted by HIT PV arrays and approx. 91 MW/km2. In case of a tracker PV field, the required ground area amounts approx. 2.4k m2 and approx. 20.5 MW/km2.

Keywords: large scale photovoltaic power plant, two-axis tracking system, stationary system, landscape impact

Procedia PDF Downloads 436
2122 Reliability-Based Method for Assessing Liquefaction Potential of Soils

Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty

Abstract:

This paper explores probabilistic method for assessing the liquefaction potential of sandy soils. The current simplified methods for assessing soil liquefaction potential use a deterministic safety factor in order to determine whether liquefaction will occur or not. However, these methods are unable to determine the liquefaction probability related to a safety factor. A solution to this problem can be found by reliability analysis.This paper presents a reliability analysis method based on the popular certain liquefaction analysis method. The proposed probabilistic method is formulated based on the results of reliability analyses of 190 field records and observations of soil performance against liquefaction. The results of the present study show that confidence coefficient greater and smaller than 1 does not mean safety and/or liquefaction in cadence for liquefaction, and for assuring liquefaction probability, reliability based method analysis should be used. This reliability method uses the empirical acceleration attenuation law in the Chalos area to derive the probability density distribution function and the statistics for the earthquake-induced cyclic shear stress ratio (CSR). The CSR and CRR statistics are used in continuity with the first order and second moment method to calculate the relation between the liquefaction probability, the safety factor and the reliability index. Based on the proposed method, the liquefaction probability related to a safety factor can be easily calculated. The influence of some of the soil parameters on the liquefaction probability can be quantitatively evaluated.

Keywords: liquefaction, reliability analysis, chalos area, civil and structural engineering

Procedia PDF Downloads 458
2121 Sun Protection Factor (SPF) Determination of Sericin Cream and Niosomal Gel

Authors: Farzad Doostishoar, Abbas Pardakhty, Abdolreza Hassanzadeh, Sudeh salarpour, Elham Sharif

Abstract:

Background: Sericin is a protein extracted from silk and has antioxidant, antimicrobial, antineoplastic, wound healing and moisturizing properties. Different cosmetic formulation of sericin is available in different countries such as Japan and the other south-eastern Asian countries. We formulated and evaluated the sunscreen properties of topical formulations of sericin by an in vitro method. Method: Niosomes composed of sorbitan palmitate (Span 40), polysorbate 40 (Tween 40) and cholesterol (300 µmol, 3.5:3.5:3 molar ratio) were prepared by film hydration technique. Sericin was dissolved in normal saline and the lipid hydration was carried out at 60°C and the niosomes were incorporated in a Carbomer gel base. A W/O cream was also prepared and the release of sericin was evaluated by using Franz diffusion cell. Particle size analysis, sericin encapsulation efficiency measurement, morphological studies and stability evaluation were done in niosomal formulations. SPF was calculated by using Transpore tape in vitro method for both formulations. Results: Niosomes had high stability during 6 months storage at 4-8°C. The mean volume diameter of niosomes was less than 7 µm which is ideal for sustained release of drugs in topical formulations. The SPF of niosomal gel was 25 and higher than sericin cream with a diffusion based release pattern of active material. Conclusion: Sericin can be successfully entrapped in niosomes with sustained release pattern and relatively high SPF.

Keywords: sericin, niosomes, sun protection factor, cream, gel

Procedia PDF Downloads 487
2120 Effects of Different Dietary Crude Fiber Levels on the Growth Performance of Finishing Su-Shan Pigs

Authors: Li Bixia, Ren Shouwen, Fu Yanfeng, Tu Feng, Xiaoming Fang, Xueming Wang

Abstract:

The utilization of dietary crude fiber in different breed pigs is not the same. Su-shan pigs are a new breed formed by crossing Taihu pigs and Yorkshire pigs. In order to understand the resistance of Su-shan pigs to dietary crude fiber, 150 Su-shan pigs with 60 kg of average body weight and similar body conditions were allocated to three groups randomly, and there are 50 pigs in each group. The percentages of dietary crude fiber were 8.35%, 9.10%, and 11.39%, respectively. At the end of the experiment, 15 pigs randomly selected from each group were slaughtered. The results showed as follows: average daily gain of the 9.10% group was higher than that of the 8.35% group and the 11.39% group; there was a significant difference between the 9.10% group and the 8.35% group (p < 0.05. Levels of urea nitrogen, total cholesterol and high density lipoprotein in the 9.10% group were significantly higher than those in the 8.35% group and the 11.39% group (p < 0.05). Ratios of meat to fat in the 9.10% group and the 11.39% group were significantly higher than that in the 8.35% group (p < 0.05). Lean percentage of 9.10% group was higher than that of 8.35% group and 11.39% group, but there was no significant difference in three groups (p > 0.05). The weight of small intestine and large intestine in the 11.39% group was higher than that in the 8.35% group, and the 9.10% group and the difference reached a significant level (p < 0.05). In conclusion, increasing dietary crude fiber properly could reduce fat percentage, and improve the ratio of meat to fat of finishing Su-shan pigs. The digestion and metabolism of dietary crude fiber promoted the development of stomach and intestine of finishing Su-shan pig.

Keywords: Su-shan pigs, dietary crude fiber, growth performance, serum biochemical indexes

Procedia PDF Downloads 300