Search results for: language learning strategies
9511 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications
Authors: William Li
Abstract:
Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles
Procedia PDF Downloads 2659510 Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia
Authors: Hussain Ali Bekhet, Nor Hamisham Harun
Abstract:
The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations.Keywords: Malaysia, non-renewable energy, renewable energy, sustainable energy
Procedia PDF Downloads 4099509 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 459508 Modern Nahwu's View about the Theory of Amil
Authors: Kisno Umbar
Abstract:
Arabic grammar (nahwu) is one of the most important disciplines to learn about the Islamic literature (kitab al-turats). In the last century, learning Arabic grammar was difficult for both the Arabian or non-Arabian native. Most of the traditional nahwu scholars viewed that the theory of amil is a major problem. The views had influenced large number of modern nahwu scholars, and some of them refuse the theory of amil to simplify Arabic grammar to make it easier. The aim of the study is to compare many views of the modern nahwu scholars about the theory of amil including their reasons. In addition, the study is to reveal whether they follow classic scholars or give a view. The author uses literature study approach to get data of modern nahwu scholars from their books as a primary resource. As a secondary resource, the author uses the updated relevant researches from journals about the theory of amil. Besides, the author put on several resources from the traditional nahwu scholars to compare the views. The analysis showed the contrasting views about the theory of amil. Most of the scholars refuse the amil because it isn’t originally derived from Arabic tradition, but it is influenced by Aristotelian philosophy. The others persistently use the amil inasmuch as it is one of the characteristics that differ Arabic language and other languages.Keywords: Arabic grammar, Amil, Arabic tradition, Aristotelian philosophy
Procedia PDF Downloads 1639507 Business Process Mashup
Authors: Fethia Zenak, Salima Benbernou, Linda Zaoui
Abstract:
Recently, many companies are based on process development from scratch to achieve their business goals. The process development is not trivial and the main objective of enterprise managing processes is to decrease the software development time. Several concepts have been proposed in the field of business process-based reused development, known as BP Mashup. This concept consists of reusing existing business processes which have been modeled in order to respond to a particular goal. To meet user process requirements, our contribution is to mix parts of processes as 'processes fragments' components to build a new process (i.e. process mashup). The main idea of our paper is to offer graphical framework tool for both creating and running processes mashup. Allow users to perform a mixture of fragments, using a simple interface with set of graphical mixture operators based on a proposed formal model. A process mashup and mixture behavior are described within a new specification of a high-level language, language for process mashup (BPML).Keywords: business process, mashup, fragments, bp mashup
Procedia PDF Downloads 6399506 The Impact of Student-Led Entrepreneurship Education through Skill Acquisition in Federal Polytechnic, Bida, Niger State, Nigeria
Authors: Ibrahim Abubakar Mikugi
Abstract:
Nigerian graduates could only be self-employed and marketable if they acquire relevant skills and knowledge for successful establishment in various occupation and gainful employment. Research has shown that entrepreneurship education will be successful through developing individual entrepreneurial attitudes, raising awareness of career options by integrating and inculcating a positive attitude in the mind of students through skill acquisition. This paper examined the student- led entrepreneurship education through skill acquisition with specific emphasis on analysis of David Kolb experiential learning cycle. This Model allows individual to review their experience through reflection and converting ideas into action by doing. The methodology used was theoretical approach through journal, internet and Textbooks. Challenges to entrepreneurship education through skill acquisition were outlined. The paper concludes that entrepreneurship education is recognised by both policy makers and academics; entrepreneurship is more than mere encouraging business start-ups. Recommendations were given which include the need for authorities to have a clear vision towards entrepreneurship education and skill acquisition. Authorities should also emphasise a periodic and appropriate evaluation of entrepreneurship and to also integrate into schools academic curriculum to encourage practical learning by doing.Keywords: entrepreneurship, entrepreneurship education, active learning, Cefe methodology
Procedia PDF Downloads 5249505 Culture and Deviance Told by Skin: Non Verbal Communication of Tattoos
Authors: Andreas Aceranti, Simonetta Vernocchi, Marco Colorato, Ludwig Conistabile, Martina Falappi
Abstract:
This study was born out of the necessity to delve into and understand the intricate world of tattoos, a millenary art that lays its foundation, although sometimes complex, for effective non-verbal communication. What is most astonishing about a phenomenon such as irreversibly branding the skin, which at first glance may appear superficial, especially in the eyes of those who do not fully understand its meaning, is the fact that it is actually one of the most enduring forms of communication: body modification through tattoos or ornamental dyes indicated the wearer's membership in a particular ethnic group, social class or religious community. Even within crime-based aggregations, tattoos had (and still have) the purpose of conveying one's affiliation to a particular group, thus making one's criminal identity known. The profession of a language and cultural mediator teaches that it is essential to be able to read between the lines to grasp all those aspects that words alone do not convey. Tattooing, therefore, becomes a tool of analysis and a language that is not secondary to be taken into account for an in-depth reading of the reality that surrounds us and of cultures different from our own.Keywords: tattoo, cultural tattoos, tattooing, non verbal communication
Procedia PDF Downloads 2069504 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R
Procedia PDF Downloads 3809503 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time
Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen
Abstract:
Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.Keywords: 4C/ID model, virtual patients, education, dental, instructional design
Procedia PDF Downloads 859502 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 229501 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion
Authors: Swarna Pundir, Prabuddha Hans
Abstract:
As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved. Procedia PDF Downloads 1019500 Exploring the Contribution of Dynamic Capabilities to a Firm's Value Creation: The Role of Competitive Strategy
Authors: Mona Rashidirad, Hamid Salimian
Abstract:
Dynamic capabilities, as the most considerable capabilities of firms in the current fast-moving economy may not be sufficient for performance improvement, but their contribution to performance is undeniable. While much of the extant literature investigates the impact of dynamic capabilities on organisational performance, little attention has been devoted to understand whether and how dynamic capabilities create value. Dynamic capabilities as the mirror of competitive strategies should enable firms to search and seize new ideas, integrate and coordinate the firm’s resources and capabilities in order to create value. A careful investigation to the existing knowledge base remains us puzzled regarding the relationship among competitive strategies, dynamic capabilities and value creation. This study thus attempts to fill in this gap by empirically investigating the impact of dynamic capabilities on value creation and the mediating impact of competitive strategy on this relationship. We aim to contribute to dynamic capability view (DCV), in both theoretical and empirical senses, by exploring the impact of dynamic capabilities on firms’ value creation and whether competitive strategy can play any role in strengthening/weakening this relationship. Using a sample of 491 firms in the UK telecommunications market, the results demonstrate that dynamic sensing, learning, integrating and coordinating capabilities play a significant role in firm’s value creation, and competitive strategy mediates the impact of dynamic capabilities on value creation. Adopting DCV, this study investigates whether the value generating from dynamic capabilities depends on firms’ competitive strategy. This study argues a firm’s competitive strategy can mediate its ability to derive value from its dynamic capabilities and it explains the extent a firm’s competitive strategy may influence its value generation. The results of the dynamic capabilities-value relationships support our expectations and justify the non-financial value added of the four dynamic capability processes in a highly turbulent market, such as UK telecommunications. Our analytical findings of the relationship among dynamic capabilities, competitive strategy and value creation provide further evidence of the undeniable role of competitive strategy in deriving value from dynamic capabilities. The results reinforce the argument for the need to consider the mediating impact of organisational contextual factors, such as firm’s competitive strategy to examine how they interact with dynamic capabilities to deliver value. The findings of this study provide significant contributions to theory. Unlike some previous studies which conceptualise dynamic capabilities as a unidimensional construct, this study demonstrates the benefits of understanding the details of the link among the four types of dynamic capabilities, competitive strategy and value creation. In terms of contributions to managerial practices, this research draws attention to the importance of competitive strategy in conjunction with development and deployment of dynamic capabilities to create value. Managers are now equipped with solid empirical evidence which explains why DCV has become essential to firms in today’s business world.Keywords: dynamic capabilities, resource based theory, value creation, competitive strategy
Procedia PDF Downloads 2449499 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning
Authors: Abdullah Bal
Abstract:
This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification
Procedia PDF Downloads 279498 The Effect of Cross-Curriculum of L1 and L2 on Elementary School Students’ Linguistic Proficiency: To Sympathize with Others
Authors: Reiko Yamamoto
Abstract:
This paper reports on a project to integrate Japanese (as a first language) and English (as a second language) education. This study focuses on the mutual effects of the two languages on the linguistic proficiency of elementary school students. The research team consisted of elementary school teachers and researchers at a university. The participants of the experiment were students between 3rd and 6th grades at an elementary school. The research process consisted of seven steps: 1) specifying linguistic proficiency; 2) developing the cross-curriculum of L1 and L2; 3) forming can-do statements; 4) creating a self-evaluation questionnaire; 5) executing the self-evaluation questionnaire at the beginning of the school year; 6) instructing L1 and L2 based on the curriculum; and 7) executing the self-evaluation questionnaire at the beginning of the next school year. In Step 1, the members of the research team brainstormed ways to specify elementary school students’ linguistic proficiency that can be observed in various scenes. It was revealed that the teachers evaluate their students’ linguistic proficiency on the basis of the students’ utterances, but also informed by their non-verbal communication abilities. This led to the idea that competency for understanding others’ minds through the use of physical movement or bodily senses in communication in L1 – to sympathize with others – can be transferred to that same competency in communication in L2. Based on the specification of linguistic proficiency that L1 and L2 have in common, a cross-curriculum of L1 and L2 was developed in Step 2. In Step 3, can-do statements based on the curriculum were also formed, building off of the action-oriented approach from the Common European Framework of Reference for Languages (CEFR) used in Europe. A self-evaluation questionnaire consisting of the main can-do statements was given to the students between 3rd grade and 6th grade at the beginning of the school year (Step 4 and Step 5), and all teachers gave L1 and L2 instruction based on the curriculum to the students for one year (Step 6). The same questionnaire was given to the students at the beginning of the next school year (Step 7). The results of statistical analysis proved the enhancement of the students’ linguistic proficiency. This verified the validity of developing the cross-curriculum of L1 and L2 and adapting it in elementary school. It was concluded that elementary school students do not distinguish between L1 and L2, and that they just try to understand others’ minds through physical movement or senses in any language.Keywords: cross curriculum of L1 and L2, elementary school education, language proficiency, sympathy with others
Procedia PDF Downloads 4409497 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 1929496 The Pursuit of Marital Sustainability Inspiring by Successful Matrimony of Two Distinguishable Indonesian Ethnics as a Learning Process
Authors: Mutiara Amalina Khairisa, Purnama Arafah, Rahayu Listiana Ramli
Abstract:
In recent years, so many cases of divorce increasingly occur. Betrayal in form of infidelity, less communication one another, economically problems, selfishness of two sides, intervening parents from both sides which frequently occurs in Asia, especially in Indonesia, the differences of both principles and beliefs, “Sense of Romantism” depletion, role confict, a large difference in the purpose of marriage,and sex satisfaction are expected as the primary factors of the causes of divorce. Every couple of marriage wants to reach happy life in their family but severe problems brought about by either of those main factors come as a reasonable cause of failure marriage. The purpose of this study is to find out how marital adjustment and supporting factors in ensuring the success of that previous marital adjusment are inseparable two things assumed as a framework can affect the success in marriage becoming a resolution to reduce the desires to divorce. Those two inseparable things are able to become an aspect of learning from the success of the different ethnics marriage to keep holding on wholeness.Keywords: marital adjustment, marital sustainability, learning process, successful ethnicity differences marriage, basical cultural values
Procedia PDF Downloads 4339495 Using an Empathy Intervention Model to Enhance Empathy and Socially Shared Regulation in Youth with Autism Spectrum Disorder
Authors: Yu-Chi Chou
Abstract:
The purpose of this study was to establish a logical path of an instructional model of empathy and social regulation, providing feasibility evidence on the model implementation in students with autism spectrum disorder (ASD). This newly developed Emotional Bug-Out Bag (BoB) curriculum was designed to enhance the empathy and socially shared regulation of students with ASD. The BoB model encompassed three instructional phases of basic theory lessons (BTL), action plan practices (APP), and final theory practices (FTP) during implementation. Besides, a learning flow (teacher-directed instruction, student self-directed problem-solving, group-based task completion, group-based reflection) was infused into the progress of instructional phases to deliberately promote the social regulatory process in group-working activities. A total of 23 junior high school students with ASD were implemented with the BoB curriculum. To examine the logical path for model implementation, data was collected from the participating students’ self-report scores on the learning nodes and understanding questions. Path analysis using structural equation modeling (SEM) was utilized for analyzing scores on 10 learning nodes and 41 understanding questions through the three phases of the BoB model. Results showed (a) all participants progressed throughout the implementation of the BoB model, and (b) the models of learning nodes and phases were positive and significant as expected, confirming the hypothesized logic path of this curriculum.Keywords: autism spectrum disorder, empathy, regulation, socially shared regulation
Procedia PDF Downloads 709494 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea
Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim
Abstract:
Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: deep learning, algae concentration, remote sensing, satellite
Procedia PDF Downloads 1889493 Integrating Artificial Intelligence in Social Work Education: An Exploratory Study
Authors: Nir Wittenberg, Moshe Farhi
Abstract:
This mixed-methods study examines the integration of artificial intelligence (AI) tools in a first-year social work course to assess their potential for enhancing professional knowledge and skills. The incorporation of digital technologies, such as AI, in social work interventions, training, and research has increased, with the expectation that AI will become as commonplace as email and mobile phones. However, policies and ethical guidelines regarding AI, as well as empirical evaluations of its usefulness, are lacking. As AI is gradually being adopted in the field, it is prudent to explore AI thoughtfully in alignment with pedagogical goals. The outcomes assessed include professional identity, course satisfaction, and motivation. AI offers unique reflective learning opportunities through personalized simulations, feedback, and queries to complement face-to-face lessons. For instance, AI simulations provide low-risk practices for situations such as client interactions, enabling students to build skills with less stress. However, it is essential to recognize that AI alone cannot ensure real-world competence or cultural sensitivity. Outcomes related to student learning, experience, and perceptions will help to elucidate the best practices for AI integration, guiding faculty, and advancing pedagogical innovation. This strategic integration of selected AI technologies is expected to diversify course methodology, improve learning outcomes, and generate new evidence on AI’s educational utility. The findings will inform faculty seeking to thoughtfully incorporate AI into teaching and learning.Keywords: artificial intelligence (AI), social work education, students, developing a professional identity, ethical considerations
Procedia PDF Downloads 849492 Women Retelling the Iranian Revolution: A Comparative Study of Novelists Maryam Madjidi and Negar Djavadi
Authors: Alessandro Giardino
Abstract:
The Iranian Revolution has been the object of numberless historical and semi-fictional accounts, often providing a monolithic perspective on the events, due to the westerner positioning of those recounting them. Against this tradition, two contemporary French-Iranian novels "Disoriental" (2016) by Negar Djavadi and "Marx and The Doll" (2017) by Maryam Madjidi have offered readers a female-oriented and interestingly layered representation of the Iranian Revolution, hence addressing the responsibilities and misconceptions of Western countries. Furthermore, these two women writers have shed light on the disenchantment of the Iranian intellectual class vis-à-vis the foundation of the Islamic Republic, by particularly focusing on the deterioration of women’s rights, as well as the repression of political, ethnical, religious and sexual minorities. By a psycholinguistic and semasiological analysis of the two novels by Djavadi and Madjidi, this essay will focus on alternative accounts of the revolution in order to reflect upon the role of intersectional literature to the understanding of history. More specifically, as both women, refugees, and bi-cultural writers, Djavadi and Madjidi unearthed moments and figures of the revolution which had disappeared from the prevalent narrative. In doing so, however, these two writers resorted to entirely opposite styles of writing that, it will be argued, stem from different types of female resistance. In defining these two approaches as a "narrative resistance" and a "photographic resistance," the essay will elucidate the dependence of these writers’ language on generational and psychological factors, but it will also stir a reflection on their different communicative strategies.Keywords: Iranian revolution, French-Iranian, intersectionality, literature, women writers
Procedia PDF Downloads 1649491 Accessible Mobile Augmented Reality App for Art Social Learning Based on Technology Acceptance Model
Authors: Covadonga Rodrigo, Felipe Alvarez Arrieta, Ana Garcia Serrano
Abstract:
Mobile augmented reality technologies have become very popular in the last years in the educational field. Researchers have studied how these technologies improve the engagement of the student and better understanding of the process of learning. But few studies have been made regarding the accessibility of these new technologies applied to digital humanities. The goal of our research is to develop an accessible mobile application with embedded augmented reality main characters of the art work and gamification events accompanied by multi-sensorial activities. The mobile app conducts a learning itinerary around the artistic work, driving the user experience in and out the museum. The learning design follows the inquiry-based methodology and social learning conducted through interaction with social networks. As for the software application, it’s being user-centered designed, following the universal design for learning (UDL) principles to assure the best level of accessibility for all. The mobile augmented reality application starts recognizing a marker from a masterpiece of a museum using the camera of the mobile device. The augmented reality information (history, author, 3D images, audio, quizzes) is shown through virtual main characters that come out from the art work. To comply with the UDL principles, we use a version of the technology acceptance model (TAM) to study the easiness of use and perception of usefulness, extended by the authors with specific indicators for measuring accessibility issues. Following a rapid prototype method for development, the first app has been recently produced, fulfilling the EN 301549 standard and W3C accessibility guidelines for mobile development. A TAM-based web questionnaire with 214 participants with different kinds of disabilities was previously conducted to gather information and feedback on user preferences from the artistic work on the Museo del Prado, the level of acceptance of technology innovations and the easiness of use of mobile elements. Preliminary results show that people with disabilities felt very comfortable while using mobile apps and internet connection. The augmented reality elements seem to offer an added value highly engaging and motivating for the students.Keywords: H.5.1 (multimedia information systems), artificial, augmented and virtual realities, evaluation/methodology
Procedia PDF Downloads 1389490 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning
Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü
Abstract:
This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.Keywords: automotive, chassis level control, control systems, pneumatic system control
Procedia PDF Downloads 849489 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale
Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin
Abstract:
A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale
Procedia PDF Downloads 1369488 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.Keywords: classification, achine learning, predictive quality, feature selection
Procedia PDF Downloads 1669487 Endangered Languages in Arabia: Documentation Challenges
Authors: Munira Al-Azraqi
Abstract:
Modern South Arabian Languages (MSAL) belong to the Semitic language family and are believed to be either a southern member of the west Semitic branch (Rubin 2010; Moscati et al 1969) or an eastern member of the south Semitic branch (Faber 1997), (Watson 2012). They are six languages which are still spoken in southern Arabia. They are used in Oman, Yemen, Saudi Arabia and in some of the Gulf states. Mehri is one of them however it has the highest number of speakers comparing to the other members of MSAL. It is used in Yemen, Oman, in parts of southern and eastern Saudi Arabia and in some of the Gulf states. The number of Mehri speakers is estimated at between 100,000 and 180,000. The problem that this language might face is that its speakers live in different places which are belonging to different countries. This might cause the language to change rapidly due to education and communication. There are some studies on Omani and Yemeni Mehri but not in Saudi Mehri. In the nineteenth century, travelers, western scholars and explorers played their parts in the discovery of these peoples and their languages. The historical turning point for the knowledge of the MSAL is 1898, when the Südarabische Expedition of the Imperial Academy of Vienna started. The three scholars, Müller, Jahn and Hein began their systematic collection of texts, which were later studied grammatically and lexically by Bittner (1908-1917), Jahn (1915), Leslau (1938) and Wagner (1953). Saudi Mehri has not been studied. This might be caused by the lack of information or the difficulty in collecting the data which this paper aims to shed light on.Keywords: Modern South Arabian, Mehri, Saudi Arabia, endangered languages
Procedia PDF Downloads 5269486 Robot-Assisted Learning for Communication-Care in Autism Intervention
Authors: Syamimi Shamsuddin, Hanafiah Yussof, Fazah Akhtar Hanapiah, Salina Mohamed, Nur Farah Farhan Jamil, Farhana Wan Yunus
Abstract:
Robot-based intervention for children with autism is an evolving research niche in human-robot interaction (HRI). Recent studies in this area mostly covered the role of robots in the clinical and experimental setting. Our previous work had shown that interaction with a robot pose no adverse effects on the children. Also, the presence of the robot, together with specific modules of interaction was associated with less autistic behavior. Extending this impact on school-going children, interactions that are in-tune with special education lessons are needed. This methodological paper focuses on how a robot can be incorporated in a current learning environment for autistic children. Six interaction scenarios had been designed based on the existing syllabus to teach communication skills, using the Applied Behavior Analysis (ABA) technique as the framework. Development of the robotic experience in class also covers the required set-up involving participation from teachers. The actual research conduct involving autistic children, teachers and robot shall take place in the next phase.Keywords: autism spectrum disorder, ASD, humanoid robot, communication skills, robot-assisted learning
Procedia PDF Downloads 3699485 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth
Authors: Valentina Zhang
Abstract:
While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning
Procedia PDF Downloads 1529484 An Early Intervention Framework for Supporting Students’ Mathematical Development in the Transition to University STEM Programmes
Authors: Richard Harrison
Abstract:
Developing competency in mathematics and related critical thinking skills is essential to the education of undergraduate students of Science, Technology, Engineering and Mathematics (STEM). Recently, the HE sector has been impacted by a seemingly widening disconnect between the mathematical competency of incoming first-year STEM students and their entrance qualification tariffs. Despite relatively high grades in A-Level Mathematics, students may initially lack fundamental skills in key areas such as algebraic manipulation and have limited capacity to apply problem solving strategies. Compounded by compensatory measures applied to entrance qualifications during the pandemic, there has been an associated decline in student performance on introductory university mathematics modules. In the UK, a number of online resources have been developed to help scaffold the transition to university mathematics. However, in general, these do not offer a structured learning journey focused on individual developmental needs, nor do they offer an experience coherent with the teaching and learning characteristics of the destination institution. In order to address some of these issues, a bespoke framework has been designed and implemented on our VLE in the Faculty of Engineering & Physical Sciences (FEPS) at the University of Surrey. Called the FEPS Maths Support Framework, it was conceived to scaffold the mathematical development of individuals prior to entering the university and during the early stages of their transition to undergraduate studies. More than 90% of our incoming STEM students voluntarily participate in the process. Students complete a set of initial diagnostic questions in the late summer. Based on their performance and feedback on these questions, they are subsequently guided to self-select specific mathematical topic areas for review using our proprietary resources. This further assists students in preparing for discipline related diagnostic tests. The framework helps to identify students who are mathematically weak and facilitates early intervention to support students according to their specific developmental needs. This paper presents a summary of results from a rich data set captured from the framework over a 3-year period. Quantitative data provides evidence that students have engaged and developed during the process. This is further supported by process evaluation feedback from the students. Ranked performance data associated with seven key mathematical topic areas and eight engineering and science discipline areas reveals interesting patterns which can be used to identify more generic relative capabilities of the discipline area cohorts. In turn, this facilitates evidence based management of the mathematical development of the new cohort, informing any associated adjustments to teaching and learning at a more holistic level. Evidence is presented establishing our framework as an effective early intervention strategy for addressing the sector-wide issue of supporting the mathematical development of STEM students transitioning to HEKeywords: competency, development, intervention, scaffolding
Procedia PDF Downloads 689483 Communication Skills for Physicians: Adaptation to the Third Gender and Language Cross Cultural Influences
Authors: Virginia Guillén Cañas, Miren Agurtzane Ortiz-Jauregi, Sonia Ruiz De Azua, Naiara Ozamiz
Abstract:
We want to focus on relationship of the communicational skills in several key aspects of medicine. The most relevant competencies of a health professional are an adequate communication capacity, which will influence the satisfaction of professionals and patients, therapeutic compliance, conflict prevention, clinical outcomes’ improvement and efficiency of health services. We define empathy as it as Sympathy and connection to others and capability to communicate this understanding. Some outcomes favoring empathy are female gender, younger age, and specialty choice. Third gender or third sex is a concept in which allows a person not to be categorized in a dual way but as a continuous variable, giving the choice of moving along it. This point of view recognizes three or more genders. The subject of Ethics and Clinical Communication is dedicated to sensitizing students about the importance and effectiveness of a good therapeutic relationship. We are also interested in other communicational aspects related to empathy as active listening, assertivity and basic and advanced Social Skills. Objectives: 1. To facilitate the approach of the student in the Medicine Degree to the reality of the medical profession 2. Analyze interesting outcome variables in communication 3. Interactive process to detect the areas of improvement in the learning process of the Physician throughout his professional career needs. Design: A comparative study with a cross-sectional approach was conducted in successive academic year cohorts of health professional students at a public Basque university. Four communicational aspects were evaluated through these questionnaires in Basque, Spanish and English: The active listening questionnaire, the TECA empathy questionnaire, the ACDA questionnaire and the EHS questionnaire Social Skills Scale. Types of interventions for improving skills: Interpersonal skills training intervention, Empathy intervention, Writing about experiential learning, Drama through role plays, Communicational skills training, Problem-based learning, Patient interviews ´videos, Empathy-focused training, Discussion. Results: It identified the need for a cross cultural adaptation and no gender distinction. The students enjoyed all the techniques in comparison to the usual master class. There was medium participation but these participative methodologies are not so usual in the university. According to empathy, men have a greater empathic capacity to fully understand women (p < 0.05) With regard to assertiveness there have been no differences between men and women in self-assertiveness but nevertheless women are more heteroassertive than men. Conclusions: These findings suggest that educational interventions with adequate feedback can be effective in maintaining and enhancing empathy in undergraduate medical students.Keywords: physician's communicational skills, patient satisfaction, third gender, cross cultural adaptation
Procedia PDF Downloads 1969482 Lessons Learnt from Tutors’ Perspectives on Online Tutorial’s Policies in Open and Distance Education Institution
Authors: Durri Andriani, Irsan Tahar, Lilian Sarah Hiariey
Abstract:
Every institution has to develop, implement, and control its policies to ensure the effectiveness of the institution. In doing so, all related stakeholders have to be involved to maximize the benefit of the policies and minimize the potential constraints and resistances. Open and distance education (ODE) institution is no different. As an education institution, ODE institution has to focus their attention to fulfilling academic needs of their students through open and distance measures. One of them is quality learning support system. Significant stakeholders in learning support system are tutors since they are the ones who directly communicate with students. Tutors are commonly seen as objects whose main responsibility is limited to implementing policies decided by management in ODE institutions. Nonetheless, tutors’ perceptions of tutorials are believed to influence tutors’ performances in facilitating learning support. It is therefore important to analyze tutors’ perception on various aspects of learning support. This paper presents analysis of tutors’ perceptions on policies of tutoriala in ODE institution using Policy Analysis Framework (PAF) modified by King, Nugent, Russell, and Lacy. Focus of this paper is on on-line tutors, those who provide tutorials via Internet. On-line tutors were chosen to stress the increasingly important used of Internet in ODE system. The research was conducted in Universitas Terbuka (UT), Indonesia. UT is purposely selected because of its large number (1,234) of courses offered and large area coverage (6000 inhabited islands). These posed UT in a unique position where learning support system has, to some extent, to be standardized while at the same time it has to be able to cater the needs of different courses in different places for students with different backgrounds. All 598 listed on-line tutors were sent the research questionnaires. Around 20% of the email addresses could not be reached. Tutors were asked to fill out open-ended questionnaires on their perceptions on definition of on-line tutorial, roles of tutors and students in on-line tutorials, requirement for on-line tutors, learning materials, and student evaluation in on-line tutorial. Data analyzed was gathered from 40 on-line tutors who sent back filled-out questionnaires. Data were analyzed qualitatively using content analysis from all 40 tutors. The results showed that using PAF as entry point in choosing learning support services as area of policy with delivery learning materials as the issue at UT has been able to provide new insights of aspects need to be consider in formulating policies in online tutorial and in learning support services. Involving tutors as source of information could be proven to be productive. In general, tutors had clear understanding about definition of online tutorial, roles of tutors and roles of students, and requirement of tutor. Tutors just need to be more involved in the policy formulation since they could provide data on students and problem faced in online tutorial. However, tutors need an adjustment in student evaluation which according tutors too focus on administrative aspects and subjective.Keywords: distance education, on-line tutorial, tutorial policy, tutors’ perspectives
Procedia PDF Downloads 256