Search results for: rule based systems
29538 STEM (Science–Technology–Engineering–Mathematics) Based Entrepreneurship Training, Within a Learning Company
Authors: Diana Mitova, Krassimir Mitrev
Abstract:
To prepare the current generation for the future, education systems need to change. It implies a way of learning that meets the demands of the times and the environment in which we live. Productive interaction in the educational process implies an interactive learning environment and the possibility of personal development of learners based on communication and mutual dialogue, cooperation and good partnership in decision-making. Students need not only theoretical knowledge, but transferable skills that will help them to become inventors and entrepreneurs, to implement ideas. STEM education , is now a real necessity for the modern school. Through learning in a "learning company", students master examples from classroom practice, simulate real life situations, group activities and apply basic interactive learning strategies and techniques. The learning company is the subject of this study, reduced to entrepreneurship training in STEM - technologies that encourage students to think outside the traditional box. STEM learning focuses the teacher's efforts on modeling entrepreneurial thinking and behavior in students and helping them solve problems in the world of business and entrepreneurship. Learning based on the implementation of various STEM projects in extracurricular activities, experiential learning, and an interdisciplinary approach are means by which educators better connect the local community and private businesses. Learners learn to be creative, experiment and take risks and work in teams - the leading characteristics of any innovator and future entrepreneur. This article presents some European policies on STEM and entrepreneurship education. It also shares best practices for training company training , with the integration of STEM in the learning company training environment. The main results boil down to identifying some advantages and problems in STEM entrepreneurship education. The benefits of using integrative approaches to teach STEM within a training company are identified, as well as the positive effects of project-based learning in a training company using STEM. Best practices for teaching entrepreneurship through extracurricular activities using STEM within a training company are shared. The following research methods are applied in this research paper: Theoretical and comparative analysis of principles and policies of European Union countries and Bulgaria in the field of entrepreneurship education through a training company. Experiences in entrepreneurship education through extracurricular activities with STEM application within a training company are shared. A questionnaire survey to investigate the motivation of secondary vocational school students to learn entrepreneurship through a training company and their readiness to start their own business after completing their education. Within the framework of learning through a "learning company" with the integration of STEM, the activity of the teacher-facilitator includes the methods: counseling, supervising and advising students during work. The expectation is that students acquire the key competence "initiative and entrepreneurship" and that the cooperation between the vocational education system and the business in Bulgaria is more effective.Keywords: STEM, entrepreneurship, training company, extracurricular activities
Procedia PDF Downloads 10229537 Linear Stability Analysis of a Regularized Two-Fluid Model for Unstable Gas-Liquid Flows in Long Hilly Terrain Pipelines
Authors: David Alejandro Lazo-Vasquez, Jorge Luis Balino
Abstract:
In the petroleum industry, multiphase flow occurs when oil, gas, and water are transported in the same pipe through large pipeline systems. The flow can take different patterns depending on parameters like fluid velocities, pipe diameter, pipe inclination, and fluid properties. Mainly, intermittent flow is produced by the natural propagation of short and long waves, according to the Kelvin-Helmholtz Stability Theory. To model stratified flow and the onset of intermittent flow, it is crucial to have knowledge of short and long waves behavior. The two-fluid model, frequently employed for characterizing multiphase systems, becomes ill-posed for high liquid and gas velocities and large inclination angles, for short waves can develop infinite growth rates. We are interested in focusing attention on long-wave instability, which leads to the production of roll waves that may grow and result in the transition from stratified flow to intermittent flow. In this study, global and local linear stability analyses for dynamic and kinematic stability criteria predict the regions of stability of the flow for different pipe inclinations and fluid velocities in regularized and non-regularized systems, concurrently. It was possible to distinguish when: wave growth rates are absolutely bounded (stable stratified smooth flow), waves have finite growth rates (unstable stratified wavy flow), and when the equation system becomes elliptic and hyperbolization is needed. In order to bound short wave growth rates and regularize the equation system, we incorporated some lower and higher-order terms like interfacial drag and surface tension, respectively.Keywords: linear stability analysis, multiphase flow, onset of slugging, two-fluid model regularization
Procedia PDF Downloads 13829536 Impact of Research-Informed Teaching and Case-Based Teaching on Memory Retention and Recall in University Students
Authors: Durvi Yogesh Vagani
Abstract:
This research paper explores the effectiveness of Research-informed teaching and Case-based teaching in enhancing the retention and recall of memory during discussions among university students. Additionally, it investigates the impact of using Artificial Intelligence (AI) tools on the quality of research conducted by students and its correlation with better recollection. The study hypothesizes that Case-based teaching will lead to greater recall and storage of information. The research gap in the use of AI in educational settings, particularly with actual participants, is addressed by leveraging a multi-method approach. The hypothesis is that the use of AI, such as ChatGPT and Bard, would lead to better retention and recall of information. Before commencing the study, participants' attention levels and IQ were assessed using the Digit Span Test and the Wechsler Adult Intelligence Scale, respectively, to ensure comparability among participants. Subsequently, participants were divided into four conditions, each group receiving identical information presented in different formats based on their assigned condition. Following this, participants engaged in a group discussion on the given topic. Their responses were then evaluated against a checklist. Finally, participants completed a brief test to measure their recall ability after the discussion. Preliminary findings suggest that students who utilize AI tools for learning demonstrate improved grasping of information and are more likely to integrate relevant information into discussions compared to providing extraneous details. Furthermore, Case-based teaching fosters greater attention and recall during discussions, while Research-informed teaching leads to greater knowledge for application. By addressing the research gap in AI application in education, this study contributes to a deeper understanding of effective teaching methodologies and the role of technology in student learning outcomes. The implication of the present research is to tailor teaching methods based on the subject matter. Case-based teaching facilitates application-based teaching, and research-based teaching can be beneficial for theory-heavy topics. Integrating AI in education. Combining AI with research-based teaching may optimize instructional strategies and deepen learning experiences. This research suggests tailoring teaching methods in psychology based on subject matter. Case-based teaching suits practical subjects, facilitating application, while research-based teaching aids understanding of theory-heavy topics. Integrating AI in education could enhance learning outcomes, offering detailed information tailored to students' needs.Keywords: artificial intelligence, attention, case-based teaching, memory recall, memory retention, research-informed teaching
Procedia PDF Downloads 3729535 A Learning-Based EM Mixture Regression Algorithm
Authors: Yi-Cheng Tian, Miin-Shen Yang
Abstract:
The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm.Keywords: clustering, EM algorithm, Gaussian mixture model, mixture regression model
Procedia PDF Downloads 51329534 Analysis of Waterjet Propulsion System for an Amphibious Vehicle
Authors: Nafsi K. Ashraf, C. V. Vipin, V. Anantha Subramanian
Abstract:
This paper reports the design of a waterjet propulsion system for an amphibious vehicle based on circulation distribution over the camber line for the sections of the impeller and stator. In contrast with the conventional waterjet design, the inlet duct is straight for water entry parallel and in line with the nozzle exit. The extended nozzle after the stator bowl makes the flow more axial further improving thrust delivery. Waterjet works on the principle of volume flow rate through the system and unlike the propeller, it is an internal flow system. The major difference between the propeller and the waterjet occurs at the flow passing the actuator. Though a ducted propeller could constitute the equivalent of waterjet propulsion, in a realistic situation, the nozzle area for the Waterjet would be proportionately larger to the inlet area and propeller disc area. Moreover, the flow rate through impeller disk is controlled by nozzle area. For these reasons the waterjet design is based on pump systems rather than propellers and therefore it is important to bring out the characteristics of the flow from this point of view. The analysis is carried out using computational fluid dynamics. Design of waterjet propulsion is carried out adapting the axial flow pump design and performance analysis was done with three-dimensional computational fluid dynamics (CFD) code. With the varying environmental conditions as well as with the necessity of high discharge and low head along with the space confinement for the given amphibious vehicle, an axial pump design is suitable. The major problem of inlet velocity distribution is the large variation of velocity in the circumferential direction which gives rise to heavy blade loading that varies with time. The cavitation criteria have also been taken into account as per the hydrodynamic pump design. Generally, waterjet propulsion system can be parted into the inlet, the pump, the nozzle and the steering device. The pump further comprises an impeller and a stator. Analytical and numerical approaches such as RANSE solver has been undertaken to understand the performance of designed waterjet propulsion system. Unlike in case of propellers the analysis was based on head flow curve with efficiency and power curves. The modeling of the impeller is performed using rigid body motion approach. The realizable k-ϵ model has been used for turbulence modeling. The appropriate boundary conditions are applied for the domain, domain size and grid dependence studies are carried out.Keywords: amphibious vehicle, CFD, impeller design, waterjet propulsion
Procedia PDF Downloads 23429533 A Value-Based Approach to Recognize Authentic Transformational Leaders' Delivering Process of Corporate Social Responsibility Values
Authors: Yi-Jung Chen, Yunshi Liu
Abstract:
To explain how followers can perceive whether or not transformational leaders are authentic on the basis of their leadership behaviors based on value-based leadership theory, this study adopts the dual-focus model of transformational leadership and evaluates leaders’ corporate social responsibility values along with followers’ perceptions of leaders’ values. Using dyadic questionnaires, the final study sample consisted of 252 followers and 43 leaders at a private firm in Taiwan. Results show that followers perceive corporate social responsibility values of transformational leaders through their group-focused leadership behaviors because such group-focused leadership is in line with these values.Keywords: authentic transformational leadership, corporate social responsibility value, value-based leadership theory, dual-focus leadership
Procedia PDF Downloads 31429532 Renewable Energy Storage Capacity Rating: A Forecast of Selected Load and Resource Scenario in Nigeria
Authors: Yakubu Adamu, Baba Alfa, Salahudeen Adamu Gene
Abstract:
As the drive towards clean, renewable and sustainable energy generation is gradually been reshaped by renewable penetration over time, energy storage has thus, become an optimal solution for utilities looking to reduce transmission and capacity cost, therefore the need for capacity resources to be adjusted accordingly such that renewable energy storage may have the opportunity to substitute for retiring conventional energy systems with higher capacity factors. Considering the Nigeria scenario, where Over 80% of the current Nigerian primary energy consumption is met by petroleum, electricity demand is set to more than double by mid-century, relative to 2025 levels. With renewable energy penetration rapidly increasing, in particular biomass, hydro power, solar and wind energy, it is expected to account for the largest share of power output in the coming decades. Despite this rapid growth, the imbalance between load and resources has created a hindrance to the development of energy storage capacity, load and resources, hence forecasting energy storage capacity will therefore play an important role in maintaining the balance between load and resources including supply and demand. Therefore, the degree to which this might occur, its timing and more importantly its sustainability, is the subject matter of the current research. Here, we forecast the future energy storage capacity rating and thus, evaluate the load and resource scenario in Nigeria. In doing so, We used the scenario-based International Energy Agency models, the projected energy demand and supply structure of the country through 2030 are presented and analysed. Overall, this shows that in high renewable (solar) penetration scenarios in Nigeria, energy storage with 4-6h duration can obtain over 86% capacity rating with storage comprising about 24% of peak load capacity. Therefore, the general takeaway from the current study is that most power systems currently used has the potential to support fairly large penetrations of 4-6 hour storage as capacity resources prior to a substantial reduction in capacity ratings. The data presented in this paper is a crucial eye-opener for relevant government agencies towards developing these energy resources in tackling the present energy crisis in Nigeria. However, if the transformation of the Nigeria. power system continues primarily through expansion of renewable generation, then longer duration energy storage will be needed to qualify as capacity resources. Hence, the analytical task from the current survey will help to determine whether and when long-duration storage becomes an integral component of the capacity mix that is expected in Nigeria by 2030.Keywords: capacity, energy, power system, storage
Procedia PDF Downloads 4129531 The Effect of Smart-Nano Materials in Thermal Retrofit of Healthcare Envelope Layout in Desert Climate: A Case Study on Semnan
Authors: Foroozan Sadri, Mohammadmehdi Moulaii, Farkhondeh Vahdati
Abstract:
Smart materials can create a great revolution in our built environment, as living systems do. In this research, the optimal structure of healthcare building envelopes is analyzed in terms of thickness according to the utility of the smart-nano materials as nontoxic substances in the region. The research method in this paper is based on library studies and simulation. Grasshopper program is employed to simulate thermal characteristics to achieve the optimum U-value in Semnan desert climate, according to Iranian national standards. The potential of healthcare envelope layouts in thermal properties development (primarily U-value) of these buildings is discussed due to the high thermal loads of healthcare buildings and also toxicity effects of conventional materials. As a result, envelope thicknesses are calculated, and the performance of the nano-PCM and gypsum wallboards are compared. A solution with comparable performance using smart-nano materials instead of conventional materials would determine a decrease in wall thickness.Keywords: energy saving, exterior envelope, smart-nano materials, thermal performance, U-value
Procedia PDF Downloads 17629530 Managing the Cosmos: Problems, Solutions, and Future Insights into Space Debris
Authors: Irfan Nazir Wani, Pushpendra Kumar Shukla, Manoj Kumar
Abstract:
Debris, also called waste or junk, present in orbit of Earth or orbital debris, offers a substantial challenge to space exploration. Satellite operations and other space-based activities. This research paper delves into the causes and effects of space debris accumulation, explores current mitigation techniques, and presents a hopeful outlook on the potential for future sustainable space activities. The paper emphasizes the necessity of addressing planetary fragments to ensure durable sustainability in universe exploration and utilization. It examines various strategies for mitigating space debris, including debris removal technologies, spacecraft design improvements, and international collaboration efforts. Additionally, the paper highlights the importance of space debris monitoring and tracking systems in preventing collisions and minimizing the growth of orbital debris. By comprehending the complexities of space debris and implementing effective mitigation measures, the space industry can work towards a future where sustainable space activities are achievable.Keywords: space shuttle, debris, space junk, satellite, fragments, orbit
Procedia PDF Downloads 5329529 A Literature Review on Sustainability Appraisal Methods for Highway Infrastructure Projects
Authors: S. Kaira, S. Mohamed, A. Rahman
Abstract:
Traditionally, highway infrastructure projects are initiated based on their economic benefits, thereafter environmental, social and governance impacts are addressed discretely for the selected project from a set of pre-determined alternatives. When opting for cost-benefit analysis (CBA), multi-criteria decision-making (MCDM) has been used as the default assessment tool. But this tool has been critiqued as it does not mimic the real-world dynamic environment. Indeed, it is because of the fact that public sector projects like highways have to experience intense exposure to dynamic environments. Therefore, it is essential to appreciate the impacts of various dynamic factors (factors that change or progress with the system) on project performance. Thus, this paper presents various sustainability assessment tools that have been globally developed to determine sustainability performance of infrastructure projects during the design, procurement and commissioning phase. Indeed, identification of the current gaps in the available assessment methods provides a potential to add prominent part of knowledge in the field of ‘road project development systems and procedures’ that are generally used by road agencies.Keywords: dynamic impact factors, micro and macro factors, sustainability assessment framework, sustainability performance
Procedia PDF Downloads 14329528 Generative Adversarial Network for Bidirectional Mappings between Retinal Fundus Images and Vessel Segmented Images
Authors: Haoqi Gao, Koichi Ogawara
Abstract:
Retinal vascular segmentation of color fundus is the basis of ophthalmic computer-aided diagnosis and large-scale disease screening systems. Early screening of fundus diseases has great value for clinical medical diagnosis. The traditional methods depend on the experience of the doctor, which is time-consuming, labor-intensive, and inefficient. Furthermore, medical images are scarce and fraught with legal concerns regarding patient privacy. In this paper, we propose a new Generative Adversarial Network based on CycleGAN for retinal fundus images. This method can generate not only synthetic fundus images but also generate corresponding segmentation masks, which has certain application value and challenge in computer vision and computer graphics. In the results, we evaluate our proposed method from both quantitative and qualitative. For generated segmented images, our method achieves dice coefficient of 0.81 and PR of 0.89 on DRIVE dataset. For generated synthetic fundus images, we use ”Toy Experiment” to verify the state-of-the-art performance of our method.Keywords: retinal vascular segmentations, generative ad-versarial network, cyclegan, fundus images
Procedia PDF Downloads 14829527 Substitution of Formaldehyde in Phenolic Resins with Innovative and Bio-Based Vanillin Derived Compounds
Authors: Sylvain Caillol, Ghislain David
Abstract:
Phenolic resins are industrially used in a wide range of applications from commodity and construction materials to high-technology aerospace industry. They are mainly produced from the reaction between phenolic compounds and formaldehyde. Nevertheless, formaldehyde is a highly volatile and hazardous compound, classified as a Carcinogenic, Mutagenic and Reprotoxic chemical (CMR). Vanillin is a bio-based and non-toxic aromatic aldehyde compound obtained from the abundant lignin resources. Also, its aromaticity is very interesting for the synthesis of phenolic resins with high thermal stability. However, because of the relatively low reactivity of its aldehyde function toward phenolic compounds, it has never been used to synthesize phenolic resins. We developed innovative functionalization reactions and designed new bio-based aromatic aldehyde compounds from vanillin. Those innovative compounds present improved reactivity toward phenolic compounds compared to vanillin. Moreover, they have target structures to synthesize highly cross-linked phenolic resins with high aromatic densities. We have obtained phenolic resins from substituted vanillin, thus without the use of any aldehyde compound classified as CMR. The analytical tests of the cured resins confirmed that those bio-based resins exhibit high levels of performance with high thermal stability and high rigidity propertiesKeywords: phenolic resins, formaldehyde-free, vanillin, bio-based, non-toxic
Procedia PDF Downloads 27529526 Are SMS Reminders an Precursor to Outpatient Show-Ups?
Authors: Shankar M. Bakkannavar, Smitha Nayak, Vinod C. Nayak, Ravi Bagali
Abstract:
Attendance rate for hospital outpatient appointments plays a pivotal role in operational efficiency of a hospital. Strategic interventions like ‘reminder systems’ prior to the scheduled appointment has proved to be an effective strategy for outpatient appointment ‘show-ups’. This study is designed with an objective to assess the effectiveness of SMS reminders as an intervention to enhance the effectiveness of hospital outpatient attendance. Method: The survey was conducted at Columbia Asia Hosiptal, Bangalore. We surveyed 60 patients who had a scheduled outpatient appointment in Department of General Medicine, Department of Obstetrics and Gynecology and the Orthopedics department, as these departments had a heavy patient flow and had higher contributions to the top line of the hospital. Results: Majority (64%) of the patients preferred to be sent an SMS reminder on the outpatient appointment schedule. 37 (61%) respondents stated that the ideally, reminders could be effective only if they are sent 24-48 hours prior to the appointment schedule. 41(68%) respondents were of the opinion that a minimum of two reminders would be necessary to ensure patients show up for the appointment. 1% level of significance. It also observed that there is strong association between age and preference on mode of reminder (P=0.002).Keywords: reminder systems, appointment show-ups, SMS reminders, health Information
Procedia PDF Downloads 35629525 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network
Authors: Donya Ashtiani Haghighi, Amirali Baniasadi
Abstract:
Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.Keywords: capsule network, dropout, hyperparameter tuning, classification
Procedia PDF Downloads 8229524 Performance Analysis on the Smoke Management System of the Weiwuying Center for the Arts Using Hot Smoke Tests
Authors: K. H. Yang, T. C. Yeh, P. S. Lu, F. C. Yang, T. Y. Wu, W. J. Sung
Abstract:
In this study, a series of full-scale hot smoke tests has been conducted to validate the performances of the smoke management system in the WWY center for arts before grand opening. Totaled 19 scenarios has been established and experimented with fire sizes ranging from 2 MW to 10 MW. The measured ASET data provided by the smoke management system experimentation were compared with the computer-simulated RSET values for egress during the design phase. The experimental result indicated that this system could successfully provide a safety margin of 200% and ensure a safe evacuation in case of fire in the WWY project, including worst-cases and fail-safe scenarios. The methodology developed and results obtained in this project can provide a useful reference for future applications, such as for the large-scale indoor sports dome and arena, stadium, shopping malls, airport terminals, and stations or tunnels for railway and subway systems.Keywords: building hot smoke tests, performance-based smoke management system designs, full-scale experimental validation, tenable condition criteria
Procedia PDF Downloads 44829523 Model and Neural Control of the Depth of Anesthesia during Surgery
Authors: Javier Fernandez, Mayte Medina, Rafael Fernandez de Canete, Nuria Alcain, Juan Carlos Ramos-Diaz
Abstract:
At present, the experimentation of anesthetic drugs on patients requires a regulation protocol, and the response of each patient to several doses of entry drug must be well known. Therefore, the development of pharmacological dose control systems is a promising field of research in anesthesiology. In this paper, it has been developed a non-linear compartmental the pharmacokinetic-pharmacodynamical model which describes the anesthesia depth effect in a sufficiently reliable way over a set of patients with the depth effect quantified by the Bi-Spectral Index. Afterwards, an Artificial Neural Network (ANN) predictive controller has been designed based on the depth of anesthesia model so as to keep the patient in the optimum condition while he undergoes surgical treatment. For the purpose of quantifying the efficiency of the neural predictive controller, a classical proportional-integral-derivative controller has also been developed to compare both strategies. Results show the superior performance of predictive neural controller during BiSpectral Index reference tracking.Keywords: anesthesia, bi-spectral index, neural network control, pharmacokinetic-pharmacodynamical model
Procedia PDF Downloads 34029522 Learning from Dendrites: Improving the Point Neuron Model
Authors: Alexander Vandesompele, Joni Dambre
Abstract:
The diversity in dendritic arborization, as first illustrated by Santiago Ramon y Cajal, has always suggested a role for dendrites in the functionality of neurons. In the past decades, thanks to new recording techniques and optical stimulation methods, it has become clear that dendrites are not merely passive electrical components. They are observed to integrate inputs in a non-linear fashion and actively participate in computations. Regardless, in simulations of neural networks dendritic structure and functionality are often overlooked. Especially in a machine learning context, when designing artificial neural networks, point neuron models such as the leaky-integrate-and-fire (LIF) model are dominant. These models mimic the integration of inputs at the neuron soma, and ignore the existence of dendrites. In this work, the LIF point neuron model is extended with a simple form of dendritic computation. This gives the LIF neuron increased capacity to discriminate spatiotemporal input sequences, a dendritic functionality as observed in another study. Simulations of the spiking neurons are performed using the Bindsnet framework. In the common LIF model, incoming synapses are independent. Here, we introduce a dependency between incoming synapses such that the post-synaptic impact of a spike is not only determined by the weight of the synapse, but also by the activity of other synapses. This is a form of short term plasticity where synapses are potentiated or depressed by the preceding activity of neighbouring synapses. This is a straightforward way to prevent inputs from simply summing linearly at the soma. To implement this, each pair of synapses on a neuron is assigned a variable,representing the synaptic relation. This variable determines the magnitude ofthe short term plasticity. These variables can be chosen randomly or, more interestingly, can be learned using a form of Hebbian learning. We use Spike-Time-Dependent-Plasticity (STDP), commonly used to learn synaptic strength magnitudes. If all neurons in a layer receive the same input, they tend to learn the same through STDP. Adding inhibitory connections between the neurons creates a winner-take-all (WTA) network. This causes the different neurons to learn different input sequences. To illustrate the impact of the proposed dendritic mechanism, even without learning, we attach five input neurons to two output neurons. One output neuron isa regular LIF neuron, the other output neuron is a LIF neuron with dendritic relationships. Then, the five input neurons are allowed to fire in a particular order. The membrane potentials are reset and subsequently the five input neurons are fired in the reversed order. As the regular LIF neuron linearly integrates its inputs at the soma, the membrane potential response to both sequences is similar in magnitude. In the other output neuron, due to the dendritic mechanism, the membrane potential response is different for both sequences. Hence, the dendritic mechanism improves the neuron’s capacity for discriminating spa-tiotemporal sequences. Dendritic computations improve LIF neurons even if the relationships between synapses are established randomly. Ideally however, a learning rule is used to improve the dendritic relationships based on input data. It is possible to learn synaptic strength with STDP, to make a neuron more sensitive to its input. Similarly, it is possible to learn dendritic relationships with STDP, to make the neuron more sensitive to spatiotemporal input sequences. Feeding structured data to a WTA network with dendritic computation leads to a significantly higher number of discriminated input patterns. Without the dendritic computation, output neurons are less specific and may, for instance, be activated by a sequence in reverse order.Keywords: dendritic computation, spiking neural networks, point neuron model
Procedia PDF Downloads 13829521 Photon Blockade in Non-Hermitian Optomechanical Systems with Nonreciprocal Couplings
Authors: J. Y. Sun, H. Z. Shen
Abstract:
We study the photon blockade at exceptional points for a non-Hermitian optomechanical system coupled to the driven whispering-gallery-mode microresonator with two nanoparticles under the weak optomechanical coupling approximation, where exceptional points emerge periodically by controlling the relative angle of the nanoparticles. We find that conventional photon blockade occurs at exceptional points for the eigenenergy resonance of the single-excitation subspace driven by a laser field and discuss the physical origin of conventional photon blockade. Under the weak driving condition, we analyze the influences of the different parameters on conventional photon blockade. We investigate conventional photon blockade at nonexceptional points, which exists at two optimal detunings due to the eigenstates in the single-excitation subspace splitting from one (coalescence) at exceptional points to two at nonexceptional points. Unconventional photon blockade can occur at nonexceptional points, while it does not exist at exceptional points since the destructive quantum interference cannot occur due to the two different quantum pathways to the two-photon state not being formed. The realization of photon blockade in our proposal provides a viable and flexible way for the preparation of single-photon sources in the non-Hermitian optomechanical system.Keywords: optomechanical systems, photon blockade, non-hermitian, exceptional points
Procedia PDF Downloads 14629520 Axiomatic Design and Organization Design: Opportunities and Challenges in Transferring Axiomatic Design to the Social Sciences
Authors: Nicolay Worren, Christopher A. Brown
Abstract:
Axiomatic design (AD) has mainly been applied to support the design of physical products and software solutions. However, it was intended as a general design approach that would also be applicable to the design of social systems, including organizations (i.e., organization design). In this article, we consider how AD may be successfully transferred to the field of organizational design. On the one hand, it provides a much-needed pragmatic approach that can help leaders clarify the link between the purpose and structure of their organizations, identify ineffective organizational structures, and increase the chance of achieving strategic goals. On the other hand, there are four conceptual challenges that may create uncertainty and resistance among scholars and practitioners educated in the social sciences: 1) The exclusive focus in AD on negative interdependencies ('coupling'); 2) No obvious way of representing the need for integration across design parameters (DPs); 3) A lack of principles for handling control processes that seem to require 'deliberate coupling' of FRs; and 4) A lack of principles for handling situations where conflicting FRs (i.e., coupling) might require integration rather than separation. We discuss alternative options for handling these challenges so that scholars and practitioners can make use of AD for organization design.Keywords: axiomatic design, organization design, social systems, concept definitions
Procedia PDF Downloads 13129519 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning
Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan
Abstract:
We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning
Procedia PDF Downloads 13529518 Unified Public Transportation System for Mumbai Using Radio Frequency Identification
Authors: Saurabh Parkhedkar, Rajanikant Tenguria
Abstract:
The paper proposes revamping the public transportation system in Mumbai with the use of Radio Frequency Identification (RFID) technology in order to provide better integration and compatibility across various modes of transport. In Mumbai, mass transport system suffers from poor inter-compatible ticketing system, subpar money collection techniques, and lack of planning for optimum utilization of resources. Development of suburbs and growth in population will result in growing demand for mass transportation networks. Hence, the growing demand for the already overburdened public transportation system is only going to worsen the scenario. Thus, a superior system is essential in order to regulate, manage and supervise future transportation needs. The proposed RFID based system integrates Mumbai Suburban Railway, BEST (Brihanmumbai Electric Supply and Transport Undertaking transport wing) Bus, Mumbai Monorail and Mumbai Metro systems into a Unified Public Transportation System (UPTS). The UTPS takes into account various drawbacks of the present day system and offers solution, suitable for the modern age Mumbai.Keywords: urbanization, transportation, RFID, Mumbai, public transportation, smart city.
Procedia PDF Downloads 41729517 Wideband Planar Antenna Based on Composite Right/Left-Handed Transmission-Line (CRLH-TL) for Operation across UHF/L/S-Bands
Authors: Mohammad Alibakhshikenari, Ernesto Limiti, Bal S. Virdee
Abstract:
The paper presents a miniature wideband antenna using composite right/left-handed transmission-line (CRLH-TL) metamaterial. The proposed planar antenna has a fractional bandwidth of 100% and is designed to operate in several frequency bands from 800MHz to 2.40GHz. The antenna is constructed using just two CRLH-TL unit cells comprising of two T-shaped slots that are inverted. The slots contribute towards generating the series left-handed (LH) capacitance CL. The rectangular patch on which the slots are created is grounded with spiral shaped high impedance stubs that contribute towards LH inductance LL. The antenna has a size of 14×6×1.6mm3 (0.037λ0×0.016λ0× 0.004λ0, where λ0 is free space wavelength at 800MHz). The peak gain and efficiency of the antenna are 1.5 dBi and ~75%, respectively, at 1.6GHz. Proposed antenna is suitable for use in wireless systems working at UHF/L/S-bands, in particular, AMPS, GSM, WCDMA, UMTS, PCS, cellular, DCS, IMT-2000, JCDMA, KPCS, GPS, lower band of WiMAX.Keywords: miniature antenna, composite right/left-handed transmission line (CRLH-TL), wideband antenna, communication transceiver, metamaterials
Procedia PDF Downloads 22229516 Urban Innovations: Towards a Comprehensive and Sustainable City Development
Authors: Sarang Yeola
Abstract:
A smart city can be defined as a city that uses Information and Communication Technologies (ICT) to enhance its sustainability, workability and livability. It can be viewed as a ‘System of Systems’. We propose decentralization of power and centralization of system. We are presenting a bird's eye view of the system as a whole. The holistic view includes the entirety of human activity in an area including city governments, schools, hospitals, infrastructure, resources, business and people. The main objective for development of Nashik as a smart city is to identify the flaws of the existing systems, eliminate them and come up with innovative and feasible solutions for the betterment of masses. The Make in India is a visionary proposal for FDI in India. It should be managed that the campaign and the industrial estates work in synchronization for boosting the setup of new industrial units in and around Nashik. A smart grid is a modernized electrical grid that uses analog or digital information and communications technology to gather and act on information. We have identified major domains for making Nashik a smart city by surveying the existing infrastructure, challenges and problems faced and the proposed solutions through innovative ideas.Keywords: transport, (bus rapid transit system) BRTS, metrorail, autos
Procedia PDF Downloads 38029515 Language and Communication of Individuals with Autism Spectrum Disorder: Highlights on Both the Issues around Requesting-Information Skills and the Procedures for Teaching These Skills
Authors: Amaal Almigal
Abstract:
Neurotypical children learn to ask questions from natural exposure and this skill is fundamental for their academic success. However, children with autism spectrum disorder may not learn to ask in the same way due to earlier communication impairments, and some may need to use Augmentative and Alternative Communication systems (AAC) to ask questions. This paper aims to highlight issues related to questioning skills in children with autism giving a specific attention to asking questions within preverbal or minimally verbal children. Different procedures have been employed to teach these children, including AAC users, to ask questions. Therefore, these procedures will also be discussed to administrate how they were used and what they were aimed to teach. This paper also provides a suggested procedure to assist preverbal or minimally verbal children to ask questions using an iPad application for communication (Proloquo2Go) as AAC. This suggested procedure was used with 3 children with autism. Initial results will be discussed to clarify ways in which this procedure was used with each child based on his skills and which questioning skills each child has acquired using this procedure.Keywords: AAC, autism, communication, information, iPad, requesting
Procedia PDF Downloads 17929514 The Classification Performance in Parametric and Nonparametric Discriminant Analysis for a Class- Unbalanced Data of Diabetes Risk Groups
Authors: Lily Ingsrisawang, Tasanee Nacharoen
Abstract:
Introduction: The problems of unbalanced data sets generally appear in real world applications. Due to unequal class distribution, many research papers found that the performance of existing classifier tends to be biased towards the majority class. The k -nearest neighbors’ nonparametric discriminant analysis is one method that was proposed for classifying unbalanced classes with good performance. Hence, the methods of discriminant analysis are of interest to us in investigating misclassification error rates for class-imbalanced data of three diabetes risk groups. Objective: The purpose of this study was to compare the classification performance between parametric discriminant analysis and nonparametric discriminant analysis in a three-class classification application of class-imbalanced data of diabetes risk groups. Methods: Data from a healthy project for 599 staffs in a government hospital in Bangkok were obtained for the classification problem. The staffs were diagnosed into one of three diabetes risk groups: non-risk (90%), risk (5%), and diabetic (5%). The original data along with the variables; diabetes risk group, age, gender, cholesterol, and BMI was analyzed and bootstrapped up to 50 and 100 samples, 599 observations per sample, for additional estimation of misclassification error rate. Each data set was explored for the departure of multivariate normality and the equality of covariance matrices of the three risk groups. Both the original data and the bootstrap samples show non-normality and unequal covariance matrices. The parametric linear discriminant function, quadratic discriminant function, and the nonparametric k-nearest neighbors’ discriminant function were performed over 50 and 100 bootstrap samples and applied to the original data. In finding the optimal classification rule, the choices of prior probabilities were set up for both equal proportions (0.33: 0.33: 0.33) and unequal proportions with three choices of (0.90:0.05:0.05), (0.80: 0.10: 0.10) or (0.70, 0.15, 0.15). Results: The results from 50 and 100 bootstrap samples indicated that the k-nearest neighbors approach when k = 3 or k = 4 and the prior probabilities of {non-risk:risk:diabetic} as {0.90:0.05:0.05} or {0.80:0.10:0.10} gave the smallest error rate of misclassification. Conclusion: The k-nearest neighbors approach would be suggested for classifying a three-class-imbalanced data of diabetes risk groups.Keywords: error rate, bootstrap, diabetes risk groups, k-nearest neighbors
Procedia PDF Downloads 43929513 Analysis of the Unreliable M/G/1 Retrial Queue with Impatient Customers and Server Vacation
Authors: Fazia Rahmoune, Sofiane Ziani
Abstract:
Retrial queueing systems have been extensively used to stochastically model many problems arising in computer networks, telecommunication, telephone systems, among others. In this work, we consider a $M/G/1$ retrial queue with an unreliable server with random vacations and two types of primary customers, persistent and impatient. This model involves the unreliability of the server, which can be subject to physical breakdowns and takes into account the correctives maintenances for restoring the service when a failure occurs. On the other hand, we consider random vacations, which can model the preventives maintenances for improving system performances and preventing breakdowns. We give the necessary and sufficient stability condition of the system. Then, we obtain the joint probability distribution of the server state and the number of customers in orbit and derive the more useful performance measures analytically. Moreover, we also analyze the busy period of the system. Finally, we derive the stability condition and the generating function of the stationary distribution of the number of customers in the system when there is no vacations and impatient customers, and when there is no vacations, server failures and impatient customers.Keywords: modeling, retrial queue, unreliable server, vacation, stochastic analysis
Procedia PDF Downloads 19129512 An Improved Discrete Version of Teaching–Learning-Based Optimization for Supply Chain Network Design
Authors: Ehsan Yadegari
Abstract:
While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation
Procedia PDF Downloads 5729511 Mobile Platform’s Attitude Determination Based on Smoothed GPS Code Data and Carrier-Phase Measurements
Authors: Mohamed Ramdani, Hassen Abdellaoui, Abdenour Boudrassen
Abstract:
Mobile platform’s attitude estimation approaches mainly based on combined positioning techniques and developed algorithms; which aim to reach a fast and accurate solution. In this work, we describe the design and the implementation of an attitude determination (AD) process, using only measurements from GPS sensors. The major issue is based on smoothed GPS code data using Hatch filter and raw carrier-phase measurements integrated into attitude algorithm based on vectors measurement using least squares (LSQ) estimation method. GPS dataset from a static experiment is used to investigate the effectiveness of the presented approach and consequently to check the accuracy of the attitude estimation algorithm. Attitude results from GPS multi-antenna over short baselines are introduced and analyzed. The 3D accuracy of estimated attitude parameters using smoothed measurements is over 0.27°.Keywords: attitude determination, GPS code data smoothing, hatch filter, carrier-phase measurements, least-squares attitude estimation
Procedia PDF Downloads 16129510 Analysis of the Suspension Rocker of Formula SAE Prototype by Finite Element Method
Authors: Jessyca A. Bessa, Darlan A. Barroso, Jonas P. Reges, Auzuir R. Alexandria
Abstract:
This work aims to study the rocker. This is a device of the suspension of Formula SAE vehicle that receives efforts from the motion scrolling of the vehicle and transmits them to the chassis frame minimized by a momentum ratio and smoothed by the set spring - damper. A review of parameters used in vehicle dynamics and a geometric analysis of the forces and stresses caused by such was carried out. The main function of the rocker is to reduce the force transmitted to the frame due to movement of rolling and subsequent application of the suspension. This functions is taken as satisfactory, since the force applied to the wheel and which would be transmitted to the chassis is reduced from 3833.9N to 3496.48N. From these values can be further more detailed simulations using the finite element method aimed at mass reduction or even rocker manufacturing feasibility aluminum. Then, the analysis by the finite element method was applied. This analysis uses the theory of discretization of systems and examines the strength of the component based on the distortion energy, determining the maximum straining experienced by the component and the region of higher demand.Keywords: rocker, suspension, the finite element method, mechatronics engineering
Procedia PDF Downloads 54529509 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations
Authors: Hussaini Doko Ibrahim, Hamilton Cyprian Chinwenyi, Henrietta Nkem Ude
Abstract:
In this paper, efforts were made to examine and compare the algorithmic iterative solutions of the conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax=b, where A is a real n×n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3×3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi, and conjugate gradient methods), respectively. From the results obtained, we discovered that the conjugate gradient method converges faster to exact solutions in fewer iterative steps than the two other methods, which took many iterations, much time, and kept tending to the exact solutions.Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, gauss-seidel, Jacobi, algorithm
Procedia PDF Downloads 155