Search results for: corruption reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5165

Search results for: corruption reduction

485 An Investigation on MgAl₂O₄ Based Mould System in Investment Casting Titanium Alloy

Authors: Chen Yuan, Nick Green, Stuart Blackburn

Abstract:

The investment casting process offers a great freedom of design combined with the economic advantage of near net shape manufacturing. It is widely used for the production of high value precision cast parts in particularly in the aerospace sector. Various combinations of materials have been used to produce the ceramic moulds, but most investment foundries use a silica based binder system in conjunction with fused silica, zircon, and alumino-silicate refractories as both filler and coarse stucco materials. However, in the context of advancing alloy technologies, silica based systems are struggling to keep pace, especially when net-shape casting titanium alloys. Study has shown that the casting of titanium based alloys presents considerable problems, including the extensive interactions between the metal and refractory, and the majority of metal-mould interaction is due to reduction of silica, present as binder and filler phases, by titanium in the molten state. Cleaner, more refractory systems are being devised to accommodate these changes. Although yttria has excellent chemical inertness to titanium alloy, it is not very practical in a production environment combining high material cost, short slurry life, and poor sintering properties. There needs to be a cost effective solution to these issues. With limited options for using pure oxides, in this work, a silica-free magnesia spinel MgAl₂O₄ was used as a primary coat filler and alumina as a binder material to produce facecoat in the investment casting mould. A comparison system was also studied with a fraction of the rare earth oxide Y₂O₃ adding into the filler to increase the inertness. The stability of the MgAl₂O₄/Al₂O₃ and MgAl₂O₄/Y₂O₃/Al₂O₃ slurries was assessed by tests, including pH, viscosity, zeta-potential and plate weight measurement, and mould properties such as friability were also measured. The interaction between the face coat and titanium alloy was studied by both a flash re-melting technique and a centrifugal investment casting method. The interaction products between metal and mould were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The depth of the oxygen hardened layer was evaluated by micro hardness measurement. Results reveal that introducing a fraction of Y₂O₃ into magnesia spinel can significantly increase the slurry life and reduce the thickness of hardened layer during centrifugal casting.

Keywords: titanium alloy, mould, MgAl₂O₄, Y₂O₃, interaction, investment casting

Procedia PDF Downloads 113
484 Development of High-Efficiency Down-Conversion Fluoride Phosphors to Increase the Efficiency of Solar Panels

Authors: S. V. Kuznetsov, M. N. Mayakova, V. Yu. Proydakova, V. V. Pavlov, A. S. Nizamutdinov, O. A. Morozov, V. V. Voronov, P. P. Fedorov

Abstract:

Increase in the share of electricity received by conversion of solar energy results in the reduction of the industrial impact on the environment from the use of the hydrocarbon energy sources. One way to increase said share is to improve the efficiency of solar energy conversion in silicon-based solar panels. Such efficiency increase can be achieved by transferring energy from sunlight-insensitive areas of work of silicon solar panels to the area of their photoresistivity. To achieve this goal, a transition to new luminescent materials with the high quantum yield of luminescence is necessary. Improvement in the quantum yield can be achieved by quantum cutting, which allows obtaining a quantum yield of down conversion of more than 150% due to the splitting of high-energy photons of the UV spectral range into lower-energy photons of the visible and near infrared spectral ranges. The goal of present work is to test approach of excitation through sensibilization of 4f-4f fluorescence of Yb3+ by various RE ions absorbing in UV and Vis spectral ranges. One of promising materials for quantum cutting luminophores are fluorides. In our investigation we have developed synthesis of nano- and submicron powders of calcium fluoride and strontium doped with rare-earth elements (Yb: Ce, Yb: Pr, Yb: Eu) of controlled dimensions and shape by co-precipitation from water solution technique. We have used Ca(NO3)2*4H2O, Sr(NO3)2, HF, NH4F as precursors. After initial solutions of nitrates were prepared they have been mixed with fluorine containing solution by dropwise manner. According to XRD data, the synthesis resulted in single phase samples with fluorite structure. By means of SEM measurements, we have confirmed spherical morphology and have determined sizes of particles (50-100 nm after synthesis and 150-300 nm after calcination). Temperature of calcination appeared to be 600°C. We have investigated the spectral-kinetic characteristics of above mentioned compounds. Here the diffuse reflection and laser induced fluorescence spectra of Yb3+ ions excited at around 4f-4f and 4f-5d transitions of Pr3+, Eu3+ and Ce3+ ions in the synthesized powders are reported. The investigation of down conversion luminescence capability of synthesized compounds included measurements of fluorescence decays and quantum yield of 2F5/2-2F7/2 fluorescence of Yb3+ ions as function of Yb3+ and sensitizer contents. An optimal chemical composition of CaF2-YbF3- LnF3 (Ln=Ce, Eu, Pr), SrF2-YbF3-LnF3 (Ln=Ce, Eu, Pr) micro- and nano- powders according to criteria of maximal IR fluorescence yield is proposed. We suppose that investigated materials are prospective in solar panels improvement applications. Work was supported by Russian Science Foundation grant #17-73- 20352.

Keywords: solar cell, fluorides, down-conversion luminescence, maximum quantum yield

Procedia PDF Downloads 272
483 An Empirical Analysis of Farmers Field Schools and Effect on Tomato Productivity in District Malakand Khyber Pakhtunkhwa-Pakistan

Authors: Mahmood Iqbal, Khalid Nawab, Tachibana Satoshi

Abstract:

Farmer Field School (FFS) is constantly aims to assist farmers to determine and learn about field ecology and integrated crop management. The study was conducted to examine the change in productivity of tomato crop in the study area; to determine increase in per acre yield of the crop, and find out reduction in per acre input cost. A study of tomato crop was conducted in ten villages namely Jabban, Bijligar Colony, Palonow, Heroshah, Zara Maira, Deghar Ghar, Sidra Jour, Anar Thangi, Miangano Korona and Wartair of district Malakand. From each village 15 respondents were selected randomly on the basis of identical allocation making sample size of 150 respondents. The research was based on primary as well as secondary data. Primary data was collected from farmers while secondary data were taken from Agriculture Extension Department Dargai, District Malakand. Interview schedule was planned and each farmer was interviewed personally. The study was based on comparison of cost, yield and income of tomato before and after FFS. Paired t-test and Statistical Package for Social Sciences (SPSS) was used for analysis; outcome of the study show that integrated pest management project has brought a positive change in the attitude of farmers of the project area through FFS approach. In district Malakand 66.0% of the respondents were between the age group of 31-50 years, 11.3% of respondents had primary level of education, 12.7% of middle level, 28.7% metric level, 3.3% of intermediate level and 2.0% of graduate level of education while 42.0% of respondents were illiterate and have no education. Average land holding size of farmers was 6.47 acres, cost of seed, crop protection from insect pest and crop protection from diseases was reduced by Rs. 210.67, Rs. 2584.43 and Rs. 3044.16 respectively, the cost of fertilizers and cost of farm yard manure was increased by Rs.1548.87 and Rs. 1151.40 respectively while tomato yield was increased by 1585.03 kg/acre from 7663.87 to 9248.90 kg/acre. The role of FFS initiate by integrated pest management project through department of agriculture extension for the development of agriculture was worth mentioning. It has brought enhancement in crop yield of tomato and their income through FFS approach. On the basis of results of the research studies, integrated pest management project should spread their developmental activities for maximum participation of the complete rural masses through participatory FFS approach.

Keywords: agriculture, Farmers field schools, extension education, tomato

Procedia PDF Downloads 613
482 Oxidative Stability of Corn Oil Supplemented with Natural Antioxidants from Cypriot Salvia fruticosa Extracts

Authors: Zoi Konsoula

Abstract:

Vegetable oils, which are rich in polyunsaturated fatty acids, are susceptible to oxidative deterioration. The lipid oxidation of oils results in the production of rancid odors and unpleasant flavors as well as the reduction of their nutritional quality and safety. Traditionally, synthetic antioxidants are employed for their retardation or prevention of oxidative deterioration of oils. However, these compounds are suspected to pose health hazards. Consequently, recently there has been a growing interest in the use of natural antioxidants of plant origin for improving the oxidative stability of vegetable oils. The genus Salvia (sage) is well known for its antioxidant activity. In the Cypriot flora Salvia fruticosa is the most distributed indigenous Salvia species. In the present study, extracts were prepared from S. fruticosa aerial parts using various solvents and their antioxidant activity was evaluated by the 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging and Ferric Reducing Antioxidant Power (FRAP) method. Moreover, the antioxidant efficacy of all extracts was assessed using corn oil as the oxidation substrate, which was subjected to accelerated aging (60 °C, 30 days). The progress of lipid oxidation was monitored by the determination of the peroxide, p-aniside, conjugated dienes and trienes value according to the official AOCS methods. Synthetic antioxidants (butylated hydroxytoluene-BHT and butylated hydroxyanisole-BHA) were employed at their legal limit (200 ppm) as reference. Finally, the total phenolic (TPC) and flavonoid content (TFC) of the prepared extracts was measured by the Folin-Ciocalteu and aluminum-flavonoid complex method, respectively. The results of the present study revealed that although all sage extracts prepared from S. fruticosa exhibited antioxidant activity, the highest antioxidant capacity was recorded in the methanolic extract, followed by the non-toxic, food grade ethanol. Furthermore, a positive correlation between the antioxidant potency and the TPC of extracts was observed in all cases. Interestingly, sage extracts prevented lipid oxidation in corn oil at all concentrations tested, however, the magnitude of stabilization was dose dependent. More specifically, results from the different oxidation parameters were in agreement with each other and indicated that the protection offered by the various extracts depended on their TPC. Among the extracts, the methanolic extract was more potent in inhibiting oxidative deterioration. Finally, both methanolic and ethanolic sage extracts at a concentration of 1000 ppm exerted a stabilizing effect comparable to that of the reference synthetic antioxidants. Based on the results of the present study, sage extracts could be used for minimizing or preventing lipid oxidation in oils and, thus, prolonging their shelf-life. In particular, given that the use of dietary alcohol, such as ethanol, is preferable than methanol in food applications, the ethanolic extract prepared from S. fruticosa could be used as an alternative natural antioxidant.

Keywords: antioxidant activity, corn oil, oxidative deterioration, sage

Procedia PDF Downloads 205
481 Digital Transformation of Lean Production: Systematic Approach for the Determination of Digitally Pervasive Value Chains

Authors: Peter Burggräf, Matthias Dannapfel, Hanno Voet, Patrick-Benjamin Bök, Jérôme Uelpenich, Julian Hoppe

Abstract:

The increasing digitalization of value chains can help companies to handle rising complexity in their processes and thereby reduce the steadily increasing planning and control effort in order to raise performance limits. Due to technological advances, companies face the challenge of smart value chains for the purpose of improvements in productivity, handling the increasing time and cost pressure and the need of individualized production. Therefore, companies need to ensure quick and flexible decisions to create self-optimizing processes and, consequently, to make their production more efficient. Lean production, as the most commonly used paradigm for complexity reduction, reaches its limits when it comes to variant flexible production and constantly changing market and environmental conditions. To lift performance limits, which are inbuilt in current value chains, new methods and tools must be applied. Digitalization provides the potential to derive these new methods and tools. However, companies lack the experience to harmonize different digital technologies. There is no practicable framework, which instructs the transformation of current value chains into digital pervasive value chains. Current research shows that a connection between lean production and digitalization exists. This link is based on factors such as people, technology and organization. In this paper, the introduced method for the determination of digitally pervasive value chains takes the factors people, technology and organization into account and extends existing approaches by a new dimension. It is the first systematic approach for the digital transformation of lean production and consists of four steps: The first step of ‘target definition’ describes the target situation and defines the depth of the analysis with regards to the inspection area and the level of detail. The second step of ‘analysis of the value chain’ verifies the lean-ability of processes and lies in a special focus on the integration capacity of digital technologies in order to raise the limits of lean production. Furthermore, the ‘digital evaluation process’ ensures the usefulness of digital adaptions regarding their practicability and their integrability into the existing production system. Finally, the method defines actions to be performed based on the evaluation process and in accordance with the target situation. As a result, the validation and optimization of the proposed method in a German company from the electronics industry shows that the digital transformation of current value chains based on lean production achieves a raise of their inbuilt performance limits.

Keywords: digitalization, digital transformation, Industrie 4.0, lean production, value chain

Procedia PDF Downloads 313
480 The Relationship between Osteoporosis-Related Knowledge and Physical Activity among Women Age over 50 Years

Authors: P. Tardi, B. Szilagyi, A. Makai, P. Acs, M. Hock, M. Jaromi

Abstract:

Osteoporosis is becoming a major public health problem, particularly in postmenopausal women, as the incidence of this disease is getting higher. Nowadays, one of the most common chronic musculoskeletal diseases is osteoporosis. Osteoporosis-related knowledge is an important contributor to prevent or to treat osteoporosis. The most important strategies to prevent or treat the disease are increasing the level of physical activity at all ages, cessation of smoking, reduction of alcohol consumption, adequate dietary calcium, and vitamin D intake. The aim of the study was to measure the osteoporosis-related knowledge and physical activity among women age over 50 years. For the measurements, we used the osteoporosis questionnaire (OPQ) to examine the disease-specific knowledge and the global physical activity questionnaire (GPAQ) to measure the quantity and quality of the physical activity. The OPQ is a self-administered 20-item questionnaire with five categories: general information, risk factors, investigations, consequences, and treatment. There are four choices per question (one of them is the 'I do not know'). The filler gets +1 for a good answer, -1 point for a bad answer, and 0 for 'I do not know' answer. We contacted with 326 women (63.08 ± 9.36 year) to fill out the questionnaires. Descriptive analysis was carried out, and we calculated Spearman's correlation coefficient to examine the relationship between the variables. Data were entered into Microsoft Excel, and all statistical analyses were performed using SPSS (Version 24). The participants of the study (n=326) reached 8.76 ± 6.94 points on OPQ. Significant (p < 0.001) differences were found in the results of OPQ according to the highest level of education. It was observed that the score of the participants with osteoporosis (10.07 ± 6.82 points) was significantly (p=0.003) higher than participants without osteoporosis (9.38 ± 6.66 points) and the score of those women (6.49 ± 6.97 points) who did not know that osteoporosis exists in their case. The GPAQ results showed the sample physical activity in the dimensions of vigorous work (479.86 ± 684.02 min/week); moderate work (678.16 ± 804.5 min/week); travel (262.83 ± 380.27 min/week); vigorous recreation (77.71 ± 123.46 min/week); moderate recreation (115.15 ± 154.82 min/week) and total weekly physical activity (1645.99 ± 1432.88 min/week). Significant correlations were found between the osteoporosis-related knowledge and the physical activity in travel (R=0.21; p < 0.001), vigorous recreation (R=0.35; p < 0.001), moderate recreation (R=0.35; p < 0.001), total vigorous minutes/week (R=0.15; p=0.001) and total moderate minutes/week (R=0.13; p=0.04) dimensions. According to the results that were achieved, the highest level of education significantly determines osteoporosis-related knowledge. Physical activity is an important contributor to prevent or to treat osteoporosis, and it showed a significant correlation with osteoporosis-related knowledge. Based on the results, the development of osteoporosis-related knowledge may help to improve the level of physical activity, especially recreation. Acknowledgment: Supported by the ÚNKP-20-1 New National Excellence Program of The Ministry for Innovation and Technology from the Source of the National Research, Development and Innovation Fund.

Keywords: osteoporosis, osteoporosis-related knowledge, physical activity, prevention

Procedia PDF Downloads 112
479 A Theragnostic Approach for Alzheimer’s Disease Focused on Phosphorylated Tau

Authors: Tomás Sobrino, Lara García-Varela, Marta Aramburu-Núñez, Mónica Castro, Noemí Gómez-Lado, Mariña Rodríguez-Arrizabalaga, Antía Custodia, Juan Manuel Pías-Peleteiro, José Manuel Aldrey, Daniel Romaus-Sanjurjo, Ángeles Almeida, Pablo Aguiar, Alberto Ouro

Abstract:

Introduction: Alzheimer’s disease (AD) and other tauopathies are primary causes of dementia, causing progressive cognitive deterioration that entails serious repercussions for the patients' performance of daily tasks. Currently, there is no effective approach for the early diagnosis and treatment of AD and tauopathies. This study suggests a theragnostic approach based on the importance of phosphorylated tau protein (p-Tau) in the early pathophysiological processes of AD. We have developed a novel theragnostic monoclonal antibody (mAb) to provide both diagnostic and therapeutic effects. Methods/Results: We have developed a p-Tau mAb, which was doped with deferoxamine for radiolabeling with Zirconium-89 (89Zr) for PET imaging, as well as fluorescence dies for immunofluorescence assays. The p-Tau mAb was evaluated in vitro for toxicity by MTT assay, LDH activity, propidium iodide/Annexin V assay, caspase-3, and mitochondrial membrane potential (MMP) assay in both mouse endothelial cell line (bEnd.3) and cortical primary neurons cell cultures. Importantly, non-toxic effects (up to concentrations of p-Tau mAb greater than 100 ug/mL) were detected. In vivo experiments in the tauopathy model mice (PS19) show that the 89Zr-pTau-mAb and 89Zr-Fragments-pTau-mAb are stable in circulation for up to 10 days without toxic effects. However, only less than 0.2% reached the brain, so further strategies have to be designed for crossing the Brain-Blood-Barrier (BBB). Moreover, an intraparenchymal treatment strategy was carried out. The PS19 mice were operated to implement osmotic pumps (Alzet 1004) at two different times, at 4 and 7 months, to stimulate the controlled release for one month each of the B6 antibody or the IgG1 control antibody. We demonstrated that B6-treated mice maintained their motor and memory abilities significantly compared with IgG1 treatment. In addition, we observed a significant reduction in p-Tau deposits in the brain. Conclusions /Discussion: A theragnostic pTau-mAb was developed. Moreover, we demonstrated that our p-Tau mAb recognizes very-early pathology forms of p-Tau by non-invasive techniques, such as PET. In addition, p-Tau mAb has non-toxic effects, both in vitro and in vivo. Although the p-Tau mAb is stable in circulation, only 0.2% achieve the brain. However, direct intraventricular treatment significantly reduces cognitive impairment in Alzheimer's animal models, as well as the accumulation of toxic p-Tau species.

Keywords: alzheimer's disease, theragnosis, tau, PET, immunotherapy, tauopathies

Procedia PDF Downloads 70
478 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center

Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael

Abstract:

Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.

Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency

Procedia PDF Downloads 33
477 A Preliminary Analysis of The Effect After Cochlear Implantation in the Unilateral Hearing Loss

Authors: Haiqiao Du, Qian Wang, Shuwei Wang, Jianan Li

Abstract:

Purpose: The aim is to evaluate the effect of cochlear implantation (CI) in patients with unilateral hearing loss, with a view to providing data support for the selection of therapeutic interventions for patients with single-sided deafness (SSD)/asymmetric hearing loss (AHL) and the broadening of the indications for CI. Methods: The study subjects were patients with unilateral hearing loss who underwent cochlear implantation surgery in our hospital in August 2022 and were willing to cooperate with the test and were divided into 2 groups: SSD group and AHL group. The enrolled patients were followed up for hearing level, tinnitus changes, speech recognition ability, sound source localization ability, and quality of life at five-time points: preoperatively, and 1, 3, 6, and 12 months after postoperative start-up. Results: As of June 30, 2024, a total of nine patients completed follow-up, including four in the SSD group and five in the AHL group. The mean postoperative hearing aid thresholds on the CI side were 31.56 dB HL and 34.75 dB HL in the two groups, respectively. Of the four patients with preoperative tinnitus symptoms (three patients in the SSD group and one patient in the AHL group), all showed a degree of reduction in Tinnitus Handicap Inventory (THI) scores, except for one patient who showed no change. In both the SSD and AHL groups, the sound source localization results (expressed as RMS error values, with smaller values indicating better ability) were 66.87° and 77.41° preoperatively and 29.34° and 54.60° 12 months after postoperative start-up, respectively, which showed that the ability to localize the sound source improved significantly with longer implantation time. The level of speech recognition was assessed by 3 test methods: speech recognition rate of monosyllabic words in a quiet environment and speech recognition rate of different sound source directions at 0° and 90° (implantation side) in a noisy environment. The results of the 3 tests were 99.0%, 72.0%, and 36.0% in the preoperative SSD group and 96.0%, 83.6%, and 73.8% in the AHL group, respectively, whereas they fluctuated in the postoperative period 3 months after start-up, and stabilized at 12 months after start-up to 99.0%, 100.0%, and 100.0% in the SSD group and 99.5%, 96.0%, and 99.0%. Quality of life was subjectively evaluated by three tests: the Speech Spatial Quality of Sound Auditory Scale (SSQ-12), the Quality-of-Life Bilateral Listening Questionnaire (QLBHE), and the Nijmegen Cochlear Implantation Inventory (NCIQ). The results of the SSQ-12 (with a 10-point score out of 10) showed that the scores of preoperative and postoperative 12 months after start-up were 6.35 and 6.46 in the SSD group, while they were 5.61 and 9.83 in the AHL group. The QLBHE scores (100 points out of 100) were 61.0 and 76.0 in the SSD group and 53.4 and 63.7 in the AHL group for the preoperative versus the postoperative 12 months after start-up. Conclusion: Patients with unilateral hearing loss can benefit from cochlear implantation: CI implantation is effective in compensating for the hearing on the affected side and reduces the accompanying tinnitus symptoms; there is a significant improvement in sound source localization and speech recognition in the presence of noise; and the quality of life is improved.

Keywords: single-sided deafness, asymmetric hearing loss, cochlear implant, unilateral hearing loss

Procedia PDF Downloads 14
476 Use of Curcumin in Radiochemotherapy Induced Oral Mucositis Patients: A Control Trial Study

Authors: Shivayogi Charantimath

Abstract:

Radiotherapy and chemotherapy are effective for treating malignancies but are associated with side effects like oral mucositis. Chlorhexidine gluconate is one of the most commonly used mouthwash in prevention of signs and symptoms of mucositis. Evidence shows that chlorhexidine gluconate has side effects in terms of colonization of bacteria, bad breadth and less healing properties. Thus, it is essential to find a suitable alternative therapy which is more effective with minimal side effects. Curcumin, an extract of turmeric is gradually being studied for its wide-ranging therapeutic properties such as antioxidant, analgesic, anti-inflammatory, antitumor, antimicrobial, antiseptic, chemo sensitizing and radio sensitizing properties. The present study was conducted to evaluate the efficacy and safety of topical curcumin gel on radio-chemotherapy induced oral mucositis in cancer patients. The aim of the study is to evaluate the efficacy and safety of curcumin gel in the management of oral mucositis in cancer patients undergoing radio chemotherapy and compare with chlorhexidine. The study was conducted in K.L.E. Society’s Belgaum cancer hospital. 40 oral cancer patients undergoing the radiochemotheraphy with oral mucositis was selected and randomly divided into two groups of 20 each. The study group A [20 patients] was advised Cure next gel for 2 weeks. The control group B [20 patients] was advised chlorhexidine gel for 2 weeks. The NRS, Oral Mucositis Assessment scale and WHO mucositis scale were used to determine the grading. The results obtained were calculated by using SPSS 20 software. The comparison of grading was done by applying Mann-Whitney U test and intergroup comparison was calculated by Wilcoxon matched pairs test. The NRS scores observed from baseline to 1st and 2nd week follow up in both the group showed significant difference. The percentage of change in erythema in respect to group A was 63.3% for first week and for second week, changes were 100.0% with p = 0.0003. The changes in Group A in respect to erythema was 34.6% for 1st week and 57.7% in second week. The intergroup comparison was significant with p value of 0.0048 and 0.0006 in relation to group A and group B respectively. The size of the ulcer score was measured which showed 35.5% [P=0.0010] of change in Group A for 1st and 2nd week showed totally reduction i.e. 103.4% [P=0.0001]. Group B showed 24.7% change from baseline to 1st week and 53.6% for 2nd week follow up. The intergroup comparison with Wilcoxon matched pair test was significant with p=0.0001 in group A. The result obtained by WHO mucositis score in respect to group A shows 29.6% [p=0.0004] change in first week and 75.0% [p=0.0180] change in second week which is highly significant in comparison to group B. Group B showed minimum changes i.e. 20.1% in 1st week and 33.3% in 2nd week. The p value with Wilcoxon was significant with 0.0025 in Group A for 1st week follow up and 0.000 for 2nd week follow up. Curcumin gel appears to an effective and safer alternative to chlorhexidine gel in treatment of oral mucositis.

Keywords: curcumin, chemotheraphy, mucositis, radiotheraphy

Procedia PDF Downloads 351
475 Lineament Analysis as a Method of Mineral Deposit Exploration

Authors: Dmitry Kukushkin

Abstract:

Lineaments form complex grids on Earth's surface. Currently, one particular object of study for many researchers is the analysis and geological interpretation of maps of lineament density in an attempt to locate various geological structures. But lineament grids are made up of global, regional and local components, and this superimposition of lineament grids of various scales (global, regional, and local) renders this method less effective. Besides, the erosion processes and the erosional resistance of rocks lying on the surface play a significant role in the formation of lineament grids. Therefore, specific lineament density map is characterized by poor contrast (most anomalies do not exceed the average values by more than 30%) and unstable relation with local geological structures. Our method allows to confidently determine the location and boundaries of local geological structures that are likely to contain mineral deposits. Maps of the fields of lineament distortion (residual specific density) created by our method are characterized by high contrast with anomalies exceeding the average by upward of 200%, and stable correlation to local geological structures containing mineral deposits. Our method considers a lineament grid as a general lineaments field – surface manifestation of stress and strain fields of Earth associated with geological structures of global, regional and local scales. Each of these structures has its own field of brittle dislocations that appears on the surface of its lineament field. Our method allows singling out local components by suppressing global and regional components of the general lineaments field. The remaining local lineament field is an indicator of local geological structures.The following are some of the examples of the method application: 1. Srednevilyuiskoye gas condensate field (Yakutia) - a direct proof of the effectiveness of methodology; 2. Structure of Astronomy (Taimyr) - confirmed by the seismic survey; 3. Active gold mine of Kadara (Chita Region) – confirmed by geochemistry; 4. Active gold mine of Davenda (Yakutia) - determined the boundaries of the granite massif that controls mineralization; 5. Object, promising to search for hydrocarbons in the north of Algeria - correlated with the results of geological, geochemical and geophysical surveys. For both Kadara and Davenda, the method demonstrated that the intensive anomalies of the local lineament fields are consistent with the geochemical anomalies and indicate the presence of the gold content at commercial levels. Our method of suppression of global and regional components results in isolating a local lineament field. In early stages of a geological exploration for oil and gas, this allows determining boundaries of various geological structures with very high reliability. Therefore, our method allows optimization of placement of seismic profile and exploratory drilling equipment, and this leads to a reduction of costs of prospecting and exploration of deposits, as well as acceleration of its commissioning.

Keywords: lineaments, mineral exploration, oil and gas, remote sensing

Procedia PDF Downloads 304
474 Diagenesis of the Permian Ecca Sandstones and Mudstones, in the Eastern Cape Province, South Africa: Implications for the Shale Gas Potential of the Karoo Basin

Authors: Temitope L. Baiyegunhi, Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava

Abstract:

Diagenesis is the most important factor that affects or impact the reservoir property. Despite the fact that published data gives a vast amount of information on the geology, sedimentology and lithostratigraphy of the Ecca Group in the Karoo Basin of South Africa, little is known of the diagenesis of the potentially feasible shales and sandstones of the Ecca Group. The study aims to provide a general account of the diagenesis of sandstones and mudstone of the Ecca Group. Twenty-five diagenetic textures and structures are identified and grouped into three regimes or stages that include eogenesis, mesogenesis and telogenesis. Clay minerals are the most common cementing materials in the Ecca sandstones and mudstones. Smectite, kaolinite and illite are the major clay minerals that act as pore lining rims and pore-filling cement. Most of the clay minerals and detrital grains were seriously attacked and replaced by calcite. Calcite precipitates locally in pore spaces and partly or completely replaced feldspar and quartz grains, mostly at their margins. Precipitation of cements and formation of pyrite and authigenic minerals as well as little lithification occurred during the eogenesis. This regime was followed by mesogenesis which brought about an increase in tightness of grain packing, loss of pore spaces and thinning of beds due to weight of overlying sediments and selective dissolution of framework grains. Compaction, mineral overgrowths, mineral replacement, clay-mineral authigenesis, deformation and pressure solution structures occurred during mesogenesis. During rocks were uplifted, weathered and unroofed by erosion, this resulted in additional grain fracturing, decementation and oxidation of iron-rich volcanic fragments and ferromagnesian minerals. The rocks of Ecca Group were subjected to moderate-intense mechanical and chemical compaction during its progressive burial. Intergranular pores, matrix micro pores, secondary intragranular, dissolution and fractured pores are the observed pores. The presence of fractured and dissolution pores tend to enhance reservoir quality. However, the isolated nature of the pores makes them unfavourable producers of hydrocarbons, which at best would require stimulation. The understanding of the space and time distribution of diagenetic processes in these rocks will allow the development of predictive models of their quality, which may contribute to the reduction of risks involved in their exploration.

Keywords: diagenesis, reservoir quality, Ecca Group, Karoo Supergroup

Procedia PDF Downloads 149
473 Evaluation Method for Fouling Risk Using Quartz Crystal Microbalance

Authors: Natsuki Kishizawa, Keiko Nakano, Hussam Organji, Amer Shaiban, Mohammad Albeirutty

Abstract:

One of the most important tasks in operating desalination plants using a reverse osmosis (RO) method is preventing RO membrane fouling caused by foulants found in seawater. Optimal design of the pre-treatment process of RO process for plants enables the reduction of foulants. Therefore, a quantitative evaluation of the fouling risk in pre-treated water, which is fed to RO, is required for optimal design. Some measurement methods for water quality such as silt density index (SDI) and total organic carbon (TOC) have been conservatively applied for evaluations. However, these methods have not been effective in some situations for evaluating the fouling risk of RO feed water. Furthermore, stable management of plants will be possible by alerts and appropriate control of the pre-treatment process by using the method if it can be applied to the inline monitoring system for the fouling risk of RO feed water. The purpose of this study is to develop a method to evaluate the fouling risk of RO feed water. We applied a quartz crystal microbalance (QCM) to measure the amount of foulants found in seawater using a sensor whose surface is coated with polyamide thin film, which is the main material of a RO membrane. The increase of the weight of the sensor after a certain length of time in which the sample water passes indicates the fouling risk of the sample directly. We classified the values as “FP: Fouling Potential”. The characteristics of the method are to measure the very small amount of substances in seawater in a short time: < 2h, and from a small volume of the sample water: < 50mL. Using some RO cell filtration units, a higher correlation between the pressure increase given by RO fouling and the FP from the method than SDI and TOC was confirmed in the laboratory-scale test. Then, to establish the correlation in the actual bench-scale RO membrane module, and to confirm the feasibility of the monitoring system as a control tool for the pre-treatment process, we have started a long-term test at an experimental desalination site by the Red Sea in Jeddah, Kingdom of Saudi Arabia. Implementing inline equipment for the method made it possible to measure FP intermittently (4 times per day) and automatically. Moreover, for two 3-month long operations, the RO operation pressure among feed water samples of different qualities was compared. The pressure increase through a RO membrane module was observed at a high FP RO unit in which feed water was treated by a cartridge filter only. On the other hand, the pressure increase was not observed at a low FP RO unit in which feed water was treated by an ultra-filter during the operation. Therefore, the correlation in an actual scale RO membrane was established in two runs of two types of feed water. The result suggested that the FP method enables the evaluation of the fouling risk of RO feed water.

Keywords: fouling, monitoring, QCM, water quality

Procedia PDF Downloads 212
472 Environmental Threats and Great Barrier Reef: A Vulnerability Assessment of World’s Best Tropical Marine Ecosystems

Authors: Ravi Kant Anand, Nikkey Keshri

Abstract:

The Great Barrier Reef of Australia is known for its beautiful landscapes and seascapes with ecological importance. This site was selected as a World Heritage site in 1981 and popularized internationally for tourism, recreational activities and fishing. But the major environmental hazards such as climate change, pollution, overfishing and shipping are making worst the site of marine ecosystem. Climate change is directly hitting on Great Barrier Reef through increasing level of sea, acidification of ocean, increasing in temperature, uneven precipitation, changes in the El Nino and increasing level of cyclones and storms. Apart from that pollution is second biggest factor which vanishing the coral reef ecosystem. Pollution including over increasement of pesticides and chemicals, eutrophication, pollution through mining, sediment runoff, loss of coastal wetland and oil spills. Coral bleaching is the biggest problem because of the environmental threatening agents. Acidification of ocean water reduced the formation of calcium carbonate skeleton. The floral ecosystem (including sea grasses and mangroves) of ocean water is the key source of food for fishes and other faunal organisms but the powerful waves, extreme temperature, destructive storms and river run- off causing the threat for them. If one natural system is under threat, it means the whole marine food web is affected from algae to whale. Poisoning of marine water through different polluting agents have been affecting the production of corals, breeding of fishes, weakening of marine health and increased in death of fishes and corals. In lieu of World Heritage site, tourism sector is directly affected and causing increasement in unemployment. Fishing sector also affected. Fluctuation in the temperature of ocean water affects the production of corals because it needs desolate place, proper sunlight and temperature up to 21 degree centigrade. But storms, El Nino, rise in temperature and sea level are induced for continuous reduction of the coral production. If we do not restrict the environmental problems of Great Barrier Reef than the best known ecological beauty with coral reefs, pelagic environments, algal meadows, coasts and estuaries, mangroves forests and sea grasses, fish species, coral gardens and the one of the best tourist spots will lost in upcoming years. My research will focus on the different environmental threats, its socio-economic impacts and different conservative measures.

Keywords: climate change, overfishing, acidification, eutrophication

Procedia PDF Downloads 374
471 Global Experiences in Dealing with Biological Epidemics with an Emphasis on COVID-19 Disease: Approaches and Strategies

Authors: Marziye Hadian, Alireza Jabbari

Abstract:

Background: The World Health Organization has identified COVID-19 as a public health emergency and is urging governments to stop the virus transmission by adopting appropriate policies. In this regard, authorities have taken different approaches to cut the chain or controlling the spread of the disease. Now, the questions we are facing include what these approaches are? What tools should be used to implement each preventive protocol? In addition, what is the impact of each approach? Objective: The aim of this study was to determine the approaches to biological epidemics and related prevention tools with an emphasis on COVID-19 disease. Data sources: Databases including ISI web of science, PubMed, Scopus, Science Direct, Ovid, and ProQuest were employed for data extraction. Furthermore, authentic sources such as the WHO website, the published reports of relevant countries, as well as the Worldometer website were evaluated for gray studies. The time-frame of the study was from 1 December 2019 to 30 May 2020. Methods: The present study was a systematic study of publications related to the prevention strategies for the COVID-19 disease. The study was carried out based on the PRISMA guidelines and CASP for articles and AACODS for grey literature. Results: The study findings showed that in order to confront the COVID-19 epidemic, in general, there are three approaches of "mitigation", "active control" and "suppression" and four strategies of "quarantine", "isolation", "social distance" and "lockdown" in both individual and social dimensions to deal with epidemics. Selection and implementation of each approach requires specific strategies and has different effects when it comes to controlling and inhibiting the disease. Key finding: One possible approach to control the disease is to change individual behavior and lifestyle. In addition to prevention strategies, use of masks, observance of personal hygiene principles such as regular hand washing and non-contact of contaminated hands with the face, as well as an observance of public health principles such as sneezing and coughing etiquettes, safe extermination of personal protective equipment, must be strictly observed. Have not been included in the category of prevention tools. However, it has a great impact on controlling the epidemic, especially the new coronavirus epidemic. Conclusion: Although the use of different approaches to control and inhibit biological epidemics depends on numerous variables, however, despite these requirements, global experience suggests that some of these approaches are ineffective. The use of previous experiences in the world, along with the current experiences of countries, can be very helpful in choosing the accurate approach for each country in accordance with the characteristics of that country and lead to the reduction of possible costs at the national and international levels.

Keywords: novel corona virus, COVID-19, approaches, prevention tools, prevention strategies

Procedia PDF Downloads 127
470 The Effect of Positional Release Technique versus Kinesio Tape on Iliocostalis lumborum in Back Myofascial Pain Syndrome

Authors: Shams Khaled Abdelrahman Abdallah Elbaz, Alaa Aldeen Abd Al Hakeem Balbaa

Abstract:

Purpose: The purpose of this study was to compare the effects of Positional Release Technique versus Kinesio Tape on pain level, pressure pain threshold level and functional disability in patients with back myofascial pain syndrome at iliocostalis lumborum. Backgrounds/significance: Myofascial Pain Syndrome is a common muscular pain syndrome that arises from trigger points which are hyperirritable, painful and tender points within a taut band of skeletal muscle. In more recent literature, about 75% of patients with musculoskeletal pain presenting to a community medical centres suffer from myofascial pain syndrome.Iliocostalis lumborum are most likely to develop active trigger points. Subjects: Thirty patients diagnosed as back myofascial pain syndrome with active trigger points in iliocostalis lumborum muscle bilaterally had participated in this study. Methods and materials: Patients were randomly distributed into two groups. The first group consisted of 15 patients (8 males and 7 females) with mean age 30.6 (±3.08) years, they received positional release technique which was applied 3 times per session, 3/week every other day for 2 weeks. The second group consisted of 15 patients(5 males, 10 females) with a mean age 30.4 (±3.35) years, they received kinesio tape which was applied and changed every 3 days with one day off for a total 3 times in 2 weeks. Both techniques were applied over trigger points of the iliocostalis lumborum bilaterally. Patients were evaluated pretreatment and posttreatment program for Pain intensity (Visual analogue scale), pressure pain threshold (digital pressure algometry), and functional disability (The Oswestry Disability Index). Analyses: Repeated measures MANOVA was used to detect differences within and between groups pre and post treatment. Then the univariate ANOVA test was conducted for the analysis of each dependant variable within and between groups. All statistical analyses were done using SPSS. with significance level set at p<0.05 throughout all analyses. Results: The results revealed that there was no significant difference between positional release technique and kinesio tape technique on pain level, pressure pain threshold and functional activities (p > 0.05). Both groups of patients showed significant improvement in all the measured variables (p < 0.05) evident by significant reduction of both pain intensity and functional disability as well as significant increase of pressure pain threshold Conclusions : Both positional release technique and kinesio taping technique are effective in reducing pain level, improving pressure pain threshold and improving function in treating patients who suffering from back myofascial pain syndrome at iliocostalis lumborum. As there was no statistically significant difference was proven between both of them.

Keywords: positional release technique, kinesio tape, myofascial pain syndrome, Iliocostalis lumborum

Procedia PDF Downloads 232
469 Integration of Icf Walls as Diurnal Solar Thermal Storage with Microchannel Solar Assisted Heat Pump for Space Heating and Domestic Hot Water Production

Authors: Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

In Canada, more than 32% of the total energy demand is related to the building sector. Therefore, there is a great opportunity for Greenhouse Gases (GHG) reduction by integrating solar collectors to provide building heating load and domestic hot water (DHW). Despite the cold winter weather, Canada has a good number of sunny and clear days that can be considered for diurnal solar thermal energy storage. Due to the energy mismatch between building heating load and solar irradiation availability, relatively big storage tanks are usually needed to store solar thermal energy during the daytime and then use it at night. On the other hand, water tanks occupy huge space, especially in big cities, space is relatively expensive. This project investigates the possibility of using a specific building construction material (ICF – Insulated Concrete Form) as diurnal solar thermal energy storage that is integrated with a heat pump and microchannel solar thermal collector (MCST). Not much literature has studied the application of building pre-existing walls as active solar thermal energy storage as a feasible and industrialized solution for the solar thermal mismatch. By using ICF walls that are integrated into the building envelope, instead of big storage tanks, excess solar energy can be stored in the concrete of the ICF wall that consists of EPS insulation layers on both sides to store the thermal energy. In this study, two solar-based systems are designed and simulated inTransient Systems Simulation Program(TRNSYS)to compare ICF wall thermal storage benefits over the system without ICF walls. In this study, the heating load and DHW of a Canadian single-family house located in London, Ontario, are provided by solar-based systems. The proposed system integrates the MCST collector, a water-to-water HP, a preheat tank, the main tank, fan coils (to deliver the building heating load), and ICF walls. During the day, excess solar energy is stored in the ICF walls (charging cycle). Thermal energy can be restored from the ICF walls when the preheat tank temperature drops below the ICF wall (discharging process) to increase the COP of the heat pump. The evaporator of the heat pump is taking is coupled with the preheat tank. The provided warm water by the heat pump is stored in the second tank. Fan coil units are in contact with the tank to provide a building heating load. DHW is also delivered is provided from the main tank. It is investigated that the system with ICF walls with an average solar fraction of 82%- 88% can cover the whole heating demand+DHW of nine months and has a 10-15% higher average solar fraction than the system without ICF walls. Sensitivity analysis for different parameters influencing the solar fraction is discussed in detail.

Keywords: net-zero building, renewable energy, solar thermal storage, microchannel solar thermal collector

Procedia PDF Downloads 121
468 The Coaching on Lifestyle Intervention (CooL): Preliminary Results and Implementation Process

Authors: Celeste E. van Rinsum, Sanne M. P. L. Gerards, Geert M. Rutten, Ien A. M. van de Goor, Stef P. J. Kremers

Abstract:

Combined lifestyle interventions have shown to be effective in changing and maintaining behavioral lifestyle changes and reducing overweight and obesity. A lifestyle coach is expected to promote lifestyle changes in adults related to physical activity and diet. The present Coaching on Lifestyle (CooL) study examined participants’ physical activity level, dietary behavioral, and motivational changes immediately after the intervention and at 1.5 years after baseline. In CooL intervention a lifestyle coach coaches individuals from eighteen years and older with (a high risk of) obesity in group and individual sessions. In addition a process evaluation was conducted in order to examine the implementation process and to be able to interpret the changes within the participants. This action-oriented research has a pre-post design. Participants of the CooL intervention (N = 200) completed three questionnaires: at baseline, immediately after the intervention (on average after 44 weeks), and at 1.5 years after baseline. T-tests and linear regressions were conducted to test self-reported changes in physical activity (IPAQ), dietary behaviors, their quality of motivation for physical activity (BREQ-3) and for diet (REBS), body mass index (BMI), and quality of life (EQ-5D-3L). For the process evaluation, we used individual and group interviews, observations and document analyses to gain insight in the implementation process (e.g. the recruitment) and how the intervention was valued by the participants, lifestyle coaches, and referrers. The study is currently ongoing and therefore the results presented here are preliminary. On average, the participants that finished the intervention and those that have completed the long-term measurement improved their level of vigorous-intense physical activity, sedentary behavior, sugar-sweetened beverage consumption and BMI. Mixed results were observed in motivational regulation for physical activity and nutrition. Moreover, an improvement on the quality of life dimension anxiety/depression was found, also in the long-term. All the other constructs did not show significant change over time. The results of the process evaluation have shown that recruitment of clients was difficult. Participants evaluated the intervention positively and the lifestyle coaches have continuously adapted the structure and contents of the intervention throughout the study period, based on their experiences and feedback from research. Preliminary results indicate that the CooL-intervention may have beneficial effects on overweight and obese participants in terms of energy balance-related behaviors, weight reduction, and quality of life. Recruitment of participants and embedding the position of the lifestyle coach in traditional care structures is challenging.

Keywords: combined lifestyle intervention, effect evaluation, lifestyle coaching, process evaluation, overweight, the Netherlands

Procedia PDF Downloads 229
467 The Relationship between Basic Human Needs and Opportunity Based on Social Progress Index

Authors: Ebru Ozgur Guler, Huseyin Guler, Sera Sanli

Abstract:

Social Progress Index (SPI) whose fundamentals have been thrown in the World Economy Forum is an index which aims to form a systematic basis for guiding strategy for inclusive growth which requires achieving both economic and social progress. In this research, it has been aimed to determine the relations among “Basic Human Needs” (BHN) (including four variables of ‘Nutrition and Basic Medical Care’, ‘Water and Sanitation’, ‘Shelter’ and ‘Personal Safety’) and “Opportunity” (OPT) (that is composed of ‘Personal Rights’, ‘Personal Freedom and Choice’, ‘Tolerance and Inclusion’, and ‘Access to Advanced Education’ components) dimensions of 2016 SPI for 138 countries which take place in the website of Social Progress Imperative by carrying out canonical correlation analysis (CCA) which is a data reduction technique that operates in a way to maximize the correlation between two variable sets. In the interpretation of results, the first pair of canonical variates pointing to the highest canonical correlation has been taken into account. The first canonical correlation coefficient has been found as 0.880 indicating to the high relationship between BHN and OPT variable sets. Wilk’s Lambda statistic has revealed that an overall effect of 0.809 is highly large for the full model in order to be counted as statistically significant (with a p-value of 0.000). According to the standardized canonical coefficients, the largest contribution to BHN set of variables has come from ‘shelter’ variable. The most effective variable in OPT set has been detected to be ‘access to advanced education’. Findings based on canonical loadings have also confirmed these results with respect to the contributions to the first canonical variates. When canonical cross loadings (structure coefficients) are examined, for the first pair of canonical variates, the largest contributions have been provided by ‘shelter’ and ‘access to advanced education’ variables. Since the signs for structure coefficients have been found to be negative for all variables; all OPT set of variables are positively related to all of the BHN set of variables. In case canonical communality coefficients which are the sum of the squares of structure coefficients across all interpretable functions are taken as the basis; amongst all variables, ‘personal rights’ and ‘tolerance and inclusion’ variables can be said not to be useful in the model with 0.318721 and 0.341722 coefficients respectively. On the other hand, while redundancy index for BHN set has been found to be 0.615; OPT set has a lower redundancy index with 0.475. High redundancy implies high ability for predictability. The proportion of the total variation in BHN set of variables that is explained by all of the opposite canonical variates has been calculated as 63% and finally, the proportion of the total variation in OPT set that is explained by all of the canonical variables in BHN set has been determined as 50.4% and a large part of this proportion belongs to the first pair. The results suggest that there is a high and statistically significant relationship between BHN and OPT. This relationship is generally accounted by ‘shelter’ and ‘access to advanced education’.

Keywords: canonical communality coefficient, canonical correlation analysis, redundancy index, social progress index

Procedia PDF Downloads 218
466 Investigation of Municipal Solid Waste Incineration Filter Cake as Minor Additional Constituent in Cement Production

Authors: Veronica Caprai, Katrin Schollbach, Miruna V. A. Florea, H. J. H. Brouwers

Abstract:

Nowadays MSWI (Municipal Solid Waste Incineration) bottom ash (BA) produced by Waste-to-Energy (WtE) plants represents the majority of the solid residues derived from MSW incineration. Once processed, the BA is often landfilled resulting in possible environmental problems, additional costs for the plant and increasing occupation of public land. In order to limit this phenomenon, European countries such as the Netherlands aid the utilization of MSWI BA in the construction field, by providing standards about the leaching of contaminants into the environment (Dutch Soil Quality Decree). Commonly, BA has a particle size below 32 mm and a heterogeneous chemical composition, depending on its source. By washing coarser BA, an MSWI sludge is obtained. It is characterized by a high content of heavy metals, chlorides, and sulfates as well as a reduced particle size (below 0.25 mm). To lower its environmental impact, MSWI sludge is filtered or centrifuged for removing easily soluble contaminants, such as chlorides. However, the presence of heavy metals is not easily reduced, compromising its possible application. For lowering the leaching of those contaminants, the use of MSWI residues in combination with cement represents a precious option, due to the known retention of those ions into the hydrated cement matrix. Among the applications, the European standard for common cement EN 197-1:1992 allows the incorporation of up to 5% by mass of a minor additional constituent (MAC), such as fly ash or blast furnace slag but also an unspecified filler into cement. To the best of the author's knowledge, although it is widely available, it has the appropriate particle size and a chemical composition similar to cement, FC has not been investigated as possible MAC in cement production. Therefore, this paper will address the suitability of MSWI FC as MAC for CEM I 52.5 R, within a 5% maximum replacement by mass. After physical and chemical characterization of the raw materials, the crystal phases of the pastes are determined by XRD for 3 replacement levels (1%, 3%, and 5%) at different ages. Thereafter, the impact of FC on mechanical and environmental performances of cement is assessed according to EN 196-1 and the Dutch Soil Quality Decree, respectively. The investigation of the reaction products evidences the formation of layered double hydroxides (LDH), in the early stage of the reaction. Mechanically the presence of FC results in a reduction of 28 days compressive strength by 8% for a replacement of 5% wt., compared with the pure CEM I 52.5 R without any MAC. In contrast, the flexural strength is not affected by the presence of FC. Environmentally, the Dutch legislation for the leaching of contaminants for unshaped (granular) material is satisfied. Based on the collected results, FC represents a suitable candidate as MAC in cement production.

Keywords: environmental impact evaluation, Minor additional constituent, MSWI residues, X-ray diffraction crystallography

Procedia PDF Downloads 178
465 Rheological Evaluation of a Mucoadhesive Precursor of Based-Poloxamer 407 or Polyethylenimine Liquid Crystal System for Buccal Administration

Authors: Jéssica Bernegossi, Lívia Nordi Dovigo, Marlus Chorilli

Abstract:

Mucoadhesive liquid crystalline systems are emerging how delivery systems for oral cavity. These systems are interesting since they facilitate the targeting of medicines and change the release enabling a reduction in the number of applications made by the patient. The buccal mucosa is permeable besides present a great blood supply and absence of first pass metabolism, it is a good route of administration. It was developed two systems liquid crystals utilizing as surfactant the ethyl alcohol ethoxylated and propoxylated (30%) as oil phase the oleic acid (60%), and the aqueous phase (10%) dispersion of polymer polyethylenimine (0.5%) or dispersion of polymer poloxamer 407 (16%), with the intention of applying the buccal mucosa. Initially, was performed for characterization of systems the conference by polarized light microscopy and rheological analysis. For the preparation of the systems the components described was added above in glass vials and shaken. Then, 30 and 100% artificial saliva were added to each prepared formulation so as to simulate the environment of the oral cavity. For the verification of the system structure, aliquots of the formulations were observed in glass slide and covered with a coverslip, examined in polarized light microscope (PLM) Axioskop - Zeizz® in 40x magnifier. The formulations were also evaluated for their rheological profile Rheometer TA Instruments®, which were obtained rheograms the selected systems employing fluency mode (flow) in temperature of 37ºC (98.6ºF). In PLM, it was observed that in formulations containing polyethylenimine and poloxamer 407 without the addition of artificial saliva was observed dark-field being indicative of microemulsion, this was also observed with the formulation that was increased with 30% of the artificial saliva. In the formulation that was increased with 100% simulated saliva was shown to be a system structure since it presented anisotropy with the presence of striae being indicative of hexagonal liquid crystalline mesophase system. Upon observation of rheograms, both systems without the addition of artificial saliva showed a Newtonian profile, after addition of 30% artificial saliva have been given a non-Newtonian behavior of the pseudoplastic-thixotropic type and after adding 100% of the saliva artificial proved plastic-thixotropic. Furthermore, it is clearly seen that the formulations containing poloxamer 407 have significantly larger (15-800 Pa) shear stress compared to those containing polyethyleneimine (5-50 Pa), indicating a greater plasticity of these. Thus, it is possible to observe that the addition of saliva was of interest to the system structure, starting from a microemulsion for a liquid crystal system, thereby also changing thereby its rheological behavior. The systems have promising characteristics as controlled release systems to the oral cavity, as it features good fluidity during its possible application and greater structuring of the system when it comes into contact with environmental saliva.

Keywords: liquid crystal system, poloxamer 407, polyethylenimine, rheology

Procedia PDF Downloads 458
464 Counteract Heat Stress on Broiler Chicks by Adding Anti-Heat Stress Vitamins (Vitamin C and E) with Organic Zinc

Authors: Omnia Y. Shawky, Asmaa M. Megahed, Alaa E. ElKomy, A. E. Abd-El-Hamid, Y. A. Attia

Abstract:

This study was carried out to elevate the broilers physiological response against heat stress and reduce this impact by adding vitamin C (VC), vitamin E (VE) alone/or with organic zinc (Zn) to chicks’ rations. A total of 192, 26-day-old Arbor Acers male chicks were randomly divided into equal 8 groups (4 replicates for each). All experimental groups were treated as follow: Group 2 was served as a heat stress control that reared at 37ºC with relative humidity 53 ± 8% for 6 hours/day for three successive days/week and fed the basal diet only. Groups 3-8 were heat stressed in a like manner to group 2 and fed basal diet inclusion 200mg VC (group 3), 200mg VE (group 4), 200mg VC+200mg VE (group 5), 200mg VC+30mg Zn (group 6), 200mg VE+30mg Zn (group 7) and 200mg VC+200mg VE+30mg Zn (group 8) /kg feed, while Group 1 was served as a positive control that reared on a neutral temperature (NT) (approximately 21ºC) and fed the basal diet only. Respiration rate and rectal temperature were boosted of HS chicks (80.8 breath/min and 41.97ºC) compared to NT group (60.12 breath/min and 40.9ºC), while, adding VC alone and with VE or Zn resulted in decrease these measurements. Heat stress had a significantly negative effect on chicks body weight gain, feed consumption and feed conversion ratio compared to the NT group, this harmful effect could be overcome by adding VC and VE individually or with Zn. Chicks exposed to heat stress showed slightly increase hemoglobin concentration compared to NT group, while, adding VC, VE individually or with Zn alleviated this effect. Plasma glucose concentration was significantly increased in HS group than the NT group, but adding VC, VE individually or with Zn resulted in a reduction plasma glucose level, which it was still higher than the NT group. Heat stress caused an increase in plasma total lipids and cholesterol concentration compared to the NT group and inclusion VC or VE alone or with Zn was not able to reduce this effect. The increased liver enzymes activities (AST and ALT) that observed in HS group compared to NT group were removed by adding VC and VE individually or with Zn. As well, exposure of broiler chicks to heat stress resulted in a slightly decrease in plasma total antioxidant capacity level (TAC) superoxide dismutase and catalase enzymes activities, while inclusion VC and VE individually or with Zn in chicks rations caused an increased in these measurements. Broiler chicks that exposed to HS revealed a significant increase in heat shock protein (Hsp 70) compared to the NT group, while, adding VC or VE individually or with Zn resulted in a significant decrease in Hsp70 than the HS group and VE alone or with VC had the greatest effect. In conclusion, it could be overcome the harmful and the negative effect of heat stress on broiler chicks’ productive performance and physiological status by inclusion VC (200mg) or VE (200mg) individual or in a combination with organic zinc (30 mg) in chicks’ rations.

Keywords: heat stress, broiler, vitamin C, vitamin E, organic zinc

Procedia PDF Downloads 204
463 Correlation between Body Mass Dynamics and Weaning in Eurasian Lynx (Lynx lynx L, 1758)

Authors: A. S. Fetisova, M. N. Erofeeva, G. S. Alekseeva, K. A. Volobueva, M. D. Kim, S. V. Naidenko

Abstract:

Weaning is characterized by the transition from milk to solid food. In some species, such changes in diet are fast and gradual in others. The reasons for the weaning start are understandable. Changes in milk composition and decrease in maternity behavior push cubs to search for additional sources of nutrients. In nature, females have many opportunities to wean offspring in case of a lack of resources. In contrast, in controlled conditions the possibility of delayed weaning exists. The delay of weaning can lead to overspending of maternal resources. In addition, the main causes of weaning end are not so obvious. Near the weaning end behavior of offspring depends on many factors: intensity of maternal behavior, reduction of milk abundance, brood size, physiological status, and body mass. During the pre-weaning period dynamic of body mass is strongly connected with milk intake. Based on that fact could body mass be one of the signals for end of milk feeding? It is known that some animals usually wean their offspring when juveniles achieved body mass in some proportion to the adult weight. In turn, we put forward the hypothesis that decrease in growth rates causes the delay of weaning in Eurasian lynxes (Lynx lynx). To explore the hypothesis, we compared the dynamic of body mass with duration of milk suckling. Firstly, to get information about duration of suckling we visually observed 8 lynx broods from 30 to 120 days postpartum. During each 4-hour observation we registered the start and the end of suckling acts and then calculate the total duration of this behavior. To get the dynamic of body mass kittens were weighed once a week. Duration of suckling varied from 3076,19 ± 1408,60 to 422,54 ± 285,38 seconds when body mass gain changed from 247,35 ± 26,49 to 289,41 ± 122,35 grams. Results of Kendall Tau correlation test (N= 96; p< 0,05) showed a negative correlation (τ= -0,36) between duration of suckling and body mass of lynx kittens. In general duration of suckling increases in response to decrease in body mass gain with slight delay. In early weaning from 30 to 58 days duration of suckling decreases gradually as does the body mass gain. During the weaning period the negative correlation between suckling time and body mass becomes tighter. Although throughout the weaning consumption of solid food begins to prevail over the milk intake, the correlation persists until the end of weaning (90-105 days) and after it. In that way weaning in Eurasian lynxes is not a part of ontogenesis controlled only by maternal behavior. It seems to be a flexible process influenced by various factors including changes in growth rates. It is necessary to continue investigations to determine the critical value of body mass which marks the safe moment to stop milk feeding. Understanding such details of ontogenesis is very important to organize procedures aimed at the reproduction of mammals ex situ and the conservation of endangered species.

Keywords: body mass, lynx, milk feeding, weaning

Procedia PDF Downloads 18
462 The Effects of Exercise Training on LDL Mediated Blood Flow in Coronary Artery Disease: A Systematic Review

Authors: Aziza Barnawi

Abstract:

Background: Regular exercise reduces risk factors associated with cardiovascular diseases. Over the past decade, exercise interventions have been introduced to reduce the risk of and prevent coronary artery disease (CAD). Elevated low-density lipoproteins (LDL) contribute to the formation of atherosclerosis, its manifestations on the endothelial narrow the coronary artery and affect the endothelial function. Therefore, flow-mediated dilation (FMD) technique is used to assess the function. The results of previous studies have been inconsistent and difficult to interpret across different types of exercise programs. The relationship between exercise therapy and lipid levels has been extensively studied, and it is known to improve the lipid profile and endothelial function. However, the effectiveness of exercise in altering LDL levels and improving blood flow is controversial. Objective: This review aims to explore the evidence and quantify the impact of exercise training on LDL levels and vascular function by FMD. Methods: Electronic databases were searched PubMed, Google Scholar, Web of Science, the Cochrane Library, and EBSCO using the keywords: “low and/or moderate aerobic training”, “blood flow”, “atherosclerosis”, “LDL mediated blood flow”, “Cardiac Rehabilitation”, “low-density lipoproteins”, “flow-mediated dilation”, “endothelial function”, “brachial artery flow-mediated dilation”, “oxidized low-density lipoproteins” and “coronary artery disease”. The studies were conducted for 6 weeks or more and influenced LDL levels and/or FMD. Studies with different intensity training and endurance training in healthy or CAD individuals were included. Results: Twenty-one randomized controlled trials (RCTs) (14 FMD and 7 LDL studies) with 776 participants (605 exercise participants and 171 control participants) met eligibility criteria and were included in the systematic review. Endurance training resulted in a greater reduction in LDL levels and their subfractions and a better FMD response. Overall, the training groups showed improved physical fitness status compared with the control groups. Participants whose exercise duration was ≥150 minutes /week had significant improvement in FMD and LDL levels compared with those with <150 minutes/week.Conclusion: In conclusion, although the relationship between physical training, LDL levels, and blood flow in CAD is complex and multifaceted, there are promising results for controlling primary and secondary prevention of CAD by exercise. Exercise training, including resistance, aerobic, and interval training, is positively correlated with improved FMD. However, the small body of evidence for LDL studies (resistance and interval training) did not prove to be significantly associated with improved blood flow. Increasing evidence suggests that exercise training is a promising adjunctive therapy to improve cardiovascular health, potentially improving blood flow and contributing to the overall management of CAD.

Keywords: exercise training, low density lipoprotein, flow mediated dilation, coronary artery disease

Procedia PDF Downloads 72
461 Revolutionizing Healthcare Communication: The Transformative Role of Natural Language Processing and Artificial Intelligence

Authors: Halimat M. Ajose-Adeogun, Zaynab A. Bello

Abstract:

Artificial Intelligence (AI) and Natural Language Processing (NLP) have transformed computer language comprehension, allowing computers to comprehend spoken and written language with human-like cognition. NLP, a multidisciplinary area that combines rule-based linguistics, machine learning, and deep learning, enables computers to analyze and comprehend human language. NLP applications in medicine range from tackling issues in electronic health records (EHR) and psychiatry to improving diagnostic precision in orthopedic surgery and optimizing clinical procedures with novel technologies like chatbots. The technology shows promise in a variety of medical sectors, including quicker access to medical records, faster decision-making for healthcare personnel, diagnosing dysplasia in Barrett's esophagus, boosting radiology report quality, and so on. However, successful adoption requires training for healthcare workers, fostering a deep understanding of NLP components, and highlighting the significance of validation before actual application. Despite prevailing challenges, continuous multidisciplinary research and collaboration are critical for overcoming restrictions and paving the way for the revolutionary integration of NLP into medical practice. This integration has the potential to improve patient care, research outcomes, and administrative efficiency. The research methodology includes using NLP techniques for Sentiment Analysis and Emotion Recognition, such as evaluating text or audio data to determine the sentiment and emotional nuances communicated by users, which is essential for designing a responsive and sympathetic chatbot. Furthermore, the project includes the adoption of a Personalized Intervention strategy, in which chatbots are designed to personalize responses by merging NLP algorithms with specific user profiles, treatment history, and emotional states. The synergy between NLP and personalized medicine principles is critical for tailoring chatbot interactions to each user's demands and conditions, hence increasing the efficacy of mental health care. A detailed survey corroborated this synergy, revealing a remarkable 20% increase in patient satisfaction levels and a 30% reduction in workloads for healthcare practitioners. The poll, which focused on health outcomes and was administered to both patients and healthcare professionals, highlights the improved efficiency and favorable influence on the broader healthcare ecosystem.

Keywords: natural language processing, artificial intelligence, healthcare communication, electronic health records, patient care

Procedia PDF Downloads 76
460 Identifying the Risks on Philippines’ Pre- and Post-Disaster Media Communication on Natural Hazards

Authors: Neyzielle Ronnicque Cadiz

Abstract:

The Philippine is a hotbed of disasters and is a locus of natural hazards. With an average of 20 typhoons entering the Philippine Area of Responsibility (PAR) each year, seven to eight (7-8) of which makes landfall. The country rather inevitably suffers from climate-related calamities. With this vulnerability to natural hazards, the relevant hazard-related issues that come along with the potential threat and occurrence of a disaster oftentimes garners lesser media attention than when a disaster actually occurred. Post-disaster news and events flood the content of news networks primarily focusing on, but not limited to, the efforts of the national government in resolving post-disaster displacement, and all the more on the community leaders’ incompetence in disaster mitigation-- even though the University of the Philippines’ NOAH Center work hand in hand with different stakeholders for disaster mitigation communication efforts. Disaster risk communication is actually a perennial dilemma. There are so many efforts to reach the grassroots level but emergency and disaster preparedness messages inevitably fall short.. The Philippines is very vulnerable to hazards risk and disasters but social media posts and communication efforts mostly go unnoticed, if not argued upon. This study illustrates the outcomes of a research focusing on the print, broadcast, and social media’s role on disaster communication involving the natural catastrophic events that took place in the Philippines from 2009 to present. Considering the country’s state of development, this study looks on the rapid and reliable communication between the government, and the relief/rescue workers in the affected regions; and how the media portrays these efforts effectively. Learning from the disasters that have occurred in the Philippines over the past decade, effective communication can ensure that any efforts to prepare and respond to disasters can make a significant difference. It can potentially either break or save lives. Recognizing the role of communications is not only in improving the coordination of vital services for post disaster; organizations gave priority in reexamining disaster preparedness mechanisms through the Communication with Communities (CwC) programs. This study, however, looks at the CwC efforts of the Philippine media platforms. CwC, if properly utilized by the media, is an essential tool in ensuring accountability and transparency which require effective exchange of information between disasters and survivors and responders. However, in this study, it shows that the perennial dilemma of the Philippine media is that the Disaster Risk Reduction and Management (DRRM) efforts of the country lie in the clouded judgment of political aims. This kind of habit is a multiplier of the country’s risk and insecurity. Sometimes the efforts in urging the public to take action seem useless because the challenge lies on how to achieve social, economic, and political unity using the tri-media platform.

Keywords: Philippines at risk, pre/post disaster communication, tri-media platform, UP NOAH

Procedia PDF Downloads 179
459 Modelling of Air-Cooled Adiabatic Membrane-Based Absorber for Absorption Chillers Using Low Temperature Solar Heat

Authors: M. Venegas, M. De Vega, N. García-Hernando

Abstract:

Absorption cooling chillers have received growing attention over the past few decades as they allow the use of low-grade heat to produce the cooling effect. The combination of this technology with solar thermal energy in the summer period can reduce the electricity consumption peak due to air-conditioning. One of the main components, the absorber, is designed for simultaneous heat and mass transfer. Usually, shell and tubes heat exchangers are used, which are large and heavy. Cooling water from a cooling tower is conventionally used to extract the heat released during the absorption and condensation processes. These are clear inconvenient for the generalization of the absorption technology use, limiting its benefits in the contribution to the reduction in CO2 emissions, particularly for the H2O-LiBr solution which can work with low heat temperature sources as provided by solar panels. In the present work a promising new technology is under study, consisting in the use of membrane contactors in adiabatic microchannel mass exchangers. The configuration here proposed consists in one or several modules (depending on the cooling capacity of the chiller) that contain two vapour channels, separated from the solution by adjacent microporous membranes. The solution is confined in rectangular microchannels. A plastic or synthetic wall separates the solution channels between them. The solution entering the absorber is previously subcooled using ambient air. In this way, the need for a cooling tower is avoided. A model of the configuration proposed is developed based on mass and energy balances and some correlations were selected to predict the heat and mass transfer coefficients. The concentration and temperatures along the channels cannot be explicitly determined from the set of equations obtained. For this reason, the equations were implemented in a computer code using Engineering Equation Solver software, EES™. With the aim of minimizing the absorber volume to reduce the size of absorption cooling chillers, the ratio between the cooling power of the chiller and the absorber volume (R) is calculated. Its variation is shown along the solution channels, allowing its optimization for selected operating conditions. For the case considered the solution channel length is recommended to be lower than 3 cm. Maximum values of R obtained in this work are higher than the ones found in optimized horizontal falling film absorbers using the same solution. Results obtained also show the variation of R and the chiller efficiency (COP) for different ambient temperatures and desorption temperatures typically obtained using flat plate solar collectors. The configuration proposed of adiabatic membrane-based absorber using ambient air to subcool the solution is a good technology to reduce the size of the absorption chillers, allowing the use of low temperature solar heat and avoiding the need for cooling towers.

Keywords: adiabatic absorption, air-cooled, membrane, solar thermal energy

Procedia PDF Downloads 285
458 Experimental Investigation on Tensile Durability of Glass Fiber Reinforced Polymer (GFRP) Rebar Embedded in High Performance Concrete

Authors: Yuan Yue, Wen-Wei Wang

Abstract:

The objective of this research is to comprehensively evaluate the impact of alkaline environments on the durability of Glass Fiber Reinforced Polymer (GFRP) reinforcements in concrete structures and further explore their potential value within the construction industry. Specifically, we investigate the effects of two widely used high-performance concrete (HPC) materials on the durability of GFRP bars when embedded within them under varying temperature conditions. A total of 279 GFRP bar specimens were manufactured for microcosmic and mechanical performance tests. Among them, 270 specimens were used to test the residual tensile strength after 120 days of immersion, while 9 specimens were utilized for microscopic testing to analyze degradation damage. SEM techniques were employed to examine the microstructure of GFRP and cover concrete. Unidirectional tensile strength experiments were conducted to determine the remaining tensile strength after corrosion. The experimental variables consisted of four types of concrete (engineering cementitious composite (ECC), ultra-high-performance concrete (UHPC), and two types of ordinary concrete with different compressive strengths) as well as three acceleration temperatures (20, 40, and 60℃). The experimental results demonstrate that high-performance concrete (HPC) offers superior protection for GFRP bars compared to ordinary concrete. Two types of HPC enhance durability through different mechanisms: one by reducing the pH of the concrete pore fluid and the other by decreasing permeability. For instance, ECC improves embedded GFRP's durability by lowering the pH of the pore fluid. After 120 days of immersion at 60°C under accelerated conditions, ECC (pH=11.5) retained 68.99% of its strength, while PC1 (pH=13.5) retained 54.88%. On the other hand, UHPC enhances FRP steel's durability by increasing porosity and compactness in its protective layer to reinforce FRP reinforcement's longevity. Due to fillers present in UHPC, it typically exhibits lower porosity, higher densities, and greater resistance to permeation compared to PC2 with similar pore fluid pH levels, resulting in varying degrees of durability for GFRP bars embedded in UHPC and PC2 after 120 days of immersion at a temperature of 60°C - with residual strengths being 66.32% and 60.89%, respectively. Furthermore, SEM analysis revealed no noticeable evidence indicating fiber deterioration in any examined specimens, thus suggesting that uneven stress distribution resulting from interface segregation and matrix damage emerges as a primary causative factor for tensile strength reduction in GFRP rather than fiber corrosion. Moreover, long-term prediction models were utilized to calculate residual strength values over time for reinforcement embedded in HPC under high temperature and high humidity conditions - demonstrating that approximately 75% of its initial strength was retained by reinforcement embedded in HPC after 100 years of service.

Keywords: GFRP bars, HPC, degeneration, durability, residual tensile strength.

Procedia PDF Downloads 56
457 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 108
456 A Policy Review on the Transitional Period from MDGs to SDGs: Experience from the Local Economy of Tigrai Regional State of Ethiopia

Authors: Tewele Gerlase Haile

Abstract:

Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. The global development landscape underwent a transformative shift in 2015 as the international community pivoted from the MDGs to the more ambitious and comprehensive SDGs. The NDGs were a set of eight international development goals established by the United Nations in 2000, with the aim of improving the lives of people around the world by 2015. SDGs are a continuation of the MDGs. Unlike on the other development goals, progress on eradication of extreme hunger and poverty (MDG 1) has been slow at a continental level. The implementation of the MDGs was uneven: some countries have already achieved many of them, while the others have not started any of them yet. With its Poverty Reduction Strategic Papers (PRSPs), Ethiopia has been given special attention to the first MDG since 1993. The Ethiopian government was actively engaged in anti-poverty political campaign leaving other agendas as secondary issues. Poverty in Ethiopia progressively reduced over the years; it was 44.2% in 2000, 38.7% in 2007, 29.6 % in 2011, and it is projected to further reduce to 16.7% by the end of 2020. The long-term impact of war on the sustainability and effectiveness of SDG-related initiatives in post-conflict regions, particularly in how local governance and community resilience are affected. This could involve exploring how war interrupts progress, which specific SDGs are most vulnerable, and what strategies might mitigate these impacts. Reviewing a transitional period enables policy makers to align global or national development goals into local development goals with an uninterrupted policy continuity. The existing literature on development economics often neglects the importance of reviewing the transitional period of consecutive global development goals in a local or regional perspective. Reviewing a transitional period enables policy makers to align global or national development goals into local development goals with an uninterrupted policy continuity. Using a Policy Coherence for Development (PCD) approach as analytical tool, this paper is intended to retrospectively review what happened to the local economy of Tigrai Regional State during the transitional period from MDGs (2000-2015) to SDGs (2015-2030). Taking a retrospective facts and observations into account, policy discontinuity is witnessed in Tigrai following the dissolution of the EPRDF that followed with a terrible war that claimed about a million human lives and worth of over a hundred Billion US dollars economic costs. The unhealthy political reform caused not only a terrible war but also breaks the promising SDGs. Unlike other regional states, Tigrai left unprivileged to translate the ambitious SDGs into its local development policies.

Keywords: local development, political reform, war, MDGs, SDGs, Ethiopia, tigrai

Procedia PDF Downloads 20