Search results for: mobile ad hoc network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6162

Search results for: mobile ad hoc network

1512 A Methodology for Investigating Public Opinion Using Multilevel Text Analysis

Authors: William Xiu Shun Wong, Myungsu Lim, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, many users have begun to frequently share their opinions on diverse issues using various social media. Therefore, numerous governments have attempted to establish or improve national policies according to the public opinions captured from various social media. In this paper, we indicate several limitations of the traditional approaches to analyze public opinion on science and technology and provide an alternative methodology to overcome these limitations. First, we distinguish between the science and technology analysis phase and the social issue analysis phase to reflect the fact that public opinion can be formed only when a certain science and technology is applied to a specific social issue. Next, we successively apply a start list and a stop list to acquire clarified and interesting results. Finally, to identify the most appropriate documents that fit with a given subject, we develop a new logical filter concept that consists of not only mere keywords but also a logical relationship among the keywords. This study then analyzes the possibilities for the practical use of the proposed methodology thorough its application to discover core issues and public opinions from 1,700,886 documents comprising SNS, blogs, news, and discussions.

Keywords: big data, social network analysis, text mining, topic modeling

Procedia PDF Downloads 299
1511 Urban Areas Management in Developing Countries: Analysis of the Urban Areas Crossed with Risk of Storm Water Drains, Aswan-Egypt

Authors: Omar Hamdy, Schichen Zhao, Hussein Abd El-Atty, Ayman Ragab, Muhammad Salem

Abstract:

One of the most risky areas in Aswan is Abouelreesh, which is suffering from flood disasters, as heavy deluge inundates urban areas causing considerable damage to buildings and infrastructure. Moreover, the main problem was the urban sprawl towards this risky area. This paper aims to identify the urban areas located in the risk areas prone to flash floods. Analyzing this phenomenon needs a lot of data to ensure satisfactory results; however, in this case the official data and field data were limited, and therefore, free sources of satellite data were used. This paper used ArcGIS tools to obtain the storm water drains network by analyzing DEM files. Additionally, historical imagery in Google Earth was studied to determine the age of each building. The last step was to overlay the urban area layer and the storm water drains layer to identify the vulnerable areas. The results of this study would be helpful to urban planners and government officials to make the disasters risk estimation and develop primary plans to recover the risky area, especially urban areas located in torrents.

Keywords: risk area, DEM, storm water drains, GIS

Procedia PDF Downloads 462
1510 Persistent Bacteremia in Cases of Endodontic Re-Treatments

Authors: Ilma Robo, Manola Kelmendi, Kleves Elezi, Nevila Alliu

Abstract:

The most important stage in deciding whether to re-treat or not endodontically is to find the reason for the clinical in-success. Therefore, endodontic re-treatment aims to eliminate the etiology of the pathology, where the main ones are the bacteria remaining in the inter-radicular spaces or the presence of other irritants that can be not only bacterial toxins but also the elements that keep the batteries fixed or extra-canal toxins such as extraction outside the apex of the canal filling. Shortcomings of endodontic treatment can be corrected, if possible, only with endodontic re-treatment that is initially attempted orthograde, and if clinical endodontic success is not achieved again, it can be performed retrograde or surgically. The elements that do not help in this direction are the anatomical deformations in the canal network of the tooth roots, in the presence of the delta at the apex of the tooth root, in the isthmuses present, all of which can be explained by the endodontic canal anatomical morphology. Actually, even if the causative endodontic bacteria remains isolated and without an exit in the healthy periodontal tissues, then this can also be a clinical endodontic success, regardless of the fact that the endodontic isolation occurred only in the exits such as the apex or the accessory canals. Clinical endodontic in-success occurs only when bacterial residues emerge or provide an exit in the healthy periradicular tissues or along the entire length of the canal where the accessory canals exit.

Keywords: endodontic success, E. foecalis, nanoparticles, laser diode, antibacterial, antiseptic

Procedia PDF Downloads 55
1509 The Epidemiology of Hospital Maternal Deaths, Haiti 2017-2020

Authors: Berger Saintius, Edna Ariste, Djeamsly Salomon

Abstract:

Background: Maternal mortality is a preventable global health problem that affects developed, developing, and underdeveloped countries alike. Globally, maternal mortality rates have declined since 1990, but 830 women die every day from pregnancy and childbirth-related causes that are often preventable. Haiti, with a number of 529 maternal deaths per 100,000 live births, is one of the countries with the highest maternal mortality rate in the Caribbean. This study consists of analyzing maternal death surveillance data in Haiti from 2017-2020. Method : A descriptive study was conducted; data were extracted from the National Epidemiological Surveillance Network of maternal deaths from 2017 to 2020. Sociodemographic variables were analyzed. Excel and Epi Info 7.2 were used for data analysis. Frequency and proportion measurements were calculated. Results: 756 deaths were recorded for the study period: 42 (6%) in 2017, 168 (22%) in 2018, 265 (35%) in 2019, and 281 (37%) in 2020. The North Department recorded the highest number of deaths, 167 (22%). 83(11%) in Les Cayes. 96% of these deaths are people aged between 15 and 49. Conclusion. Maternal mortality is a major health problem in Haiti. Mobilization, participation, and involvement of communities, increase in obstetric care coverage and promotion of Family Planning are among the strategies to fight this problem.

Keywords: epidemiology, maternal death, hospital, Haiti

Procedia PDF Downloads 92
1508 NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions

Authors: M. S. Mrudula, M. R. Gopinathan Nair

Abstract:

In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater.

Keywords: block copolymer, adsorption, chelating exchanger, swelling study, polymer, metal complexes

Procedia PDF Downloads 345
1507 The Impact of Artificial Intelligence on Spare Parts Technology

Authors: Amir Andria Gad Shehata

Abstract:

Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.

Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management

Procedia PDF Downloads 67
1506 User Selections on Social Network Applications

Authors: C. C. Liang

Abstract:

MSN used to be the most popular application for communicating among social networks, but Facebook chat is now the most popular. Facebook and MSN have similar characteristics, including usefulness, ease-of-use, and a similar function, which is the exchanging of information with friends. Facebook outperforms MSN in both of these areas. However, the adoption of Facebook and abandonment of MSN have occurred for other reasons. Functions can be improved, but users’ willingness to use does not just depend on functionality. Flow status has been established to be crucial to users’ adoption of cyber applications and to affects users’ adoption of software applications. If users experience flow in using software application, they will enjoy using it frequently, and even change their preferred application from an old to this new one. However, no investigation has examined choice behavior related to switching from Facebook to MSN based on a consideration of flow experiences and functions. This investigation discusses the flow experiences and functions of social-networking applications. Flow experience is found to affect perceived ease of use and perceived usefulness; perceived ease of use influences information ex-change with friends, and perceived usefulness; information exchange influences perceived usefulness, but information exchange has no effect on flow experience.

Keywords: consumer behavior, social media, technology acceptance model, flow experience

Procedia PDF Downloads 357
1505 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods

Authors: Ali Berkan Ural

Abstract:

This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.

Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning

Procedia PDF Downloads 99
1504 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time

Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani

Abstract:

This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.

Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management

Procedia PDF Downloads 87
1503 Developing a Web-Based Workflow Management System in Cloud Computing Platforms

Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya

Abstract:

Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.

Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System

Procedia PDF Downloads 310
1502 Drug Susceptibility and Genotypic Assessment of Mycobacterial Isolates from Pulmonary Tuberculosis Patients in North East Ethiopia

Authors: Minwuyelet Maru, Solomon Habtemariam, Endalamaw Gadissa, Abraham Aseffa

Abstract:

Background: Tuberculosis is a major public health problem in Ethiopia. The burden of TB is aggravated by emergence and expansion of drug resistant tuberculosis and different lineages of Mycobacterium tuberculosis (M. tuberculosis) have been reported in many parts of the country. Describing strains of Mycobacterial isolates and drug susceptibility pattern is necessary. Method: Sputum samples were collected from smear positive pulmonary TB patients age >= 7 years between October 1, 2012 to September 30, 2013 and Mycobacterial strains isolated on Loweensten Jensen (LJ) media. Each strain was characterized by deletion typing and Spoligotyping. Drug sensitivity testing was determined with the indirect proportion method using Middle brook 7H10 media and association to determine possible risk factors to drug resistance was done. Result: A total of 144 smear positive pulmonary tuberculosis patients were enrolled. The age of participants ranged from 7 to 78 with mean age of 29.22 (±10.77) years. In this study 82.2% (n=97) of the isolates were sensitive to the four first line anti-tuberculosis drugs and resistance to any of the four drugs tested was 17.8% (n=21). A high frequency of any resistance was observed in isoniazid, 13.6%, (n=16) followed by streptomycin, 11.8% (n=14). No significant association of isoniazid resistance with HIV, sex and history of previous TB treatment was observed but there was significant association with age, high between 31-35 years of age (p=0.01). Majority, 89.9% (n=128) of participants were new cases and only 11.1% (n=16) had history of previous TB treatment. No MDR-TB from new cases and 2 MDRTB (13.3%) was isolated from re-treatment cases which was significantly associated with previous TB treatment (p<0.01). Thirty two different types of spoligotype patterns were identified and 74.1% were grouped in to 13 clusters. The dominant strains were SIT 25, 18.1% (n=21), SIT 53, 17.2% (n=20) and SIT 149, 8.6% (n=10). Lineage 4 is the predominant lineage followed by lineage 3 and lineage 7 comprising 65.5% (n=76), 28.4% (n=33) and 6% (n=7) respectively. Majority of strains from lineage 3 and 4 were SIT 25 (63.6%) and SIT 53 (26.3%) whereas SIT 343 was the dominant strain from lineage 7 (71.4%). Conclusion: Wide spread of lineage 3 and lineage 4 of the modern lineage and high number of strain cluster indicates high ongoing transmission. The high proportion resistance to any of the first line anti-tuberculosis drugs may be a potential source in the emergence of MDR-TB. Wide spread of SIT 25 and SIT 53 having a tendency of ease transmission and presence of higher resistance of isoniazid in working and mobile age group, 31-35 years of age may increase risk of drug resistant strains transmission.

Keywords: tuberculosis, drug susceptibility, strain diversity, lineage, Ethiopia, spoligotyping

Procedia PDF Downloads 377
1501 Seasonal Variability of Aerosol Optical Properties and Their Radiative Effects over Indo-Gangetic Plain in India

Authors: Kanika Taneja, V. K. Soni, S. D. Attri, Kafeel Ahmad, Shamshad Ahmad

Abstract:

Aerosols represent an important component of earth-atmosphere system and have a profound impact on the global and regional climate. With the growing population and urbanization, the aerosol load in the atmosphere over the Indian region is found to be increasing. Several studies have reported that the aerosol optical depth over the northern part of India is higher as compared to the southern part. The northern India along the Indo-Gangetic plain is often influenced with dust transported from the Thar Desert in northwestern India and from Arabian Peninsula during the pre-monsoon season. Seasonal variations in aerosol optical and radiative properties were examined using data retrieved from ground based multi-wavelength Prede Sun/sky radiometer (POM-02) over Delhi, Rohtak, Jodhpur and Varanasi for the period April 2011-April 2013. These stations are part of the Skynet-India network of India Meteorological Department. The Sun/sky radiometer (POM-02) has advantage over other instruments that it can be calibrated on-site. These aerosol optical properties retrieved from skyradiometer observations are further used to analyze the Direct Aerosol Radiative Forcing (DARF) over the study locations.

Keywords: aerosol optical properties, indo- gangetic plain, radiative forcing, sky radiometer

Procedia PDF Downloads 545
1500 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network

Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas

Abstract:

The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.

Keywords: distributed generation (DG), interconnected mode, islanding mode, maximum power point tracking (mppt), power quality (PQ), unified power quality conditioner (UPQC), photovoltaic array (PV)

Procedia PDF Downloads 510
1499 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique

Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: earthquake prediction, ANN, seismic bumps

Procedia PDF Downloads 128
1498 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model

Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu

Abstract:

In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.

Keywords: road edge lines extraction, energy function, intersection fracture, Snake model

Procedia PDF Downloads 341
1497 Multiobjective Optimization of a Pharmaceutical Formulation Using Regression Method

Authors: J. Satya Eswari, Ch. Venkateswarlu

Abstract:

The formulation of a commercial pharmaceutical product involves several composition factors and response characteristics. When the formulation requires to satisfy multiple response characteristics which are conflicting, an optimal solution requires the need for an efficient multiobjective optimization technique. In this work, a regression is combined with a non-dominated sorting differential evolution (NSDE) involving Naïve & Slow and ε constraint techniques to derive different multiobjective optimization strategies, which are then evaluated by means of a trapidil pharmaceutical formulation. The analysis of the results show the effectiveness of the strategy that combines the regression model and NSDE with the integration of both Naïve & Slow and ε constraint techniques for Pareto optimization of trapidil formulation. With this strategy, the optimal formulation at pH=6.8 is obtained with the decision variables of micro crystalline cellulose, hydroxypropyl methylcellulose and compression pressure. The corresponding response characteristics of rate constant and release order are also noted down. The comparison of these results with the experimental data and with those of other multiple regression model based multiobjective evolutionary optimization strategies signify the better performance for optimal trapidil formulation.

Keywords: pharmaceutical formulation, multiple regression model, response surface method, radial basis function network, differential evolution, multiobjective optimization

Procedia PDF Downloads 412
1496 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory

Authors: Chiung-Hui Chen

Abstract:

The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.

Keywords: behavior, big data, hierarchical hidden Markov model, intelligent object

Procedia PDF Downloads 234
1495 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar

Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola

Abstract:

This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.

Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index

Procedia PDF Downloads 159
1494 Clique and Clan Analysis of Patient-Sharing Physician Collaborations

Authors: Shahadat Uddin, Md Ekramul Hossain, Arif Khan

Abstract:

The collaboration among physicians during episodes of care for a hospitalised patient has a significant contribution towards effective health outcome. This research aims at improving this health outcome by analysing the attributes of patient-sharing physician collaboration network (PCN) on hospital data. To accomplish this goal, we present a research framework that explores the impact of several types of attributes (such as clique and clan) of PCN on hospitalisation cost and hospital length of stay. We use electronic health insurance claim dataset to construct and explore PCNs. Each PCN is categorised as ‘low’ and ‘high’ in terms of hospitalisation cost and length of stay. The results from the proposed model show that the clique and clan of PCNs affect the hospitalisation cost and length of stay. The clique and clan of PCNs show the difference between ‘low’ and ‘high’ PCNs in terms of hospitalisation cost and length of stay. The findings and insights from this research can potentially help the healthcare stakeholders to better formulate the policy in order to improve quality of care while reducing cost.

Keywords: clique, clan, electronic health records, physician collaboration

Procedia PDF Downloads 143
1493 AI Software Algorithms for Drivers Monitoring within Vehicles Traffic - SiaMOTO

Authors: Ioan Corneliu Salisteanu, Valentin Dogaru Ulieru, Mihaita Nicolae Ardeleanu, Alin Pohoata, Bogdan Salisteanu, Stefan Broscareanu

Abstract:

Creating a personalized statistic for an individual within the population using IT systems, based on the searches and intercepted spheres of interest they manifest, is just one 'atom' of the artificial intelligence analysis network. However, having the ability to generate statistics based on individual data intercepted from large demographic areas leads to reasoning like that issued by a human mind with global strategic ambitions. The DiaMOTO device is a technical sensory system that allows the interception of car events caused by a driver, positioning them in time and space. The device's connection to the vehicle allows the creation of a source of data whose analysis can create psychological, behavioural profiles of the drivers involved. The SiaMOTO system collects data from many vehicles equipped with DiaMOTO, driven by many different drivers with a unique fingerprint in their approach to driving. In this paper, we aimed to explain the software infrastructure of the SiaMOTO system, a system designed to monitor and improve driver driving behaviour, as well as the criteria and algorithms underlying the intelligent analysis process.

Keywords: artificial intelligence, data processing, driver behaviour, driver monitoring, SiaMOTO

Procedia PDF Downloads 94
1492 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 147
1491 Microfluidic Fluid Shear Mechanotransduction Device Using Linear Optimization of Hydraulic Channels

Authors: Sanat K. Dash, Rama S. Verma, Sarit K. Das

Abstract:

A logarithmic microfluidic shear device was designed and fabricated for cellular mechanotransduction studies. The device contains four cell culture chambers in which flow was modulated to achieve a logarithmic increment. Resistance values were optimized to make the device compact. The network of resistances was developed according to a unique combination of series and parallel resistances as found via optimization. Simulation results done in Ansys 16.1 matched the analytical calculations and showed the shear stress distribution at different inlet flow rates. Fabrication of the device was carried out using conventional photolithography and PDMS soft lithography. Flow profile was validated taking DI water as working fluid and measuring the volume collected at all four outlets. Volumes collected at the outlets were in accordance with the simulation results at inlet flow rates ranging from 1 ml/min to 0.1 ml/min. The device can exert fluid shear stresses ranging four orders of magnitude on the culture chamber walls which will cover shear stress values from interstitial flow to blood flow. This will allow studying cell behavior in the long physiological range of shear stress in a single run reducing number of experiments.

Keywords: microfluidics, mechanotransduction, fluid shear stress, physiological shear

Procedia PDF Downloads 132
1490 Chairussyuhur Arman, Totti Tjiptosumirat, Muhammad Gunawan, Mastur, Joko Priyono, Baiq Tri Ratna Erawati

Authors: Maria M. Giannakou, Athanasios K. Ziliaskopoulos

Abstract:

Transmission pipelines carrying natural gas are often routed through populated cities, industrial and environmentally sensitive areas. While the need for these networks is unquestionable, there are serious concerns about the risk these lifeline networks pose to the people, to their habitat and to the critical infrastructures, especially in view of natural disasters such as earthquakes. This work presents an Integrated Pipeline Risk Management methodology (IPRM) for assessing the hazard associated with a natural gas pipeline failure due to natural or manmade disasters. IPRM aims to optimize the allocation of the available resources to countermeasures in order to minimize the impacts of pipeline failure to humans, the environment, the infrastructure and the economic activity. A proposed knapsack mathematical programming formulation is introduced that optimally selects the proper mitigation policies based on the estimated cost – benefit ratios. The proposed model is demonstrated with a small numerical example. The vulnerability analysis of these pipelines and the quantification of consequences from such failures can be useful for natural gas industries on deciding which mitigation measures to implement on the existing pipeline networks with the minimum cost in an acceptable level of hazard.

Keywords: cost benefit analysis, knapsack problem, natural gas distribution network, risk management, risk mitigation

Procedia PDF Downloads 297
1489 Application of Italian Guidelines for Existing Bridge Management

Authors: Giovanni Menichini, Salvatore Giacomo Morano, Gloria Terenzi, Luca Salvatori, Maurizio Orlando

Abstract:

The “Guidelines for Risk Classification, Safety Assessment, and Structural Health Monitoring of Existing Bridges” were recently approved by the Italian Government to define technical standards for managing the national network of existing bridges. These guidelines provide a framework for risk mitigation and safety assessment of bridges, which are essential elements of the built environment and form the basis for the operation of transport systems. Within the guideline framework, a workflow based on three main points was proposed: (1) risk-based, i.e., based on typical parameters of hazard, vulnerability, and exposure; (2) multi-level, i.e., including six assessment levels of increasing complexity; and (3) multirisk, i.e., assessing structural/foundational, seismic, hydrological, and landslide risks. The paper focuses on applying the Italian Guidelines to specific case studies, aiming to identify the parameters that predominantly influence the determination of the “class of attention”. The significance of each parameter is determined via sensitivity analysis. Additionally, recommendations for enhancing the process of assigning the class of attention are proposed.

Keywords: bridge safety assessment, Italian guidelines implementation, risk classification, structural health monitoring

Procedia PDF Downloads 61
1488 Maximum-likelihood Inference of Multi-Finger Movements Using Neural Activities

Authors: Kyung-Jin You, Kiwon Rhee, Marc H. Schieber, Nitish V. Thakor, Hyun-Chool Shin

Abstract:

It remains unknown whether M1 neurons encode multi-finger movements independently or as a certain neural network of single finger movements although multi-finger movements are physically a combination of single finger movements. We present an evidence of correlation between single and multi-finger movements and also attempt a challenging task of semi-blind decoding of neural data with minimum training of the neural decoder. Data were collected from 115 task-related neurons in M1 of a trained rhesus monkey performing flexion and extension of each finger and the wrist (12 single and 6 two-finger-movements). By exploiting correlation of temporal firing pattern between movements, we found that correlation coefficient for physically related movements pairs is greater than others; neurons tuned to single finger movements increased their firing rate when multi-finger commands were instructed. According to this knowledge, neural semi-blind decoding is done by choosing the greatest and the second greatest likelihood for canonical candidates. We achieved a decoding accuracy about 60% for multiple finger movement without corresponding training data set. this results suggest that only with the neural activities on single finger movements can be exploited to control dexterous multi-fingered neuroprosthetics.

Keywords: finger movement, neural activity, blind decoding, M1

Procedia PDF Downloads 324
1487 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: cancer classification, feature selection, deep learning, genetic algorithm

Procedia PDF Downloads 113
1486 Feasibility Study and Experiment of On-Site Nuclear Material Identification in Fukushima Daiichi Fuel Debris by Compact Neutron Source

Authors: Yudhitya Kusumawati, Yuki Mitsuya, Tomooki Shiba, Mitsuru Uesaka

Abstract:

After the Fukushima Daiichi nuclear power reactor incident, there are a lot of unaccountable nuclear fuel debris in the reactor core area, which is subject to safeguard and criticality safety. Before the actual precise analysis is performed, preliminary on-site screening and mapping of nuclear debris activity need to be performed to provide a reliable data on the nuclear debris mass-extraction planning. Through a collaboration project with Japan Atomic Energy Agency, an on-site nuclear debris screening system by using dual energy X-Ray inspection and neutron energy resonance analysis has been established. By using the compact and mobile pulsed neutron source constructed from 3.95 MeV X-Band electron linac, coupled with Tungsten as electron-to-photon converter and Beryllium as a photon-to-neutron converter, short-distance neutron Time of Flight measurement can be performed. Experiment result shows this system can measure neutron energy spectrum up to 100 eV range with only 2.5 meters Time of Flightpath in regards to the X-Band accelerator’s short pulse. With this, on-site neutron Time of Flight measurement can be used to identify the nuclear debris isotope contents through Neutron Resonance Transmission Analysis (NRTA). Some preliminary NRTA experiments have been done with Tungsten sample as dummy nuclear debris material, which isotopes Tungsten-186 has close energy absorption value with Uranium-238 (15 eV). The results obtained shows that this system can detect energy absorption in the resonance neutron area within 1-100 eV. It can also detect multiple elements in a material at once with the experiment using a combined sample of Indium, Tantalum, and silver makes it feasible to identify debris containing mixed material. This compact neutron Time of Flight measurement system is a great complementary for dual energy X-Ray Computed Tomography (CT) method that can identify atomic number quantitatively but with 1-mm spatial resolution and high error bar. The combination of these two measurement methods will able to perform on-site nuclear debris screening at Fukushima Daiichi reactor core area, providing the data for nuclear debris activity mapping.

Keywords: neutron source, neutron resonance, nuclear debris, time of flight

Procedia PDF Downloads 239
1485 Analyzing the Perception of Social Networking Sites as a Learning Tool among University Students: Case Study of a Business School in India

Authors: Bhaskar Basu

Abstract:

Universities and higher education institutes are finding it increasingly difficult to engage students fruitfully through traditional pedagogic tools. Web 2.0 technologies comprising social networking sites (SNSs) offer a platform for students to collaborate and share information, thereby enhancing their learning experience. Despite the potential and reach of SNSs, its use has been limited in academic settings promoting higher education. The purpose of this paper is to assess the perception of social networking sites among business school students in India and analyze its role in enhancing quality of student experiences in a business school leading to the proposal of an agenda for future research. In this study, more than 300 students of a reputed business school were involved in a survey of their preferences of different social networking sites and their perceptions and attitudes towards these sites. A questionnaire with three major sections was designed, validated and distributed among  a sample of students, the research method being descriptive in nature. Crucial questions were addressed to the students concerning time commitment, reasons for usage, nature of interaction on these sites, and the propensity to share information leading to direct and indirect modes of learning. It was further supplemented with focus group discussion to analyze the findings. The paper notes the resistance in the adoption of new technology by a section of business school faculty, who are staunch supporters of the classical “face-to-face” instruction. In conclusion, social networking sites like Facebook and LinkedIn provide new avenues for students to express themselves and to interact with one another. Universities could take advantage of the new ways  in which students are communicating with one another. Although interactive educational options such as Moodle exist, social networking sites are rarely used for academic purposes. Using this medium opens new ways of academically-oriented interactions where faculty could discover more about students' interests, and students, in turn, might express and develop more intellectual facets of their lives. hitherto unknown intellectual facets.  This study also throws up the enormous potential of mobile phones as a tool for “blended learning” in business schools going forward.

Keywords: business school, India, learning, social media, social networking, university

Procedia PDF Downloads 266
1484 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms

Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,

Abstract:

Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.

Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model

Procedia PDF Downloads 284
1483 Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite

Authors: Tingkai Zhao, Jingtian Hu, Xiarong Peng, Wenbo Yang, Tiehu Li

Abstract:

Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance.

Keywords: amorphous carbon nanotubes, graphene aerogel, barium ferrite nanorod, electromagnetic wave absorption

Procedia PDF Downloads 283