Search results for: Hidden-Markov Model
12259 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm
Authors: Mary Anne Roa
Abstract:
Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.Keywords: congestion control, queue management, computer networks, fuzzy logic
Procedia PDF Downloads 40212258 Effect of Realistic Lubricant Properties on Thermal Electrohydrodynamic Lubrication Behavior in Circular Contacts
Authors: Puneet Katyal, Punit Kumar
Abstract:
A great deal of efforts has been done in the field of thermal effects in electrohydrodynamic lubrication (TEHL) during the last five decades. The focus was primarily on the development of an efficient numerical scheme to deal with the computational challenges involved in the solution of TEHL model; however, some important aspects related to the accurate description of lubricant properties such as viscosity, rheology and thermal conductivity in EHL point contact analysis remain largely neglected. A few studies available in this regard are based upon highly complex mathematical models difficult to formulate and execute. Using a simplified thermal EHL model for point contacts, this work sheds some light on the importance of accurate characterization of the lubricant properties and demonstrates that the computed TEHL characteristics are highly sensitive to lubricant properties. It also emphasizes the use of appropriate mathematical models with experimentally determined parameters to account for correct lubricant behaviour.Keywords: TEHL, shear thinning, rheology, conductivity
Procedia PDF Downloads 20412257 Transformation to M-Learning at the Nursing Institute in the Armed Force Hospital Alhada, in Saudi Arabia Based on Activity Theory
Authors: Rahimah Abdulrahman, A. Eardle, Wilfred Alan, Abdel Hamid Soliman
Abstract:
With the rapid development in technology, and advances in learning technologies, m-learning has begun to occupy a great part of our lives. The pace of the life getting together with the need for learning started mobile learning (m-learning) concept. In 2008, Saudi Arabia requested a national plan for the adoption of information technology (IT) across the country. Part of the recommendations of this plan concerns the implementation of mobile learning (m-learning) as well as their prospective applications to higher education within the Kingdom of Saudi Arabia. The overall aim of the research is to explore the main issues that impact the deployment of m-learning in nursing institutes in Saudi Arabia, at the Armed Force Hospitals (AFH), Alhada. This is in order to be able to develop a generic model to enable and assist the educational policy makers and implementers of m-learning, to comprehend and treat those issues effectively. Specifically, the research will explore the concept of m-learning; identify and analyse the main organisational; technological and cultural issue, that relate to the adoption of m-learning; develop a model of m-learning; investigate the perception of the students of the Nursing Institutes to the use of m-learning technologies for their nursing diploma programmes based on their experiences; conduct a validation of the m-learning model with the use of the nursing Institute of the AFH, Alhada in Saudi Arabia, and evaluate the research project as a learning experience and as a contribution to the body of knowledge. Activity Theory (AT) will be adopted for the study due to the fact that it provides a conceptual framework that engenders an understanding of the structure, development and the context of computer-supported activities. The study will be adopt a set of data collection methods which engage nursing students in a quantitative survey, while nurse teachers are engaged through in depth qualitative studies to get first-hand information about the organisational, technological and cultural issues that impact on the deployment of m-learning. The original contribution will be a model for developing m-learning material for classroom-based learning in the nursing institute that can have a general application.Keywords: activity theory (at), mobile learning (m-learning), nursing institute, Saudi Arabia (sa)
Procedia PDF Downloads 35612256 Application of Bayesian Model Averaging and Geostatistical Output Perturbation to Generate Calibrated Ensemble Weather Forecast
Authors: Muhammad Luthfi, Sutikno Sutikno, Purhadi Purhadi
Abstract:
Weather forecast has necessarily been improved to provide the communities an accurate and objective prediction as well. To overcome such issue, the numerical-based weather forecast was extensively developed to reduce the subjectivity of forecast. Yet the Numerical Weather Predictions (NWPs) outputs are unfortunately issued without taking dynamical weather behavior and local terrain features into account. Thus, NWPs outputs are not able to accurately forecast the weather quantities, particularly for medium and long range forecast. The aim of this research is to aid and extend the development of ensemble forecast for Meteorology, Climatology, and Geophysics Agency of Indonesia. Ensemble method is an approach combining various deterministic forecast to produce more reliable one. However, such forecast is biased and uncalibrated due to its underdispersive or overdispersive nature. As one of the parametric methods, Bayesian Model Averaging (BMA) generates the calibrated ensemble forecast and constructs predictive PDF for specified period. Such method is able to utilize ensemble of any size but does not take spatial correlation into account. Whereas space dependencies involve the site of interest and nearby site, influenced by dynamic weather behavior. Meanwhile, Geostatistical Output Perturbation (GOP) reckons the spatial correlation to generate future weather quantities, though merely built by a single deterministic forecast, and is able to generate an ensemble of any size as well. This research conducts both BMA and GOP to generate the calibrated ensemble forecast for the daily temperature at few meteorological sites nearby Indonesia international airport.Keywords: Bayesian Model Averaging, ensemble forecast, geostatistical output perturbation, numerical weather prediction, temperature
Procedia PDF Downloads 28412255 Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong
Authors: Afia Naheed, Manmohan Singh, David Lucy
Abstract:
This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics.Keywords: infectious disease, severe acute respiratory syndrome (SARS), parameter estimation, sensitivity analysis, uncertainty analysis, Runge-Kutta methods, Levenberg-Marquardt method
Procedia PDF Downloads 36812254 Modelling of Moisture Loss and Oil Uptake during Deep-Fat Frying of Plantain
Authors: James A. Adeyanju, John O. Olajide, Akinbode A. Adedeji
Abstract:
A predictive mathematical model based on the fundamental principles of mass transfer was developed to simulate the moisture content and oil content during Deep-Fat Frying (DFF) process of dodo. The resulting governing equation, that is, partial differential equation that describes rate of moisture loss and oil uptake was solved numerically using explicit Finite Difference Technique (FDT). Computer codes were written in MATLAB environment for the implementation of FDT at different frying conditions and moisture loss as well as oil uptake simulation during DFF of dodo. Plantain samples were sliced into 5 mm thickness and fried at different frying oil temperatures (150, 160 and 170 ⁰C) for periods varying from 2 to 4 min. The comparison between the predicted results and experimental data for the validation of the model showed reasonable agreement. The correlation coefficients between the predicted and experimental values of moisture and oil transfer models ranging from 0.912 to 0.947 and 0.895 to 0.957, respectively. The predicted results could be further used for the design, control and optimization of deep-fat frying process.Keywords: frying, moisture loss, modelling, oil uptake
Procedia PDF Downloads 45212253 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 1512252 Socio-Economic Child’S Wellbeing Impasse in South Africa: Towards a Theory-Based Solution Model
Authors: Paulin Mbecke
Abstract:
Research Issue: Under economic constraints, socio-economic conditions of households worsen discounting child’s wellbeing to the bottom of many governments and households’ priority lists. In such situation, many governments fail to rebalance priorities in providing services such as education, housing and social security which are the prerequisites for the wellbeing of children. Consequently, many households struggle to respond to basic needs especially those of children. Although economic conditions play a crucial role in creating prosperity or poverty in households and therefore the wellbeing or misery for children; they are not the sole cause. Research Insights: The review of the South African Index of Multiple Deprivation and the South African Child Gauge establish the extent to which economic conditions impact on the wellbeing or misery of children. The analysis of social, cultural, environmental and structural theories demonstrates that non-economic factors contribute equally to the wellbeing or misery of children, yet, they are disregarded. In addition, the assessment of a child abuse database proves a weak correlation between economic factors (prosperity or poverty) and child’s wellbeing or misery. Theoretical Implications: Through critical social research theory and modelling, the paper proposes a Theory-Based Model that combines different factors to facilitate the understanding of child’s wellbeing or misery. Policy Implications: The proposed model assists in broad policy and decision making and reviews processes in promoting child’s wellbeing and in preventing, intervening and managing child’s misery with regard to education, housing, and social security.Keywords: children, child’s misery, child’s wellbeing, household’s despair, household’s prosperity
Procedia PDF Downloads 28912251 Study and Simulation of a Sever Dust Storm over West and South West of Iran
Authors: Saeed Farhadypour, Majid Azadi, Habibolla Sayyari, Mahmood Mosavi, Shahram Irani, Aliakbar Bidokhti, Omid Alizadeh Choobari, Ziba Hamidi
Abstract:
In the recent decades, frequencies of dust events have increased significantly in west and south west of Iran. First, a survey on the dust events during the period (1990-2013) is investigated using historical dust data collected at 6 weather stations scattered over west and south-west of Iran. After statistical analysis of the observational data, one of the most severe dust storm event that occurred in the region from 3rd to 6th July 2009, is selected and analyzed. WRF-Chem model is used to simulate the amount of PM10 and how to transport it to the areas. The initial and lateral boundary conditions for model obtained from GFS data with 0.5°×0.5° spatial resolution. In the simulation, two aerosol schemas (GOCART and MADE/SORGAM) with 3 options (chem_opt=106,300 and 303) were evaluated. Results of the statistical analysis of the historical data showed that south west of Iran has high frequency of dust events, so that Bushehr station has the highest frequency between stations and Urmia station has the lowest frequency. Also in the period of 1990 to 2013, the years 2009 and 1998 with the amounts of 3221 and 100 respectively had the highest and lowest dust events and according to the monthly variation, June and July had the highest frequency of dust events and December had the lowest frequency. Besides, model results showed that the MADE / SORGAM scheme has predicted values and trends of PM10 better than the other schemes and has showed the better performance in comparison with the observations. Finally, distribution of PM10 and the wind surface maps obtained from numerical modeling showed that the formation of dust plums formed in Iraq and Syria and also transportation of them to the West and Southwest of Iran. In addition, comparing the MODIS satellite image acquired on 4th July 2009 with model output at the same time showed the good ability of WRF-Chem in simulating spatial distribution of dust.Keywords: dust storm, MADE/SORGAM scheme, PM10, WRF-Chem
Procedia PDF Downloads 27212250 Prediction of Terrorist Activities in Nigeria using Bayesian Neural Network with Heterogeneous Transfer Functions
Authors: Tayo P. Ogundunmade, Adedayo A. Adepoju
Abstract:
Terrorist attacks in liberal democracies bring about a few pessimistic results, for example, sabotaged public support in the governments they target, disturbing the peace of a protected environment underwritten by the state, and a limitation of individuals from adding to the advancement of the country, among others. Hence, seeking for techniques to understand the different factors involved in terrorism and how to deal with those factors in order to completely stop or reduce terrorist activities is the topmost priority of the government in every country. This research aim is to develop an efficient deep learning-based predictive model for the prediction of future terrorist activities in Nigeria, addressing low-quality prediction accuracy problems associated with the existing solution methods. The proposed predictive AI-based model as a counterterrorism tool will be useful by governments and law enforcement agencies to protect the lives of individuals in society and to improve the quality of life in general. A Heterogeneous Bayesian Neural Network (HETBNN) model was derived with Gaussian error normal distribution. Three primary transfer functions (HOTTFs), as well as two derived transfer functions (HETTFs) arising from the convolution of the HOTTFs, are namely; Symmetric Saturated Linear transfer function (SATLINS ), Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent sigmoid transfer function (TANSIG), Symmetric Saturated Linear and Hyperbolic Tangent transfer function (SATLINS-TANH) and Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer function (SATLINS-TANSIG). Data on the Terrorist activities in Nigeria gathered through questionnaires for the purpose of this study were used. Mean Square Error (MSE), Mean Absolute Error (MAE) and Test Error are the forecast prediction criteria. The results showed that the HETFs performed better in terms of prediction and factors associated with terrorist activities in Nigeria were determined. The proposed predictive deep learning-based model will be useful to governments and law enforcement agencies as an effective counterterrorism mechanism to understand the parameters of terrorism and to design strategies to deal with terrorism before an incident actually happens and potentially causes the loss of precious lives. The proposed predictive AI-based model will reduce the chances of terrorist activities and is particularly helpful for security agencies to predict future terrorist activities.Keywords: activation functions, Bayesian neural network, mean square error, test error, terrorism
Procedia PDF Downloads 17012249 Material Characterization and Numerical Simulation of a Rubber Bumper
Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper, a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate an FEM model which is accurate and competitive for a future shape optimization task.Keywords: rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model
Procedia PDF Downloads 51212248 Behavior of Steel Moment Frames Subjected to Impact Load
Authors: Hyungoo Kang, Minsung Kim, Jinkoo Kim
Abstract:
This study investigates the performance of a 2D and 3D steel moment frame subjected to vehicle collision at a first story column using LS-DYNA. The finite element models of vehicles provided by the National Crash Analysis Center (NCAC) are used for numerical analysis. Nonlinear dynamic time history analysis of the 2D and 3D model structures are carried out based on the arbitrary column removal scenario, and the vertical displacement of the damaged structures are compared with that obtained from collision analysis. The analysis results show that the model structure remains stable when the speed of the vehicle is 40km/h. However, at the speed of 80 and 120km/h both the 2D and 3D structures collapse by progressive collapse. The vertical displacement of the damaged joint obtained from collision analysis is significantly larger than the displacement computed based on the arbitrary column removal scenario.Keywords: vehicle collision, progressive collapse, FEM, LS-DYNA
Procedia PDF Downloads 34312247 A Comparative Evaluation of Finite Difference Methods for the Extended Boussinesq Equations and Application to Tsunamis Modelling
Authors: Aurore Cauquis, Philippe Heinrich, Mario Ricchiuto, Audrey Gailler
Abstract:
In this talk, we look for an accurate time scheme to model the propagation of waves. Several numerical schemes have been developed to solve the extended weakly nonlinear weakly dispersive Boussinesq Equations. The temporal schemes used are two Lax-Wendroff schemes, second or third order accurate, two Runge-Kutta schemes of second and third order and a simplified third order accurate Lax-Wendroff scheme. Spatial derivatives are evaluated with fourth order accuracy. The numerical model is applied to two monodimensional benchmarks on a flat bottom. It is also applied to the simulation of the Algerian tsunami generated by a Mw=6 seism on the 18th March 2021. The tsunami propagation was highly dispersive and propagated across the Mediterranean Sea. We study here the effects of the order of temporal discretization on the accuracy of the results and on the time of computation.Keywords: numerical analysis, tsunami propagation, water wave, boussinesq equations
Procedia PDF Downloads 24712246 Optimization of Leaching Properties of a Low-Grade Copper Ore Using Central Composite Design (CCD)
Authors: Lawrence Koech, Hilary Rutto, Olga Mothibedi
Abstract:
Worldwide demand for copper has led to intensive search for methods of extraction and recovery of copper from different sources. The study investigates the leaching properties of a low-grade copper ore by optimizing the leaching variables using response surface methodology. The effects of key parameters, i.e., temperature, solid to liquid ratio, stirring speed and pH, on the leaching rate constant was investigated using a pH stat apparatus. A Central Composite Design (CCD) of experiments was used to develop a quadratic model which specifically correlates the leaching variables and the rate constant. The results indicated that the model is in good agreement with the experimental data with a correlation coefficient (R2) of 0.93. The temperature and solid to liquid ratio were found to have the most substantial influence on the leaching rate constant. The optimum operating conditions for copper leaching from the ore were identified as temperature at 65C, solid to liquid ratio at 1.625 and stirring speed of 325 rpm which yielded an average leaching efficiency of 93.16%.Keywords: copper, leaching, CCD, rate constant
Procedia PDF Downloads 24912245 Determination of Friction and Damping Coefficients of Folded Cover Mechanism Deployed by Torsion Springs
Authors: I. Yilmaz, O. Taga, F. Kosar, O. Keles
Abstract:
In this study, friction and damping coefficients of folded cover mechanism were obtained in accordance with experimental studies and data. Friction and damping coefficients are the most important inputs to accomplish a mechanism analysis. Friction and damping are two objects that change the time of deployment of mechanisms and their dynamic behaviors. Though recommended friction coefficient values exist in literature, damping is differentiating feature according to mechanic systems. So the damping coefficient should be obtained from mechanism test outputs. In this study, the folded cover mechanism use torsion springs for deploying covers that are formerly close folded position. Torsion springs provide folded covers with desirable deploying time according to variable environmental conditions. To verify all design revisions with system tests will be so costly so that some decisions are taken in accordance with numerical methods. In this study, there are two folded covers required to deploy simultaneously. Scotch-yoke and crank-rod mechanisms were combined to deploy folded covers simultaneously. The mechanism was unlocked with a pyrotechnic bolt onto scotch-yoke disc. When pyrotechnic bolt was exploded, torsion springs provided rotational movement for mechanism. Quick motion camera was recording dynamic behaviors of system during deployment case. Dynamic model of mechanism was modeled as rigid body with Adams MBD (multi body dynamics) then torque values provided by torsion springs were used as an input. A well-advised range of friction and damping coefficients were defined in Adams DOE (design of experiment) then a large number of analyses were performed until deployment time of folded covers run in with test data observed in record of quick motion camera, thus the deployment time of mechanism and dynamic behaviors were obtained. Same mechanism was tested with different torsion springs and torque values then outputs were compared with numerical models. According to comparison, it was understood that friction and damping coefficients obtained in this study can be used safely when studying on folded objects required to deploy simultaneously. In addition to model generated with Adams as rigid body the finite element model of folded mechanism was generated with Abaqus then the outputs of rigid body model and finite element model was compared. Finally, the reasonable solutions were suggested about different outputs of these solution methods.Keywords: damping, friction, pyro-technic, scotch-yoke
Procedia PDF Downloads 32812244 BIM Modeling of Site and Existing Buildings: Case Study of ESTP Paris Campus
Authors: Rita Sassine, Yassine Hassani, Mohamad Al Omari, Stéphanie Guibert
Abstract:
Building Information Modelling (BIM) is the process of creating, managing, and centralizing information during the building lifecycle. BIM can be used all over a construction project, from the initiation phase to the planning and execution phases to the maintenance and lifecycle management phase. For existing buildings, BIM can be used for specific applications such as lifecycle management. However, most of the existing buildings don’t have a BIM model. Creating a compatible BIM for existing buildings is very challenging. It requires special equipment for data capturing and efforts to convert these data into a BIM model. The main difficulties for such projects are to define the data needed, the level of development (LOD), and the methodology to be adopted. In addition to managing information for an existing building, studying the impact of the built environment is a challenging topic. So, integrating the existing terrain that surrounds buildings into the digital model is essential to be able to make several simulations as flood simulation, energy simulation, etc. Making a replication of the physical model and updating its information in real-time to make its Digital Twin (DT) is very important. The Digital Terrain Model (DTM) represents the ground surface of the terrain by a set of discrete points with unique height values over 2D points based on reference surface (e.g., mean sea level, geoid, and ellipsoid). In addition, information related to the type of pavement materials, types of vegetation and heights and damaged surfaces can be integrated. Our aim in this study is to define the methodology to be used in order to provide a 3D BIM model for the site and the existing building based on the case study of “Ecole Spéciale des Travaux Publiques (ESTP Paris)” school of engineering campus. The property is located on a hilly site of 5 hectares and is composed of more than 20 buildings with a total area of 32 000 square meters and a height between 50 and 68 meters. In this work, the campus precise levelling grid according to the NGF-IGN69 altimetric system and the grid control points are computed according to (Réseau Gédésique Français) RGF93 – Lambert 93 french system with different methods: (i) Land topographic surveying methods using robotic total station, (ii) GNSS (Global Network Satellite sytem) levelling grid with NRTK (Network Real Time Kinematic) mode, (iii) Point clouds generated by laser scanning. These technologies allow the computation of multiple building parameters such as boundary limits, the number of floors, the floors georeferencing, the georeferencing of the 4 base corners of each building, etc. Once the entry data are identified, the digital model of each building is done. The DTM is also modeled. The process of altimetric determination is complex and requires efforts in order to collect and analyze multiple data formats. Since many technologies can be used to produce digital models, different file formats such as DraWinG (DWG), LASer (LAS), Comma-separated values (CSV), Industry Foundation Classes (IFC) and ReViT (RVT) will be generated. Checking the interoperability between BIM models is very important. In this work, all models are linked together and shared on 3DEXPERIENCE collaborative platform.Keywords: building information modeling, digital terrain model, existing buildings, interoperability
Procedia PDF Downloads 11912243 Gravitational Frequency Shifts for Photons and Particles
Authors: Jing-Gang Xie
Abstract:
The research, in this case, considers the integration of the Quantum Field Theory and the General Relativity Theory. As two successful models in explaining behaviors of particles, they are incompatible since they work at different masses and scales of energy, with the evidence that regards the description of black holes and universe formation. It is so considering previous efforts in merging the two theories, including the likes of the String Theory, Quantum Gravity models, and others. In a bid to prove an actionable experiment, the paper’s approach starts with the derivations of the existing theories at present. It goes on to test the derivations by applying the same initial assumptions, coupled with several deviations. The resulting equations get similar results to those of classical Newton model, quantum mechanics, and general relativity as long as conditions are normal. However, outcomes are different when conditions are extreme, specifically with no breakdowns even for less than Schwarzschild radius, or at Planck length cases. Even so, it proves the possibilities of integrating the two theories.Keywords: general relativity theory, particles, photons, Quantum Gravity Model, gravitational frequency shift
Procedia PDF Downloads 36012242 Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation
Authors: R. Pilafkan, M. Kaffash Irzarahimi, S. F. Asbaghian Namin
Abstract:
The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions.Keywords: biaxial buckling, single-layered graphene sheets, nonlocal elasticity, molecular dynamics simulation, classical plate theory
Procedia PDF Downloads 28212241 Evaluating the Effectiveness of the Use of Scharmer’s Theory-U Model in Action-Learning-Based Leadership Development Program
Authors: Donald C. Lantu, Henndy Ginting, M. Yorga Permana, Dany M. A. Ramdlany
Abstract:
We constructed a training program for top-talents of a Bank with Scharmer Theory-U as the model. In this training program, we implemented the action learning perspective, as it is claimed to be the most effective one currently available. In the process, participants were encouraged to be more involved, especially compared to traditional lecturing. The goal of this study is to assess the effectiveness of this particular training. The program consists of six days non-residential workshop within two months. Between each workshop, the participants were involved in the works of action learning group. They were challenged by dealing with the real problem related to their tasks at work. The participants of the program were 30 best talents who were chosen according to their yearly performance. Using paired difference statistical test in the behavioral assessment, we found that the training was not effective to increase participants’ leadership competencies. For the future development program, we suggested to modify the goals of the program toward the next stage of development.Keywords: action learning, behavior, leadership development, Theory-U
Procedia PDF Downloads 19812240 Influencing Factors to Mandatory versus Non-Mandatory E-Government Services Adoption in India: An Empirical Study
Authors: Rajiv Kumar, Amit Sachan, Arindam Mukherjee
Abstract:
Government agencies around the world, including India, are incorporating digital technologies and processes into their day-to-day operations to become more efficient. Despite low internet penetration (around 34.8% of total population) in India, Government of India has made some public services mandatory to access online (e.g. passport, tax filing).This is insisting citizens to access mandatory public services online. However, due to digital divide, all citizens do not have equal access to internet. In light of this, it is an interesting topic to explore how citizens are able to access mandatory online public services. It is important to understand how citizens are adopting these mandatory e-government services and how the adoption behavior of these mandatory e-government services is different or similar to adoption behavior of non-mandatory e-government services. The purpose of this research is to investigate the factors that influence adoption of mandatory and non-mandatory e-government services in India. A quantitative technique is employed in this study. A conceptual model has been proposed by integrating the influencing factors to adopt e-government services from previous studies. The proposed conceptual model highlights a comprehensive set of potential factors influencing the adoption of e-government services. The proposed model has been validated by keeping in view the local context of Indian society. Online and paper based survey was administered, collected data was analyzed and results have been discussed. A total of 463 valid responses were received and further the responses were analyzed. The research reveals that the influencing factors to adopt e-government services are not same for both mandatory and non-mandatory e-government services. There are some factors that influence adoption of both mandatory and non-mandatory e-government services but there are some which are relevant for either of mandatory and non-mandatory e-government services. The research findings may help government or concerned agencies in successfully implementing e-government services.Keywords: adoption, e-government, India, mandatory, non-mandatory
Procedia PDF Downloads 32312239 Corporate Social Responsibility and Dividend Policy
Authors: Mohammed Benlemlih
Abstract:
Using a sample of 22,839 US firm-year observations over the 1991-2012 period, we find that high CSR firms pay more dividends than low CSR firms. The analysis of individual components of CSR provides strong support for this main finding: five of the six individual dimensions are also associated with high dividend payout. When analyzing the stability of dividend payout, our results show that socially irresponsible firms adjust dividends more rapidly than socially responsible firms do: dividend payout is more stable in high CSR firms. Additional results suggest that firms involved in two controversial activities -the military and alcohol - are associated with low dividend payouts. These findings are robust to alternative assumptions and model specifications, alternative measures of dividend, additional control, and several approaches to address endogeneity. Overall, our results are consistent with the expectation that high CSR firms may use dividend policy to manage the agency problems related to overinvestment in CSR.Keywords: corporate social responsibility, dividend policy, Lintner model, agency theory, signaling theory, dividend stability
Procedia PDF Downloads 26912238 Extending the AOP Joinpoint Model for Memory and Type Safety
Authors: Amjad Nusayr
Abstract:
Software security is a general term used to any type of software architecture or model in which security aspects are incorporated in this architecture. These aspects are not part of the main logic of the underlying program. Software security can be achieved using a combination of approaches, including but not limited to secure software designs, third part component validation, and secure coding practices. Memory safety is one feature in software security where we ensure that any object in memory has a valid pointer or a reference with a valid type. Aspect-Oriented Programming (AOP) is a paradigm that is concerned with capturing the cross-cutting concerns in code development. AOP is generally used for common cross-cutting concerns like logging and DB transaction managing. In this paper, we introduce the concepts that enable AOP to be used for the purpose of memory and type safety. We also present ideas for extending AOP in software security practices.Keywords: aspect oriented programming, programming languages, software security, memory and type safety
Procedia PDF Downloads 13512237 Integrated Design in Additive Manufacturing Based on Design for Manufacturing
Authors: E. Asadollahi-Yazdi, J. Gardan, P. Lafon
Abstract:
Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product’s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability.Keywords: additive manufacturing, 3D printing, design for manufacturing, integrated design, interoperability
Procedia PDF Downloads 31912236 The Influence of Family of Origin on Children: A Comprehensive Model and Implications for Positive Psychology and Psychotherapy
Authors: Meichen He, Xuan Yang
Abstract:
Background: In the field of psychotherapy, the role of the family of origin is of utmost importance. Over the past few decades, both individual-oriented and family-oriented approaches to child therapy have shown moderate success in reducing children's psychological and behavioral issues. Objective: However, in exploring how the family of origin influences individuals, it has been noted that there is a lack of comprehensive measurement indicators and an absence of an exact model to assess the impact of the family of origin on individual development. Therefore, this study aims to develop a model based on a literature review regarding the influence of the family of origin on children. Specifically, it will examine the effects of factors such as education level, economic status, maternal age, family integration, family violence, marital conflict, parental substance abuse, and alcohol consumption on children's self-confidence and life satisfaction. Through this research, we aim to further investigate the impact of the family of origin on children and provide directions for future research in positive psychology and psychotherapy. Methods: This study will employ a literature review methodology to gather and analyze relevant research articles on the influence of the family of origin on children. Subsequently, we will conduct quantitative analyses to establish a comprehensive model explaining how family of origin factors affect children's psychological and behavioral outcomes. Findings: the research has revealed that family of origin factors, including education level, economic status, maternal age, family integration, family violence, marital conflict, parental drug and alcohol consumption, have an impact on children's self-confidence and life satisfaction. These factors can affect children's psychological well-being and happiness through various pathways. Implications: The results of this study will contribute to a better understanding of the influence of the family of origin on children and provide valuable directions for future research in positive psychology and psychotherapy. This research will enhance awareness of children's psychological well-being and lay the foundation for improving psychotherapeutic methods.Keywords: family of origion, positive psychology, developmental psychology, family education, social psychology, educational psychology
Procedia PDF Downloads 19512235 How Information Sharing Can Improve Organizational Performance?
Authors: Syed Abdul Rehman Khan
Abstract:
In today’s world, information sharing plays a vital role in successful operations of supply chain; and boost to the profitability of the organizations (end-to-end supply chains). Many researches have been completed over the role of information sharing in supply chain. In this research article, we will investigate the ‘how information sharing can boost profitability & productivity of the organization; for this purpose, we have developed one conceptual model and check to that model through collected data from companies. We sent questionnaire to 369 companies; and will filled form received from 172 firms and the response rate was almost 47%. For the data analysis, we have used Regression in (SPSS software) In the research findings, our all hypothesis has been accepted significantly and due to the information sharing between suppliers and manufacturers ‘quality of material and timely delivery’ increase and also ‘collaboration & trust’ will become more stronger and these all factors will lead to the company’s profitability directly and in-directly. But unfortunately, companies could not avail the all fruitful benefits of information sharing due to the fear of ‘compromise confidentiality or leakage of information’.Keywords: collaboration, information sharing, risk factor, timely delivery
Procedia PDF Downloads 42112234 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils
Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha
Abstract:
Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering
Procedia PDF Downloads 34212233 Reactive Transport Modeling in Carbonate Rocks: A Single Pore Model
Authors: Priyanka Agrawal, Janou Koskamp, Amir Raoof, Mariette Wolthers
Abstract:
Calcite is the main mineral found in carbonate rocks, which form significant hydrocarbon reservoirs and subsurface repositories for CO2 sequestration. The injected CO2 mixes with the reservoir fluid and disturbs the geochemical equilibrium, triggering calcite dissolution. Different combinations of fluid chemistry and injection rate may therefore result in different evolution of porosity, permeability and dissolution patterns. To model the changes in porosity and permeability Kozeny-Carman equation K∝〖(∅)〗^n is used, where K is permeability and ∅ is porosity. The value of n is mostly based on experimental data or pore network models. In pore network models, this derivation is based on accuracy of relation used for conductivity and pore volume change. In fact, at a single pore scale, this relationship is the result of the pore shape development due to dissolution. We have prepared a new reactive transport model for a single pore which simulates the complex chemical reaction of carbonic-acid induced calcite dissolution and subsequent pore-geometry evolution at a single pore scale. We use COMSOL Multiphysics package 5.3 for the simulation. COMSOL utilizes the arbitary-Lagrangian Eulerian (ALE) method for the free-moving domain boundary. We examined the effect of flow rate on the evolution of single pore shape profiles due to calcite dissolution. We used three flow rates to cover diffusion dominated and advection-dominated transport regimes. The fluid in diffusion dominated flow (Pe number 0.037 and 0.37) becomes less reactive along the pore length and thus produced non-uniform pore shapes. However, for the advection-dominated flow (Pe number 3.75), the fast velocity of the fluid keeps the fluid relatively more reactive towards the end of the pore length, thus yielding uniform pore shape. Different pore shapes in terms of inlet opening vs overall pore opening will have an impact on the relation between changing volumes and conductivity. We have related the shape of pore with the Pe number which controls the transport regimes. For every Pe number, we have derived the relation between conductivity and porosity. These relations will be used in the pore network model to get the porosity and permeability variation.Keywords: single pore, reactive transport, calcite system, moving boundary
Procedia PDF Downloads 37412232 Simulation and Modeling of High Voltage Pulse Transformer
Authors: Zahra Emami, H. Reza Mesgarzade, A. Morad Ghorbami, S. Reza Motahari
Abstract:
This paper presents a method for calculation of parasitic elements consisting of leakage inductance and parasitic capacitance in a high voltage pulse transformer. The parasitic elements of pulse transformers significantly influence the resulting pulse shape of a power modulator system. In order to prevent the effects on the pulse shape before constructing the transformer an electrical model is needed. The technique procedures for computing these elements are based on finite element analysis. The finite element model of pulse transformer is created using software "Ansys Maxwell 3D". Finally, the transformer parasitic elements is calculated and compared with the value obtained from the actual test and pulse modulator is simulated and results is compared with actual test of pulse modulator. The results obtained are very similar with the test values.Keywords: pulse transformer, simulation, modeling, Maxwell 3D, modulator
Procedia PDF Downloads 46412231 Assessment of Air Pollutant Dispersion and Soil Contamination: The Critical Role of MATLAB Modeling in Evaluating Emissions from the Covanta Municipal Solid Waste Incineration Facility
Authors: Jadon Matthiasa, Cindy Donga, Ali Al Jibouria, Hsin Kuo
Abstract:
The environmental impact of emissions from the Covanta Waste-to-Energy facility in Burnaby, BC, was comprehensively evaluated, focusing on the dispersion of air pollutants and the subsequent assessment of heavy metal contamination in surrounding soils. A Gaussian Plume Model, implemented in MATLAB, was utilized to simulate the dispersion of key pollutants to understand their atmospheric behaviour and potential deposition patterns. The MATLAB code developed for this study enhanced the accuracy of pollutant concentration predictions and provided capabilities for visualizing pollutant dispersion in 3D plots. Furthermore, the code could predict the maximum concentration of pollutants at ground level, eliminating the need to use the Ranchoux model for predictions. Complementing the modelling approach, empirical soil sampling and analysis were conducted to evaluate heavy metal concentrations in the vicinity of the facility. This integrated methodology underscored the importance of computational modelling in air pollution assessment and highlighted the necessity of soil analysis to obtain a holistic understanding of environmental impacts. The findings emphasized the effectiveness of current emissions controls while advocating for ongoing monitoring to safeguard public health and environmental integrity.Keywords: air emissions, Gaussian Plume Model, MATLAB, soil contamination, air pollution monitoring, waste-to-energy, pollutant dispersion visualization, heavy metal analysis, environmental impact assessment, emission control effectiveness
Procedia PDF Downloads 2412230 A Multi-Cluster Enterprise Framework for Evolution of Knowledge System among Enterprises, Governments and Research Institutions
Authors: Sohail Ahmed, Ke Xing
Abstract:
This research theoretically explored the evolution mechanism of enterprise technological innovation capability system (ETICS) from the perspective of complex adaptive systems (CAS). Starting from CAS theory, this study proposed an analytical framework for ETICS, its concepts and theory by integrating CAS methodology into the management of technological innovation capability of enterprises and discusses how to use the principles of complexity to analyze the composition, evolution and realization of the technological innovation capabilities in complex dynamic environment. This paper introduces the concept and interaction of multi-agent, the theoretical background of CAS and summarizes the sources of technological innovation, the elements of each subject and the main clusters of adaptive interactions and innovation activities. The concept of multi-agents is applied through the linkages of enterprises, research institutions and government agencies with the leading enterprises in industrial settings. The study was exploratory based on CAS theory. Theoretical model is built by considering technological and innovation literature from foundational to state of the art projects of technological enterprises. On this basis, the theoretical model is developed to measure the evolution mechanism of enterprise technological innovation capability system. This paper concludes that the main characteristics for evolution in technological systems are based on enterprise’s research and development personal, investments in technological processes and innovation resources are responsible for the evolution of enterprise technological innovation performance. The research specifically enriched the application process of technological innovation in institutional networks related to enterprises.Keywords: complex adaptive system, echo model, enterprise knowledge system, research institutions, multi-agents.
Procedia PDF Downloads 75