Search results for: white cheese physical properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14226

Search results for: white cheese physical properties

9606 Altered TP53 Mutations in de Novo Acute Myeloid Leukemia Patients in Iran

Authors: Naser Shagerdi Esmaeli, Mohsen Hamidpour, Parisa Hasankhani Tehrani

Abstract:

Background: The TP53 mutation is frequently detected in acute myeloid leukemia (AML) patients with complex karyotype (CK), but the stability of this mutation during the clinical course remains unclear. Material and Methods: In this study, TP53 mutations were identified in 7% of 500 patients with de novo AML and 58.8% of patients with CK in Tabriz, Iran. TP53 mutations were closely associated with older age, lower white blood cell (WBC) and platelet counts, FAB M6 subtype, unfavorable-risk cytogenetics, and CK, but negatively associated with NPM1 mutation, FLT3/ITD and DNMT3A mutation. Result: Multivariate analysis demonstrated that TP53 mutation was an independent poor prognostic factor for overall survival and disease-free survival among the total cohort and the subgroup of patients with CK. A scoring system incorporating TP53 mutation and nine other prognostic factors, including age, WBC counts, cytogenetics, and gene mutations, into survival analysis proved to be very useful to stratify AML patients. Sequential study of 420 samples showed that TP53 mutations were stable during AML evolution, whereas the mutation was acquired only in 1 of the 126 TP53 wild-type patients when therapy-related AML originated from different clone emerged. Conclusion: In conclusion, TP53 mutations are associated with distinct clinic-biological features and poor prognosis in de novo AML patients and are rather stable during disease progression.

Keywords: acute myloblastic leukemia, TP53, FLT3/ITD, Iran

Procedia PDF Downloads 94
9605 Enhancing the Structural, Optical, and Dielectric Properties of the Polymer Nanocomposites Based on Polymer Blend and Gold Nanoparticles for Application in Energy Storage

Authors: Mohammed Omar

Abstract:

Using Chenopodium murale leaf, gold nanoparticles (Au NP's) were biosynthesized effectively in an amicable strategy. The casting process was used to create composite layers of sodium alginate and polyvinyl pyrrolidone. Gold nanoparticles were incorporated into the polyvinyl pyrrolidone (PVP)/ sodium alginate (NaAlg) polymer blend by casting technique. Before and after exposure to different doses of gamma irradiation (2, 4, 6 Mrad), thin films of synthesized nanocomposites were analyzed. XRD revealed the amorphous nature of polymer blends (PVP/ NaAlg), which decreased by both Au NP's embedding and consecutive doses of irradiation. FT-IR spectra revealed interactions and differences within the functional groups of their respective pristine components and dopant nano-fillers. The optical properties of PVP/NaAlg – Au NP thin films (refractive index n, energy gap Eg, Urbach energy Eu) were examined before and after the irradiation procedure. Transmission electron micrographs (TEM) demonstrated a decrease in the size of Au NP’s and narrow size distribution as the gamma irradiation dose was increased. Gamma irradiation was found to influence the electrical conductivity of synthesized composite films, as well as dielectric permittivity (ɛ′) and dielectric losses (ε″).

Keywords: PVP, SPR, γ-radiations, XRD

Procedia PDF Downloads 89
9604 Simultaneous Improvement of Wear Performance and Toughness of Ledeburitic Tool Steels by Sub-Zero Treatment

Authors: Peter Jurči, Jana Ptačinová, Mária Hudáková, Mária Dománková, Martin Kusý, Martin Sahul

Abstract:

The strength, hardness, and toughness (ductility) are in strong conflict for the metallic materials. The only possibility how to make their simultaneous improvement is to provide the microstructural refinement, by cold deformation, and subsequent recrystallization. However, application of this kind of treatment is impossible for high-carbon high-alloyed ledeburitic tool steels. Alternatively, it has been demonstrated over the last few years that sub-zero treatment induces some microstructural changes in these materials, which might favourably influence their complex of mechanical properties. Commercially available PM ledeburitic steel Vanadis 6 has been used for the current investigations. The paper demonstrates that sub-zero treatment induces clear refinement of the martensite, reduces the amount of retained austenite, enhances the population density of fine carbides, and makes alterations in microstructural development that take place during tempering. As a consequence, the steel manifests improved wear resistance at higher toughness and fracture toughness. Based on the obtained results, the key question “can the wear performance be improved by sub-zero treatment simultaneously with toughness” can be answered by “definitely yes”.

Keywords: ledeburitic tool steels, microstructure, sub-zero treatment, mechanical properties

Procedia PDF Downloads 297
9603 Nonlinear Internal Waves in Rotating Ocean

Authors: L. A. Ostrovsky, Yu. A. Stepanyants

Abstract:

Effect of Earth rotation on nonlinear waves is a practically important and theoretically challenging problem of fluid mechanics and geophysics. Whereas the large-scale, geostrophic processes such as Rossby waves are a classical object of oceanic and atmospheric physics, rotation effects on mesoscale waves are not well studied. In particular, the Coriolis force can radically modify the behavior of nonlinear internal gravity waves in the ocean having spatial scales of 1-10 kilometers and time durations of few hours. In the last decade, such a non-trivial behavior was observed more than once. Similar effects are possible for magnetic sound in the ionosphere. Here we outline the main physical peculiarities in the behavior of nonlinear internal waves due to the rotation effect and present some results of our recent studies. The consideration is based on the fourth-order equation derived by one of the authors as a rotation-modified Korteweg–de Vries (rKdV) equation which includes two types of dispersion: one is responsible for the finiteness of depth as in the classical KdV equation; another is due to the Coriolis effect. This equation is, in general, non-integrable; moreover, under the conditions typical of oceanic waves (positive dispersion parameter), it does not allow solitary solutions at all. In the opposite case (negative dispersion) which is possible for, e.g., magnetic sound, solitary solutions do exist and can form complex bound states (multisoliton). Another non-trivial properties of nonlinear internal waves with rotation include, to name a few, the ‘terminal’ damping of the initial KdV soliton disappearing in a finite time due to radiation losses caused by Earth’s rotation, and eventual transformation of a KdV soliton into a wave packet (an envelope soliton). The new results to be discussed refer to the interaction of a soliton with a long background wave. It is shown, in particular, that in this case internal solitons can exist since the radiation losses are compensated by energy pumping from the background wave. Finally, the relevant oceanic observations of rotation effect on internal waves are briefly described.

Keywords: Earth rotation, internal waves, nonlinear waves, solitons

Procedia PDF Downloads 640
9602 Role of a Physical Therapist in Rehabilitation

Authors: Andrew Anis Fakhrey Mosaad

Abstract:

Objectives: Physiotherapy in the intensive care unit (ICU) improves patient outcomes. We aimed to determine the characteristics of physiotherapy practice and critical barriers to applying physiotherapy in ICUs. Materials and Methods: A 54-item survey for determining the characteristics physiotherapists and physiotherapy applications in the ICU was developed. The survey was electronically sent to potential participants through the Turkish Physiotherapy Association network. Sixty-five physiotherapists (47F and 18M; 23–52 years; ICU experience: 6.0±6.2 years) completed the survey. The data were analyzed using quantitative and qualitative methods. Results: The duration of ICU practice was 3.51±2.10 h/day. Positioning (90.8%), active exercises (90.8%), breathing exercises (89.2%), passive exercises (87.7%), and percussion (87.7%) were the most commonly used applications. The barriers were related to physiotherapists (low level of employment and practice, lack of shift); patients (unwillingness, instability, participation restriction); teamwork (lack of awareness and communication); equipment (inadequacy, non-priority to purchase); and legal (reimbursement, lack of direct physiotherapy access, non-recognition of autonomy) procedures. Conclusion: The most common interventions were positioning, active, passive, breathing exercises, and percussion. Critical barriers toward physiotherapy are multifactorial and related to physiotherapists, patients, teams, equipment, and legal procedures. Physiotherapist employment, service maintenance, and multidisciplinary teamwork should be considered for physiotherapy effectiveness in ICUs.

Keywords: intensive care units, physical therapy, physiotherapy, exercises

Procedia PDF Downloads 84
9601 An Implementation of Incentive Systems within Property Life Cycles Will Reward Investors, Planners and Users

Authors: Nadine Wills

Abstract:

The whole life thinking of buildings (independent if these are commercial properties or residential properties) will raise if incentive systems are provided to investors, planners and users. The Use of Building Information Modelling (BIM)-Systems offers planners the possibility to plan and re-plan buildings for decades after a period of utilization without spending many capacities. The strategy-incentive should be to plan the building in a way that makes rescheduling possible by changing just parameters in the system and not re-planning the whole building. If users receive the chance to patient incentive systems, the building stock will have a long life period. Business models of tenant electricity or self-controlled operating costs are incentive systems for building –users to let fixed running costs decline without producing damages due to wrong purposes. BIM is the controlling body to ensure that users do not abuse the incentive solution and take negative influence on the building stock. The investor benefits from the planner’s and user’s incentives: the fact that the building becomes useful for the whole life without making unnecessary investments provides possibilities to make investments in different assets. Moreover, the investor gains the facility to achieve higher rents by merchandise the property with low operating costs. To execute BIM offers whole property life cycles.

Keywords: BIM, incentives, life cycle, sustainability

Procedia PDF Downloads 284
9600 Copolymers of Epsilon-Caprolactam Received via Anionic Polymerization in the Presence of Polypropylene Glycol Based Polymeric Activators

Authors: Krasimira N. Zhilkova, Mariya K. Kyulavska, Roza P. Mateva

Abstract:

The anionic polymerization of -caprolactam (CL) with bifunctional activators has been extensively studied as an effective and beneficial method of improving chemical and impact resistances, elasticity and other mechanical properties of polyamide (PA6). In presence of activators or macroactivators (MAs) also called polymeric activators (PACs) the anionic polymerization of lactams proceeds rapidly at a temperature range of 130-180C, well below the melting point of PA-6 (220C) permitting thus the direct manufacturing of copolymer product together with desired modifications of polyamide properties. Copolymers of PA6 with an elastic polypropylene glycol (PPG) middle block into main chain were successfully synthesized via activated anionic ring opening polymerization (ROP) of CL. Using novel PACs based on PPG polyols (with differ molecular weight) the anionic ROP of CL was realized and investigated in the presence of a basic initiator sodium salt of CL (NaCL). The PACs were synthesized as N-carbamoyllactam derivatives of hydroxyl terminated PPG functionalized with isophorone diisocyanate [IPh, 5-Isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane] and blocked then with CL units via an addition reaction. The block copolymers were analyzed and proved with 1H-NMR and FT-IR spectroscopy. The influence of the CL/PACs ratio in feed, the length of the PPG segments and polymerization conditions on the kinetics of anionic ROP, on average molecular weight, and on the structure of the obtained block copolymers were investigated. The structure and phase behaviour of the copolymers were explored with differential scanning calorimetry, wide-angle X-ray diffraction, thermogravimetric analysis and dynamic mechanical thermal analysis. The crystallinity dependence of PPG content incorporated into copolymers main backbone was estimate. Additionally, the mechanical properties of the obtained copolymers were studied by notched impact test. From the performed investigation in this study could be concluded that using PPG based PACs at the chosen ROP conditions leads to obtaining well-defined PA6-b-PPG-b-PA6 copolymers with improved impact resistance.

Keywords: anionic ring opening polymerization, caprolactam, polyamide copolymers, polypropylene glycol

Procedia PDF Downloads 396
9599 Campus Signage and Wayfinding Design Guidelines: Challenges of Visual Literacy in University of Port Harcourt

Authors: Kasi Jockeil-Ojike

Abstract:

The study of signage and wayfinding design guidelines is to provide consistent, coherent, and comprehensive guidelines for all type of signage design that may be applied to guide persons from the freeway into campus, and to specific building. As the world becomes more complex and the population increases, people increasingly rely on signage and wayfinding systems to navigate their way in built environment such as university campus. This paper will demonstrate and discuss signage and wayfinding, and the importance of visual literacy in university campuses. It discusses the process of wayfinding and signage, how poor signage and wayfinding systems affect people when navigating, and why wayfinding is more than just signage. Hence, this paper tries to examine the design guideline that primarily addresses the signage and wayfinding system that improves visual literacy within University of Port Harcourt multi-campuses. In doing this, the paper explore the environmental graphic design senori-emotional values and communicative information theories that takes the subjectivity of the observer in account. By making these connections, the paper will also determine what University of Port Harcourt need to focus on to be counted in the global trends, using developed visual communication guidelines based on previous studies or concept from professional. In conclusion, information about why physical structures (buildings and waypaths) on University of Port Harcourt multiple campuses need to be branded in self-communicative manner using signage and wayfinding design as integral part of its physical planning policy is recommended.

Keywords: campus-signage, movement, visual-literacy, wayfinding-guidelines

Procedia PDF Downloads 427
9598 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves

Authors: R. Meier, M. Pander

Abstract:

In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.

Keywords: lamb waves, industry 4.0, process control, elasticity, acoustoelasticity, microstructure

Procedia PDF Downloads 213
9597 Inhibitory Impacts of Fulvic Acid-Coated Iron Oxide Nano Particles on the Amyloid Fibril Aggregations

Authors: Dalia Jomehpour, Sara Sheikhlary, Esmaeil Heydari, Mohammad Hossien Majles Ara

Abstract:

In this study, we report fulvic acid-coated iron oxide nanoparticles of 10.7 ± 2.7 nm size, which serve to inhibit amyloid fibrillation formation. Although the effect of fulvic acid on tau fibrils was investigated, to our best knowledge, its inhibitory impacts on amyloid aggregation formation have been assessed neither in-vitro nor in-vivo. On the other hand, iron oxide nanoparticles exhibit anti-amyloid activity on their own. This study investigates the inhibitory effect of fulvic acid coated iron oxide nanoparticles on amyloid aggregations formed from the commonly used in-vitro model, lysozyme from chicken egg white. FESEM, XRD, and FTIR characterization confirmed that fulvic acid was coated onto the surface of the nanoparticles. The inhibitory effects of the fulvic acid coated iron oxide nanoparticles were verified by Thioflavin T assay, circular dichroism (CD), and FESEM analysis. Furthermore, the toxicity of the nanoparticles on the neuroblastoma SH-SY5Y human cell line was assessed through an MTT assay. Our results indicate that fulvic acid coated iron oxide nanoparticles can efficiently inhibit the formation of amyloid aggregations while exhibiting negligible in-vitro toxicity; thus, they can be used as anti-amyloid agents in the development of the potential drug for neurodegenerative diseases.

Keywords: Alzheimer’s disease, fulvic acid coated iron oxide nanoparticles, fulvic acid, amyloid inhibitor, polyphenols

Procedia PDF Downloads 94
9596 Socio-Economic Status and Quality of Life of Construction Workers in Bengaluru Sub-Urban Area in Pre and Post COVID-19

Authors: Priyanka R. Sagar

Abstract:

Social economic status (SES) is a variable that denotes the social standing of a person in society, and quality of life is a measure of health, happiness, and comfort of an individual. During early 2020, the world was stuck by the blow of the COVID-19 pandemic resulting in minimal or no economic activities to takes place. The present research paper is an attempt to analyze the socioeconomic status and quality of life of construction workers dwelling in the sub-urban areas of Hoskote located in the Bengaluru rural district pre and post-COVID-19. It also tries to analyze the difference in these variables pre and post-COVID-19. The study uses a retrospective design and data collected through a questionnaire survey from the respondents of Hoskote. A total of 100 samples were collected, out of which 73% were men and 27% were women. The mean age group of the participants is 41.04 ± 6.97 years. The overall analysis of the study shows that there is a significant difference in the socioeconomic status of construction workers pre and post-COVID-19. The study shows SES of the workers pre-pandemic is higher than post-pandemic. The other variable is quality of life which consists of physical health, psychological health, social relationships, and environmental domains. The study depicts that the psychological domain alone has been impacted by the pandemic; workers had better mental health pre-COVID-19. The other domains, i.e., physical health, social relationship, and environment, remain unaffected.

Keywords: socio-economic status, quality of life, construction workers, COVID-19

Procedia PDF Downloads 94
9595 Defects Analysis, Components Distribution, and Properties Simulation in the Fuel Cells and Batteries by 2D and 3D Characterization Techniques

Authors: Amir Peyman Soleymani, Jasna Jankovic

Abstract:

The augmented demand of the clean and renewable energy has necessitated the fuel cell and battery industries to produce more efficient devices at the lower prices, which can be achieved through the improvement of the electrode. Microstructural characterization, as one of the main materials development tools, plays a pivotal role in the production of better clean energy devices. In this study, methods for characterization and studying of the defects and components distribution were performed on the polymer electrolyte membrane fuel cell (PEMFC) and Li-ion battery (LIB) electrodes in 2D and 3D. The particles distribution, porosity, mechanical defects, and component distribution were studied by Scanning Electron Microscope (SEM), SEM-Focused Ion Beam (SEM-FIB), and Scanning Transmission Electron Microscope equipped with Energy Dispersive Spectroscopy (STEM-EDS). The 3D results obtained from X-ray Computed Tomography (XCT) revealed the pathways for electron and ion conductivity and defects progression maps. Computer-aided methods (Avizo) were employed to simulate the properties and performance of the microstructure in the electrodes. The suggestions were provided to improve the performance of PEMFCs and LIBs by adjusting the microstructure and the distribution of the components in the electrodes.

Keywords: PEM fuel cells, Li-ion batteries, 2D and 3D imaging, materials characterizations

Procedia PDF Downloads 139
9594 Studying on Pile Seismic Operation with Numerical Method by Using FLAC 3D Software

Authors: Hossein Motaghedi, Kaveh Arkani, Siavash Salamatpoor

Abstract:

Usually the piles are important tools for safety and economical design of high and heavy structures. For this aim the response of single pile under dynamic load is so effective. Also, the agents which have influence on single pile response are properties of pile geometrical, soil and subjected loads. In this study the finite difference numerical method and by using FLAC 3D software is used for evaluation of single pile behavior under peak ground acceleration (PGA) of El Centro earthquake record in California (1940). The results of this models compared by experimental results of other researchers and it will be seen that the results of this models are approximately coincide by experimental data's. For example the maximum moment and displacement in top of the pile is corresponding to the other experimental results of pervious researchers. Furthermore, in this paper is tried to evaluate the effective properties between soil and pile. The results is shown that by increasing the pile diagonal, the pile top displacement will be decreased. As well as, by increasing the length of pile, the top displacement will be increased. Also, by increasing the stiffness ratio of pile to soil, the produced moment in pile body will be increased and the taller piles have more interaction by soils and have high inertia. So, these results can help directly to optimization design of pile dimensions.

Keywords: pile seismic response, interaction between soil and pile, numerical analysis, FLAC 3D

Procedia PDF Downloads 373
9593 Leachate Discharges: Review Treatment Techniques

Authors: Abdelkader Anouzla, Soukaina Bouaouda, Roukaya Bouyakhsass, Salah Souabi, Abdeslam Taleb

Abstract:

During storage and under the combined action of rainwater and natural fermentation, these wastes produce over 800.000 m3 of landfill leachates. Due to population growth and changing global economic activities, the amount of waste constantly generated increases, making more significant volumes of leachate. Leachate, when leaching into the soil, can negatively impact soil, surface water, groundwater, and the overall environment and human life. The leachate must first be treated because of its high pollutant load before being released into the environment. This article reviews the different leachate treatments in September 2022 techniques. Different techniques can be used for this purpose, such as biological, physical-chemical, and membrane methods. Young leachate is biodegradable; in contrast, these biological processes lose their effectiveness with leachate aging. They are characterized by high ammonia nitrogen concentrations that inhibit their activity. Most physical-chemical treatments serve as pre-treatment or post-treatment to complement conventional treatment processes or remove specific contaminants. After the introduction, the different types of pollutants present in leachates and their impacts have been made, followed by a discussion highlighting the advantages and disadvantages of the various treatments, whether biological, physicochemical, or membrane. From this work, due to their simplicity and reasonable cost compared to other treatment procedures, biological treatments offer the most suitable alternative to limit the effects produced by the pollutants in landfill leachates.

Keywords: landfill leachate, landfill pollution, impact, wastewater

Procedia PDF Downloads 77
9592 Application of Gold Nanorods in Cancer Photothermaltherapy

Authors: Mehrnaz Mostafavi

Abstract:

Lung cancer is one of the most harmful forms of cancer. The long-term survival rate of lung cancer patients treated by conventional modalities such as surgical resection, radiation, and chemotherapy remains far from satisfactory. Systemic drug delivery is rarely successful because only a limited amount of the chemotherapeutic drug targets lung tumor sites, even when administered at a high dose. Targeted delivery of drug molecules to organs or special sites is one of the most challenging research areas in pharmaceutical sciences. By developing colloidal delivery systems such as liposomes, micelles and nanoparticles a new frontier was opened for improving drug delivery. Nanoparticles with their special characteristics such as small particle size, large surface area and the capability of changing their surface properties have numerous advantages compared with other delivery systems. Targeted nanoparticle delivery to the lungs is an emerging area of interest.Multimodal or combination therapy represents a promising new method to fight disease. Therefore, a combination of different therapeutic strategies may be the best alternative to improve treatment outcomes for lung cancer. Photothermal therapy was proposed as a novel approach to treatment. In this work, photothermal therapy with gold nanoparticles and near infrared laser (NIR) irradiation was investigated.Four types of small (<100nm), NIR absorbing gold nanoparticles (nanospheres, nanorods) were synthesized using wet chemical methods and characterized by transmission electron microscopy, dynamic light scattering and UV-vis spectroscopy. Their synthesis and properties were evaluated, to determine their feasibility as a photothermal agent for clinical applications. In vitro cellular uptake studies of the nanoparticles into lung cancer cell lines was measured using light scattering microscopy.Small gold nanorods had good photothermal properties and the greatest cellular uptake, and were used in photothermal studies. Under 4W laser irradiation, an increase in temperature of 10°C and decrease in cell viability of up to 80% were obtained.

Keywords: photothermal, therapy, cancer, gold nanorods

Procedia PDF Downloads 233
9591 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers

Authors: Ali Osman Güney, Bahattin Kanber

Abstract:

In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.

Keywords: reinforced vulcanized rubbers, fiber properties, out of plane loading, finite element method

Procedia PDF Downloads 329
9590 Development of Calcium Carbonate Molecular Sheets via Wet Chemical Route

Authors: Sudhir Kumar Sharma, Ramesh Jagannathan

Abstract:

The interaction of organic and inorganic matrices of biological origin resulting in self-assembled structures with unique properties is well established. The development of such self-assembled nanostructures by synthetic and bio-inspired techniques is an established field of active research. Among bio-materials, nacre, a laminar stack of calcium carbonate nanosheets, which are interleaved with organic material, has long been focused research due to its unique mechanical properties. In this paper, we present the development of nacre-like lamellar structures made up of calcium carbonate via a wet chemical route. We used the binding affinity of carboxylate anions and calcium cations using poly (acrylic) acid (PAA) to lead CaCO₃ crystallization. In these experiments, we selected calcium acetate as the precursor molecule along with PAA (Mw ~ 8000 Da). We found that Ca⁺²/COO⁻ ratio provided a tunable control for the morphology and growth of CaCO₃ nanostructures. Drop casting one such formulation on a silicon substrate followed by calcination resulted in co-planner, molecular sheets of CaCO₃, separated by a spacer layer of carbon. The scope of our process could be expanded to produce unit cell thick molecular sheets of other important inorganic materials.

Keywords: self-assembled structures, bio-inspired materials, calcium carbonate, wet chemical route

Procedia PDF Downloads 119
9589 Developing Computational Thinking in Early Childhood Education

Authors: Kalliopi Kanaki, Michael Kalogiannakis

Abstract:

Nowadays, in the digital era, the early acquisition of basic programming skills and knowledge is encouraged, as it facilitates students’ exposure to computational thinking and empowers their creativity, problem-solving skills, and cognitive development. More and more researchers and educators investigate the introduction of computational thinking in K-12 since it is expected to be a fundamental skill for everyone by the middle of the 21st century, just like reading, writing and arithmetic are at the moment. In this paper, a doctoral research in the process is presented, which investigates the infusion of computational thinking into science curriculum in early childhood education. The whole attempt aims to develop young children’s computational thinking by introducing them to the fundamental concepts of object-oriented programming in an enjoyable, yet educational framework. The backbone of the research is the digital environment PhysGramming (an abbreviation of Physical Science Programming), which provides children the opportunity to create their own digital games, turning them from passive consumers to active creators of technology. PhysGramming deploys an innovative hybrid schema of visual and text-based programming techniques, with emphasis on object-orientation. Through PhysGramming, young students are familiarized with basic object-oriented programming concepts, such as classes, objects, and attributes, while, at the same time, get a view of object-oriented programming syntax. Nevertheless, the most noteworthy feature of PhysGramming is that children create their own digital games within the context of physical science courses, in a way that provides familiarization with the basic principles of object-oriented programming and computational thinking, even though no specific reference is made to these principles. Attuned to the ethical guidelines of educational research, interventions were conducted in two classes of second grade. The interventions were designed with respect to the thematic units of the curriculum of physical science courses, as a part of the learning activities of the class. PhysGramming was integrated into the classroom, after short introductory sessions. During the interventions, 6-7 years old children worked in pairs on computers and created their own digital games (group games, matching games, and puzzles). The authors participated in these interventions as observers in order to achieve a realistic evaluation of the proposed educational framework concerning its applicability in the classroom and its educational and pedagogical perspectives. To better examine if the objectives of the research are met, the investigation was focused on six criteria; the educational value of PhysGramming, its engaging and enjoyable characteristics, its child-friendliness, its appropriateness for the purpose that is proposed, its ability to monitor the user’s progress and its individualizing features. In this paper, the functionality of PhysGramming and the philosophy of its integration in the classroom are both described in detail. Information about the implemented interventions and the results obtained is also provided. Finally, several limitations of the research conducted that deserve attention are denoted.

Keywords: computational thinking, early childhood education, object-oriented programming, physical science courses

Procedia PDF Downloads 110
9588 Comparison of Impulsivity Trait in Males and Females: Exploring the Sex Difference in Impulsivity

Authors: Pinhas Dannon, Aviv Weinstein

Abstract:

Impulsivity is raising major interest clinically because it is associated with various clinical conditions such as delinquency, antisocial behavior, suicide attempts, aggression, and criminal activity. The evolutionary perspective argued that impulsivity relates to self-regulation and it has predicted that female individuals should have evolved a greater ability to inhibit pre-potent responses. There is supportive evidence showing that female individuals have better performance on cognitive tasks measuring impulsivity such as delay in gratification and delayed discounting mainly in childhood. During adolescence, brain imaging studies using diffusion tensor imaging on white matter architecture indicated contrary to the evolutionary perspective hypothesis, that young adolescent male individuals may be less vulnerable than age-matched female individuals to risk- and reward- related maladaptive behaviors. In adults, the results are mixed presumably owing to hormonal effects on neuro-biological mechanisms of reward. Consequently, female individuals were less impulsive than male individuals only during fertile stages of the menstrual cycle. Finally, there is evidence the serotonin (5-HT) system is more involved in the impulsivity of men than in that of women. Overall, there seem to be sex differences in impulsivity but these differences are more pronounced in childhood and they are later subject to maturational and hormonal changes during adolescence and adulthood and their effects on the brain, cognition, and behavior.

Keywords: impulse control, male population, female population, gender differences, reward, neurocognitive tests

Procedia PDF Downloads 334
9587 Welding Technology Developments for Stringer-Skin Joints with Al-Li Alloys

Authors: Egoitz Aldanondo, Ekaitz Arruti, Amaia Iturrioz, Ivan Huarte, Fidel Zubiri

Abstract:

Manufacturing aeronautic structures joining extruded profiles or stringers to sheets or skins of aluminium is a typical manufacturing procedure in aeronautic structures. Although riveting is the conventional manufacturing technology to produce such joints, the Friction Stir Welding (FSW) and Laser Beam Welding (LBW) technologies have also demonstrated their potential for this kind of applications. Therefore, FSW and LBW technologies have the potential to continue their development as manufacturing processes for aeronautic structures showing benefits such as time-saving, light-weighting and overall cost reduction. In addition to that, new aluminium-lithium based alloy developments represent great opportunities for advanced aeronautic structure manufacturing with potential benefits such as lightweight construction or improved corrosion resistance. This work presents the main approaches by FSW and LBW to develop those technologies to produce stiffened panel structures such as fuselage by stringer-skin joints and using innovative aluminium-lithium alloys. Initial welding tests were performed in AA2198-T3S aluminium alloys for LBW technology and with AA2198-T851 for FSW. Later tests for both FSW and LBW have been carried out using AA2099-T83 alloy extrusions as stringers and AA2060-T8E30 as skin materials. The weld quality and properties have been examined by metallographic analysis and mechanical testing, including shear tensile tests and pull-out tests. The analysis of the results have shown the relationships between processing conditions, micro-macrostructural properties and the mechanical strength of the welded joints. The effects produced in the different alloys investigated have been observed and particular weld formation mechanics have been studied for each material and welding technology. Therefore, relationships between welding conditions and the obtained weld properties for each material combination and welding technology will be discussed in this presentation.

Keywords: AA2060-T8E30, AA2099-T83, AA2198-T3S, AA2198-T851, friction stir welding, laser beam welding

Procedia PDF Downloads 184
9586 The Role of Chemerin and Myostatin after Physical Activity

Authors: M. J. Pourvaghar, M. E. Bahram

Abstract:

Obesity and overweight is one of the most common metabolic disorders in industrialized countries and in developing countries. One consequence of pathological obesity is cardiovascular disease and metabolic syndrome. Chemerin is an adipocyne that plays a role in the regulation of the adipocyte function and the metabolism of glucose in the liver and musculoskeletal system. Most likely, chemerin is involved in obesity-related disorders such as type 2 diabetes and cardiovascular disease. Aerobic exercises reduce the level of chemerin and cause macrophage penetration into fat cells and inflammatory factors. Several efforts have been made to clarify the cellular and molecular mechanisms of hypertrophy and muscular atrophy. Myostatin, a new member of the TGF-β family, is a transforming growth factor β that its expression negatively regulates the growth of the skeletal muscle; and the increase of this hormone has been observed in conditions of muscular atrophy. While in response to muscle overload, its levels decrease after the atrophy period, TGF-β is the most important cytokine in the development of skeletal muscle. Myostatin plays an important role in muscle control, and animal and human studies show a negative role of myostatin in the growth of skeletal muscle. Separation of myostatin from Golgi begins on the ninth day of the onset period and continues until birth at all times of muscle growth. Higher levels of myostatin are found in obese people. Resistance training for 10 weeks could reduce levels of plasma myostatin.

Keywords: chemerin, myostatin, obesity, physical activity

Procedia PDF Downloads 296
9585 Mechanical Testing on Bioplastics Obtained from Banana and Potato Peels in the City of Bogotá, Colombia

Authors: Juan Eduardo Rolon Rios, Fredy Alejandro Orjuela, Alexander Garcia Mariaca

Abstract:

For banana and potato wastes, their peels are processed in order to make animal food with the condition that those wastes must not have started the decomposition process. One alternative to taking advantage of those wastes is to obtain a bioplastic based on starch from banana and potato shells. These products are 100% biodegradables, and researchers have been studying them for different applications, helping in the reduction of organic wastes and ordinary plastic wastes. Without petroleum affecting the prices of bioplastics, bioplastics market has a growing tendency and it is seen that it can keep this tendency in the medium term up to 350%. In this work, it will be shown the results for elasticity module and percent elongation for bioplastics obtained from a mixture of starch of bananas and potatoes peels, with glycerol as plasticizer. The experimental variables were the plasticizer percentage and the mixture between banana starch and potato starch. The results show that the bioplastics obtained can be used in different applications such as plastic bags or sorbets, verifying their admissible degradation percentages for each one of these applications. The results also show that they agree with the data found in the literature due to the fact that mixtures with a major amount of potato starch had the best mechanical properties because of the potato starch characteristics.

Keywords: bioplastics, fruit waste, mechanical testing, mechanical properties

Procedia PDF Downloads 277
9584 Randomly Casted Single-Wall Carbon Nanotubes Films for High Performance Hybrid Photovoltaic Devices

Authors: My Ali El Khakani

Abstract:

Single-wall Carbon nanotubes (SWCNTs) possess an unprecedented combination of unique properties that make them highly promising for suitable for a new generation of photovoltaic (PV) devices. Prior to discussing the integration of SWCNTs films into effective PV devices, we will briefly highlight our work on the synthesis of SWCNTs by means of the KrF pulsed laser deposition technique, their purification and transfer onto n-silicon substrates to form p-n junctions. Some of the structural and optoelectronic properties of SWCNTs relevant to PV applications will be emphasized. By varying the SWCNTs film density (µg/cm2), we were able to point out the existence of an optimum value that yields the highest photoconversion efficiency (PCE) of ~10%. Further control of the doping of the p-SWCNTs films, through their exposure to nitric acid vapors, along with the insertion of an optimized hole-extraction-layer in the p-SWCNTs/n-Si hybrid devices permitted to achieve a PCE value as high as 14.2%. Such a high PCE value demonstrates the full potential of these p-SWCNTs/n-Si devices for sunlight photoconversion. On the other hand, by examining both the optical transmission and electrical conductance of the SWCNTs’ films, we established a figure of merit (FOM) that was shown to correlate well with the PCE performance. Such a direct relationship between the FOM and the PCE can be used as a guide for further PCE enhancement of these novel p-SWCNTs/n-Si PV devices.

Keywords: carbon nanotubes (CNTs), CNTs-silicon hybrid devices, photoconversion, photovoltaic devices, pulsed laser deposition

Procedia PDF Downloads 101
9583 Estimation of Heritability and Repeatability for Pre-Weaning Body Weights of Domestic Rabbits Raised in Derived Savanna Zone of Nigeria

Authors: Adewale I. Adeolu, Vivian U. Oleforuh-Okoleh, Sylvester N. Ibe

Abstract:

Heritability and repeatability estimates are needed for the genetic evaluation of livestock populations and consequently for the purpose of upgrading or improvement. Pooled data on 604 progeny from three consecutive parities of purebred rabbit breeds (Chinchilla, Dutch and New Zealand white) raised in Derived Savanna Zone of Nigeria were used to estimate heritability and repeatability for pre-weaning body weights between 1st and 8th week of age. Traits studied include Individual kit weight at birth (IKWB), 2nd week (IK2W), 4th week (IK4W), 6th week (IK6W) and 8th week (IK8W). Nested random effects analysis of (Co)variances as described by Statistical Analysis System (SAS) were employed in the estimation. Respective heritability estimates from the sire component (h2s) and repeatability (R) as intra-class correlations of repeated measurements from the three parties for IKWB, IK2W, IK4W and IK8W are 0.59±0.24, 0.55±0.24, 0.93±0.31, 0.28±0.17, 0.64±0.26 and 0.12±0.14, 0.05±0.14, 0.58±0.02, 0.60±0.11, 0.20±0.14. Heritability and repeatability (except R for IKWB and IK2W) estimates are moderate to high. In conclusion, since pre-weaning body weights in the present study tended to be moderately to highly heritable and repeatable, improvement of rabbits raised in derived savanna zone can be realized through genetic selection criterions.

Keywords: heritability, nested design, parity, pooled data, repeatability

Procedia PDF Downloads 136
9582 Functional Finishing of Organic Cotton Fabric Using Vetiver Root Extract

Authors: Sakeena Naikwadi, K. Jagaluraiah Sannapapamma

Abstract:

Vetiveria zizanioides is an aromatic grass and traditionally been used in aromatherapy and ayurvedic medicine. Vetiver root is multi-functional biopolymer and has highly aromatic, antimicrobial, UV blocking, antioxidant properties suitable for textile finishing. The vetiver root (Gulabi) powder of different concentration (2, 4, 6,8 percent) were extracted by aqueous and solvent methods subjected to bioassay for antimicrobial efficiency and GCMS spectral analysis. The organic cotton fabric was finished with vetiver root extract (8 percent) by exhaust and pad dry cure methods. The finished fabric was assessed for functional properties viz., UV protective factor, antimicrobial efficiency and aroma intensity. The results revealed that Ethanol extraction showed a greater zone of inhibition compared to aqueous extract in root powder. Among the concentrations, 8 percent root extract in ethanol showed a greater zone of inhibition against gram-positive organism S. aureus and gram-negative organism E. coli. The major compounds present in vetiver root extracts were diethyl pathalate with greater percentage (87.73 %) followed by 7- Isopropyl dimethyl carboxylic acid (4.05 %), 2-butanone 4-trimethyle cyclohexen (1.21 %), phenanthrene carboxylic acid (1.03 %), naphthalene pentanoic acid (0.99 %), 1-phenanthrene carboxylic acid and 1 cyclohexenone 2-methyl oxobuty (0.89 %). The sample finished by pad dry cure method exhibited better UV protection even after 10th wash as compared to exhaust method. Vetiver extract treated samples exhibited maximum zone of inhibition against S. aureus than the E. coli organism. The vetiver root extract treated organic cotton fabric through pad dry cure method possessed good antimicrobial activity against S. aureus and E. coli even after 20th washes compared to vetiver root extract treated by exhaust method. The olfactory analysis was carried out by 30 panels of members and opined that vetiver root extract treated fabric has very good and pleasant aroma with better tactile properties that provide cooling, soothing effect and enhances the mood of the wearer. Vetiver root extract finished organic cotton fabric possessed aroma, antimicrobial and UV properties which are aptly suitable for medical and healthcare textiles viz., wound dressing, bandage gauze, surgical cloths, baby diapers and sanitary napkins. It can be used as after finishing agent for variegated garments and made-ups and can be replaced with commercial after finishing agents.

Keywords: antimicrobial, olfactory analysis, UV protection factor, vetiver root extract

Procedia PDF Downloads 215
9581 Enhanced Field Emission from Plasma Treated Graphene and 2D Layered Hybrids

Authors: R. Khare, R. V. Gelamo, M. A. More, D. J. Late, Chandra Sekhar Rout

Abstract:

Graphene emerges out as a promising material for various applications ranging from complementary integrated circuits to optically transparent electrode for displays and sensors. The excellent conductivity and atomic sharp edges of unique two-dimensional structure makes graphene a propitious field emitter. Graphene analogues of other 2D layered materials have emerged in material science and nanotechnology due to the enriched physics and novel enhanced properties they present. There are several advantages of using 2D nanomaterials in field emission based devices, including a thickness of only a few atomic layers, high aspect ratio (the ratio of lateral size to sheet thickness), excellent electrical properties, extraordinary mechanical strength and ease of synthesis. Furthermore, the presence of edges can enhance the tunneling probability for the electrons in layered nanomaterials similar to that seen in nanotubes. Here we report electron emission properties of multilayer graphene and effect of plasma (CO2, O2, Ar and N2) treatment. The plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm2 at an applied field of 0.35 V/μm. Further, we report the field emission studies of layered WS2/RGO and SnS2/RGO composites. The turn on field required to draw a field emission current density of 1μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2/RGO composite respectively. The enhanced field emission behavior observed for the WS2/RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 µA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2/RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overlap of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. Similarly, the turn on field required to draw an emission current density of 1µA/cm2 is significantly low (almost half the value) for the SnS2/RGO nanocomposite (2.65 V/µm) compared to pristine SnS2 (4.8 V/µm) nanosheets. The field enhancement factor β (~3200 for SnS2 and ~3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (FN) plots and indicates emission from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The DFT calculations reveal that the enhanced field emission properties of SnS2/RGO composites are because of a substantial lowering of work function of SnS2 when supported by graphene, which is in response to p-type doping of the graphene substrate. Graphene and 2D analogue materials emerge as a potential candidate for future field emission applications.

Keywords: graphene, layered material, field emission, plasma, doping

Procedia PDF Downloads 349
9580 Tool Wear of Aluminum/Chromium/Tungsten Based Coated Cemented Carbide Tools in Cutting Sintered Steel

Authors: Tadahiro Wada, Hiroyuki Hanyu

Abstract:

In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear.

Keywords: cutting, physical vapor deposition coating method, tool wear, tool wear mechanism, (Al, Cr, W)N-coating film, (Al, Cr, W)(C, N)-coating film, sintered steel

Procedia PDF Downloads 366
9579 Synthesis and Characterization of Functionalized Carbon Nanorods/Polystyrene Nanocomposites

Authors: M. A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis

Abstract:

Nanocomposites of Carbon Nanorods (CNRs) with Polystyrene (PS), have been synthesized successfully by means of in situ polymerization process and characterized. Firstly, carbon nanorods with graphitic structure were prepared by the standard synthetic procedure of CMK-3 using MCM-41 as template, instead of SBA-15, and sucrose as carbon source. In order to create an organophilic surface on CNRs, two parts of modification were realized: surface chemical oxidation (CNRs-ox) according to the Staudenmaier’s method and the attachment of octadecylamine molecules on the functional groups of CNRs-ox (CNRs-ODA The nanocomposite materials of polystyrene with CNRs-ODA, were prepared by a solution-precipitation method at three nanoadditive to polymer loadings (1, 3 and 5 wt. %). The as derived nanocomposites were studied with a combination of characterization and analytical techniques. Especially, Fourier-transform infrared (FT-IR) and Raman spectroscopies were used for the chemical and structural characterization of the pristine materials and the derived nanocomposites while the morphology of nanocomposites and the dispersion of the carbon nanorods were analyzed by atomic force and scanning electron microscopy techniques. Tensile testing and thermogravimetric analysis (TGA) along with differential scanning calorimetry (DSC) were also used to examine the mechanical properties and thermal stability -glass transition temperature of PS after the incorporation of CNRs-ODA nanorods. The results showed that the thermal and mechanical properties of the PS/ CNRs-ODA nanocomposites gradually improved with increasing of CNRs-ODA loading.

Keywords: nanocomposites, polystyrene, carbon, nanorods

Procedia PDF Downloads 338
9578 Effects of Mental Skill Training Programme on Direct Free Kick of Grassroot Footballers in Lagos, Nigeria

Authors: Mayowa Adeyeye, Kehinde Adeyemo

Abstract:

The direct free kick is considered a great opportunity to score a goal but this is not always the case amidst Nigerian and other elite footballers. This study, therefore, examined the extent to which an 8 weeks mental skill training programme is effective for improving accuracy in direct free kick in football. Sixty (n-60) students of Pepsi Football Academy participated in the study. They were randomly distributed into two groups of positive self-talk group (intervention n-30) and control group (n-30). The instrument used in the collection of data include a standard football goal post while the research materials include a dummy soccer wall, a cord, an improvised vanishing spray, a clipboard, writing materials, a recording sheet, a self-talk log book, six standard 5 football, cones, an audiotape and a compact disc. The Weinberge and Gould (2011) mental skills training manual was used. The reliability coefficient of the apparatus following a pilot study stood at 0.72. Before the commencement of the mental skills training programme, the participants were asked to take six simulated direct free kick. At the end of each physical skills training session after the pre-test, the researcher spent at least 15 minutes with the groups exposing them to the intervention. The mental skills training programme alongside physical skills training took place in two different locations for the different groups under study, these included Agege Stadium Main bowl Football Pitch (Imagery Group), and Ogba Ijaye (Control Group). The mental skills training programme lasted for eight weeks. After the completion of the mental skills training programme, all the participants were asked to take another six simulated direct free kick attempts using the same field used for the pre-test to determine the efficacy of the treatments. The pre-test and post-test data were analysed using inferential statistics of t-test, while the alpha level was set at 0.05. The result revealed significant differences in t-test for positive self-talk and control group. Based on the findings, it is recommended that athletes should be exposed to positive self-talk alongside their normal physical skills training for quality delivery of accurate direct free kick during training and competition.

Keywords: accuracy, direct free kick, pepsi football academy, positive self-talk

Procedia PDF Downloads 328
9577 Assessment of Advanced Oxidation Process Applicability for Household Appliances Wastewater Treatment

Authors: Pelin Yılmaz Çetiner, Metin Mert İlgün, Nazlı Çetindağ, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır

Abstract:

Water scarcity is an inevitable problem affecting more and more people day by day. It is a worldwide crisis and a consequence of rapid population growth, urbanization and overexploitation. Thus, the solutions providing the reclamation of the wastewater are the desired approach. Wastewater contains various substances such as organic, soaps and detergents, solvents, biological substances, and inorganic substances. The physical properties of the wastewater differs regarding to its origin such as commerical, domestic or hospital usage. Thus, the treatment strategy of this type of wastewater is should be comprehensively investigated and properly treated. The advanced oxidation process comes up as a hopeful method associated with the formation of reactive hydroxyl radicals that are highly reactive to oxidize of organic pollutants. This process has a priority on other methods such as coagulation, flocuation, sedimentation and filtration since it was not cause any undesirable by-products. In the present study, it was aimed to investigate the applicability of advanced oxidation process for the treatment of household appliances wastewater. For this purpose, the laboratory studies providing the effectively addressing of the formed radicals to organic pollutants were carried out. Then the effect of process parameters were comprehensively studied by using response surface methodology, Box-Benhken experimental desing. The final chemical oxygen demand (COD) was the main output to evaluate the optimum point providing the expected COD removal. The linear alkyl benzene sulfonate (LAS), total dissolved solids (TDS) and color were measured for the optimum point providing the expected COD removal. Finally, present study pointed out that advanced oxidation process might be efficiently preffered to treat of the household appliances wastewater and the optimum process parameters provided that expected removal of COD.

Keywords: advanced oxidation process, household appliances wastewater, modelling, water reuse

Procedia PDF Downloads 48