Search results for: nonprofit organizations-national data maturity index (NDI)
23010 The Impact of Initiators on Fast Drying Traffic Marking Paint
Authors: Maryam Taheri, Mehdi Jahanfar, Kenji Ogino
Abstract:
Fast drying traffic marking paint comprising a solvent-borne resin, a filler, a pigment and a solvent that is especially suitable for colder ambient (temperatures near freezing) applications, where waterborne traffic paint cannot be used. Acrylic resins based on methyl methacrylate, butyl acrylate, acrylic acid, and styrene were synthesized in different solvents using organic peroxide initiators such as peroxyester, peroxyketal, dialkylperoxide and azo. After polymerization, the molecular weight (Mw), polydispersity index= PDI (Mw/Mn), viscosity, total residual monomer and APHA color were evaluated and results of organic peroxide initiators (t- butyl and t-amyl derivatives) were also compared with the azo initiator. The Mw, PDI, viscosity, mass conversation and APHA color of resins with t-amyl derivatives of organic peroxide initiators are very proper. The results of the traffic marking paints test such as non-volatile matter, no- pick- up time, hiding power, resistance to wear and water resistance study that produced with these resins also confirm this.Keywords: fast drying traffic marking paint, acrylic resin, organic peroxide initiator, peroxyester, peroxyketal, dialkylperoxide and azo initiator
Procedia PDF Downloads 20823009 Efficiency of the Slovak Commercial Banks Applying the DEA Window Analysis
Authors: Iveta Řepková
Abstract:
The aim of this paper is to estimate the efficiency of the Slovak commercial banks employing the Data Envelopment Analysis (DEA) window analysis approach during the period 2003-2012. The research is based on unbalanced panel data of the Slovak commercial banks. Undesirable output was included into analysis of banking efficiency. It was found that most efficient banks were Postovabanka, UniCredit Bank and Istrobanka in CCR model and the most efficient banks were Slovenskasporitelna, Istrobanka and UniCredit Bank in BCC model. On contrary, the lowest efficient banks were found Privatbanka and CitiBank. We found that the largest banks in the Slovak banking market were lower efficient than medium-size and small banks. Results of the paper is that during the period 2003-2008 the average efficiency was increasing and then during the period 2010-2011 the average efficiency decreased as a result of financial crisis.Keywords: data envelopment analysis, efficiency, Slovak banking sector, window analysis
Procedia PDF Downloads 35723008 Using Textual Pre-Processing and Text Mining to Create Semantic Links
Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo
Abstract:
This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.Keywords: semantic links, data mining, linked data, SKOS
Procedia PDF Downloads 17923007 The Factors Affecting Customers’ Trust on Electronic Commerce Website of Retail Business in Bangkok
Authors: Supattra Kanchanopast
Abstract:
The purpose of this research was to identify factors that influenced the trust of e-commerce within retail businesses. In order to achieve the objectives of this research, the researcher collected data from random e-commerce users in Bangkok. The data was comprised of the results of 382 questionnaires. The data was analyzed by using descriptive statistics, which included frequency, percentages, and the standard deviation of pertinent factors. Multiple regression analysis was also used. The findings of this research revealed that the majority of the respondents were female, 25-40 years old, and graduated a bachelor degree. The respondents mostly worked in private sectors and had monthly income between 15,000-25,000 baht. The findings also indicate that information quality factors, website design factors, service quality factor, security factor and advertising factors as significant factors effecting customer trust of e-commerce in online retail. The hypotheses testing revealed that these factors in e-commerce had an effect on customer’s trust in the same direction with high level.Keywords: e-commerce, online retail, Retail business, trust, website
Procedia PDF Downloads 19823006 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 15923005 Principal Components Analysis of the Causes of High Blood Pressure at Komfo Anokye Teaching Hospital, Ghana
Authors: Joseph K. A. Johnson
Abstract:
Hypertension affects 20 percent of the people within the ages 55 upward in Ghana. Of these, almost one-third are unaware of their condition. Also at the age of 55, more men turned to have hypertension than women. After that age, the condition becomes more prevalent with women. Hypertension is significantly more common in African Americans of both sexes than the racial or ethnic groups. This study was conducted to determine the causes of high blood pressure in Ashanti Region, Ghana. The study employed One Hundred and Seventy (170) respondents. The sample population for the study was all the available respondents at the time of the data collection. The research was conducted using primary data where convenience sampling was used to locate the respondents. A set of questionnaire were used to gather the data for the study. The gathered data was analysed using principal component analysis. The study revealed that, personal description, lifestyle behavior and risk awareness as some of the causes of high blood pressure in Ashanti Region. The study therefore recommend that people must be advice to see to their personal characteristics that may contribute to high blood pressure such as controlling of their temper and how to react perfectly to stressful situations. They must be educated on the factors that may increase the level of their blood pressure such as the essence of seeing a medical doctor before taking in any drug. People must also be made known by the public health officers to those lifestyles behaviour such as smoking and drinking of alcohol which are major contributors of high blood pressure.Keywords: high blood pressure, principal component analysis, hypertension, public health
Procedia PDF Downloads 48523004 The Ecological Role of Loligo forbesii in the Moray Firth Ecosystem, Northeast Scotland
Authors: Godwin A. Otogo, Sansanee Wangvoralak, Graham J. Pierce, Lee C. Hastie, Beth Scott
Abstract:
The squid Loligo forbesii is suspected to be an important species in marine food webs, as it can strongly impact its prey and be impacted upon by predation, competition, fishing and/or climate variability. To quantify these impacts in the food web, the measurement of its trophic position and ecological role within well-studied ecosystems is essential. An Ecopath model was balanced and run for the Moray Firth ecosystem and was used to investigate the significance of this squid’s trophic roles. The network analysis routine included in Ecopath with Ecosim (EwE) was used to estimate trophic interaction, system indicators (health condition and developmental stage) and food web features. Results indicated that within the Moray Firth squid occupy a top trophic position in the food web and also a major prey item for many other species. Results from Omnivory Index (OI) showed that squid is a generalized feeder transferring energy across wide trophic levels and is more important as a predator than that as a prey in the Moray Firth ecosystem. The results highlight the importance of taking squid into account in the management of Europe’s living marine resources.Keywords: Squid, Loligo forbesii, Ecopath, Moray Firth, Trophic level
Procedia PDF Downloads 47823003 Opportunities and Challenges to Local Legislation at the Height of the COVID-19 Pandemic: Evidence from a Fifth Class Municipality in the Visayas, Philippines
Authors: Renz Paolo B. Ramos, Jake S. Espina
Abstract:
The Local Government Academy of the Philippines explains that Local legislation is both a power and a process by which it enacts ordinances and resolutions that have the force and effect of law while engaging with a range of stakeholders for their implementation. Legislative effectiveness is crucial for the development of any given area. This study's objective is to evaluate the legislative performance of the 10th Sangguniang of Kawayan, a legislative body in a fifth-class municipality in the Province of Biliran, during the height of the COVID-19 pandemic (2019-2021) with a focus on legislation, accountability, and participation, institution-building, and intergovernmental relations. The aim of the study was that a mixed-methods strategy was used to gather data. The Local Legislative Performance Appraisal Form (LLPAF) was completed, while Focus Interviews for Local Government Unit (LGU) personnel, a survey questionnaire for constituents, and ethnographic diary-writing were conducted. Convenience Sampling was utilized for LGU workers, whereas Simple Random Sampling was used to identify the number of constituents participating. Interviews were analyzed using thematic analysis, while frequency data analysis was employed to describe and evaluate the nature and connection of the data to the underlying population. From this data, the researchers draw opportunities and challenges met by the local legislature during the height of the pandemic.Keywords: local legislation, local governance, legislative effectiveness, legislative analysis
Procedia PDF Downloads 6923002 The Cooperation among Insulin, Cortisol and Thyroid Hormones in Morbid Obese Children and Metabolic Syndrome
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Obesity, a disease associated with a low-grade inflammation, is a risk factor for the development of metabolic syndrome (MetS). So far, MetS risk factors such as parameters related to glucose and lipid metabolisms as well as blood pressure were considered for the evaluation of this disease. There are still some ambiguities related to the characteristic features of MetS observed particularly in pediatric population. Hormonal imbalance is also important, and quite a lot information exists about the behaviour of some hormones in adults. However, the hormonal profiles in pediatric metabolism have not been cleared yet. The aim of this study is to investigate the profiles of cortisol, insulin, and thyroid hormones in children with MetS. The study population was composed of morbid obese (MO) children without (Group 1) and with (Group 2) MetS components. WHO BMI-for age and sex percentiles were used for the classification of obesity. The values above 99 percentile were defined as morbid obesity. Components of MetS (central obesity, glucose intolerance, high blood pressure, high triacylglycerol levels, low levels of high density lipoprotein cholesterol) were determined. Anthropometric measurements were performed. Ratios as well as obesity indices were calculated. Insulin, cortisol, thyroid stimulating hormone (TSH), free T3 and free T4 analyses were performed by electrochemiluminescence immunoassay. Data were evaluated by statistical package for social sciences program. p<0.05 was accepted as the degree for statistical significance. The mean ages±SD values of Group 1 and Group 2 were 9.9±3.1 years and 10.8±3.2 years, respectively. Body mass index (BMI) values were calculated as 27.4±5.9 kg/m2 and 30.6±8.1 kg/m2, successively. There were no statistically significant differences between the ages and BMI values of the groups. Insulin levels were statistically significantly increased in MetS in comparison with the levels measured in MO children. There was not any difference between MO children and those with MetS in terms of cortisol, T3, T4 and TSH. However, T4 levels were positively correlated with cortisol and negatively correlated with insulin. None of these correlations were observed in MO children. Cortisol levels in both MO as well as MetS group were significantly correlated. Cortisol, insulin, and thyroid hormones are essential for life. Cortisol, called the control system for hormones, orchestrates the performance of other key hormones. It seems to establish a connection between hormone imbalance and inflammation. During an inflammatory state, more cortisol is produced to fight inflammation. High cortisol levels prevent the conversion of the inactive form of the thyroid hormone T4 into active form T3. Insulin is reduced due to low thyroid hormone. T3, which is essential for blood sugar control- requires cortisol levels within the normal range. Positive association of T4 with cortisol and negative association of it with insulin are the indicators of such a delicate balance among these hormones also in children with MetS.Keywords: children, cortisol, insulin, metabolic syndrome, thyroid hormones
Procedia PDF Downloads 14823001 Sustainability of Telecom Operators Orange-CI, MTN-CI, and MOOV Africa in Cote D’Ivoire
Authors: Odile Amoncou, Djedje-Kossu Zahui
Abstract:
The increased demand for digital communications during the COVID-19 pandemic has seen an unprecedented surge in new telecom infrastructure around the world. The expansion has been more remarkable in countries with developing telecom infrastructures. Particularly, the three telecom operators in Cote d’Ivoire, Orange CI, MTN CI, and MOOV Africa, have considerably scaled up their exploitation technologies and capacities in terms of towers, fiber optic installation, and customer service hubs. The trend will likely continue upward while expanding the carbon footprint of the Ivorian telecom operators. Therefore, the corporate social and environmental responsibilities of these telecommunication companies can no longer be overlooked. This paper assesses the sustainability of the three Ivorian telecommunication network operators by applying a combination of commonly used sustainability management indexes. These tools are streamlined and adapted to the relatively young and developing digital network of Cote D’Ivoire. We trust that this article will push the respective CEOs to make sustainability a top strategic priority and understand the substantial potential returns in terms of saving, new products, and new clients while improving their corporate image. In addition, good sustainability management can increase their stakeholders.Keywords: sustainability of telecom operators, sustainability management index, carbon footprint, digital communications
Procedia PDF Downloads 8823000 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 26722999 Evaluating Effectiveness of Training and Development Corporate Programs: The Russian Agribusiness Context
Authors: Ekaterina Tikhonova
Abstract:
This research is aimed to evaluate the effectiveness of T&D (Training and Development) on the example of two T&D programs for the Executive TOP Management run in 2012, 2015-2016 in Komos Group. This study is commissioned to research the effectiveness of two similar corporate T&D programs (within one company) in two periods of time (2012, 2015-2016) through evaluating the programs’ effectiveness using the four-level Kirkpatrick’s model of evaluating T&D programs and calculating ROI as an instrument for T&D program measuring by Phillips’ formula. The research investigates the correlation of two figures: the ROI calculated and the rating percentage scale per the ROI implementation (Wagle’s scale). The study includes an assessment of feedback 360 (Kirkpatrick's model) and Phillips’ ROI Methodology that provides a step-by-step process for collecting data, summarizing and processing the collected information. The data is collected from the company accounting data, the HR budgets, MCFO and the company annual reports for the research periods. All analyzed data and reports are organized and presented in forms of tables, charts, and graphs. The paper also gives a brief description of some constrains of the research considered. After ROI calculation, the study reveals that ROI ranges between the average implementation (65% to 75%) by Wagle’s scale that can be considered as a positive outcome. The paper also gives some recommendations how to use ROI in practice and describes main benefits of ROI implementation.Keywords: ROI, organizational performance, efficacy of T&D program, employee performance
Procedia PDF Downloads 25022998 Spatially Encoded Hyperspectral Compressive Microscope for Broadband VIS/NIR Imaging
Authors: Lukáš Klein, Karel Žídek
Abstract:
Hyperspectral imaging counts among the most frequently used multidimensional sensing methods. While there are many approaches to capturing a hyperspectral data cube, optical compression is emerging as a valuable tool to reduce the setup complexity and the amount of data storage needed. Hyperspectral compressive imagers have been created in the past; however, they have primarily focused on relatively narrow sections of the electromagnetic spectrum. A broader spectral study of samples can provide helpful information, especially for applications involving the harmonic generation and advanced material characterizations. We demonstrate a broadband hyperspectral microscope based on the single-pixel camera principle. Captured spatially encoded data are processed to reconstruct a hyperspectral cube in a combined visible and near-infrared spectrum (from 400 to 2500 nm). Hyperspectral cubes can be reconstructed with a spectral resolution of up to 3 nm and spatial resolution of up to 7 µm (subject to diffraction) with a high compressive ratio.Keywords: compressive imaging, hyperspectral imaging, near-infrared spectrum, single-pixel camera, visible spectrum
Procedia PDF Downloads 8922997 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model
Authors: Chaudhuri Manoj Kumar Swain, Susmita Das
Abstract:
This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.Keywords: WiMAX, RSSI, path loss, coverage probability, regression analysis
Procedia PDF Downloads 17722996 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model
Procedia PDF Downloads 14722995 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable
Authors: Xinyuan Y. Song, Kai Kang
Abstract:
Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data
Procedia PDF Downloads 14422994 Influence of Salicylic Acid on Yield and Some Physiological Parameters in Chickpea (Cicer arietinum L.)
Authors: Farid Shekari
Abstract:
Salicylic Acid (SA) is a plant hormone that improves some physiological responses of plants under stress conditions. Seeds of two desi type chickpea cultivars, viz., Kaka and Pirooz, primed with 250, 500, 750, and 1000 μM of SA and a group of seeds without any treating (as control) were evaluated under rain fed conditions. Seed priming in both cultivars led to higher efficiency compare to non-primed treatments. In general, seed priming with 500 and 750 μM of SA had appropriate effects; however the cultivars responses were different in this regard. Kaka showed better performance both in primed and non-primed seed than Pirooz. Results of this study revealed that not only yield quantity but also yield quality, as seed protein amounts, could positively affect by SA treatments. It seems that SA by enhancing of soluble sugars and proline amounts enhanced total water potential (ψ) and RWC. The increment in RWC led to rose of chlorophyll content of plants chlorophyll stability. In general, SA increased water use efficiency, both in biologic and seed yield base, and drought tolerance of chickpea plants. HI was a little decreased in SA treatments and it shows that SA more effective in biomass production than seed yield.Keywords: chlorophyll, harvest index, proline, seed protein, soluble sugar, water use efficiency, yield component
Procedia PDF Downloads 42322993 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models
Authors: Rossella Arcucci, Luisa D'Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti
Abstract:
This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.Keywords: data assimilation, GPU architectures, ocean models, parallel algorithm
Procedia PDF Downloads 41222992 Application of Bim Model Data to Estimate ROI for Robots and Automation in Construction Projects
Authors: Brian Romansky
Abstract:
There are many practical, commercially available robots and semi-autonomous systems that are currently available for use in a wide variety of construction tasks. Adoption of these technologies has the potential to reduce the time and cost to deliver a project, reduce variability and risk in delivery time, increase quality, and improve safety on the job site. These benefits come with a cost for equipment rental or contract fees, access to specialists to configure the system, and time needed for set-up and support of the machines while in use. Calculation of the net ROI (Return on Investment) requires detailed information about the geometry of the site, the volume of work to be done, the overall project schedule, as well as data on the capabilities and past performance of available robotic systems. Assembling the required data and comparing the ROI for several options is complex and tedious. Many project managers will only consider the use of a robot in targeted applications where the benefits are obvious, resulting in low levels of adoption of automation in the construction industry. This work demonstrates how data already resident in many BIM (Building Information Model) projects can be used to automate ROI estimation for a sample set of commercially available construction robots. Calculations account for set-up and operating time along with scheduling support tasks required while the automated technology is in use. Configuration parameters allow for prioritization of time, cost, or safety as the primary benefit of the technology. A path toward integration and use of automatic ROI calculation with a database of available robots in a BIM platform is described.Keywords: automation, BIM, robot, ROI.
Procedia PDF Downloads 8722991 Analysis of Bored Piles with and without Geogrid in a Selected Area in Kocaeli/Turkey
Authors: Utkan Mutman, Cihan Dirlik
Abstract:
Kocaeli/TURKEY district in which wastewater held in a chosen field increased property has made piling in order to improve the ground under the aeration basin. In this study, the degree of improvement the ground after bored piling held in the field were investigated. In this context, improving the ground before and after the investigation was carried out and that the solution values obtained by the finite element method analysis using Plaxis program have been made. The diffuses in the aeration basin whose treatment is to aide is influenced with and without geogrid on the ground. On the ground been improved, for the purpose of control of manufactured bored piles, pile continuity, and pile load tests were made. Taking into consideration both the data in the field as well as dynamic loads in the aeration basic, an analysis was made on Plaxis program and compared the data obtained from the analysis result and data obtained in the field.Keywords: geogrid, bored pile, soil improvement, plaxis
Procedia PDF Downloads 26822990 Structural Balance and Creative Tensions in New Product Development Teams
Authors: Shankaran Sitarama
Abstract:
New Product Development involves team members coming together and working in teams to come up with innovative solutions to problems, resulting in new products. Thus, a core attribute of a successful NPD team is their creativity and innovation. They need to be creative as a group, generating a breadth of ideas and innovative solutions that solve or address the problem they are targeting and meet the user’s needs. They also need to be very efficient in their teamwork as they work through the various stages of the development of these ideas, resulting in a POC (proof-of-concept) implementation or a prototype of the product. There are two distinctive traits that the teams need to have, one is ideational creativity, and the other is effective and efficient teamworking. There are multiple types of tensions that each of these traits cause in the teams, and these tensions reflect in the team dynamics. Ideational conflicts arising out of debates and deliberations increase the collective knowledge and affect the team creativity positively. However, the same trait of challenging each other’s viewpoints might lead the team members to be disruptive, resulting in interpersonal tensions, which in turn lead to less than efficient teamwork. Teams that foster and effectively manage these creative tensions are successful, and teams that are not able to manage these tensions show poor team performance. In this paper, it explore these tensions as they result in the team communication social network and propose a Creative Tension Balance index along the lines of Degree of Balance in social networks that has the potential to highlight the successful (and unsuccessful) NPD teams. Team communication reflects the team dynamics among team members and is the data set for analysis. The emails between the members of the NPD teams are processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. This social network is subjected to traditional social network analysis methods to arrive at some established metrics and structural balance analysis metrics. Traditional structural balance is extended to include team interaction pattern metrics to arrive at a creative tension balance metric that effectively captures the creative tensions and tension balance in teams. This CTB (Creative Tension Balance) metric truly captures the signatures of successful and unsuccessful (dissonant) NPD teams. The dataset for this research study includes 23 NPD teams spread out over multiple semesters and computes this CTB metric and uses it to identify the most successful and unsuccessful teams by classifying these teams into low, high and medium performing teams. The results are correlated to the team reflections (for team dynamics and interaction patterns), the team self-evaluation feedback surveys (for teamwork metrics) and team performance through a comprehensive team grade (for high and low performing team signatures).Keywords: team dynamics, social network analysis, new product development teamwork, structural balance, NPD teams
Procedia PDF Downloads 7922989 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area
Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna
Abstract:
The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.Keywords: Hyperion, hyperspectral, sensor, Landsat-8
Procedia PDF Downloads 12422988 Studying the Schema of Afghan Immigrants about Iranians; A Case Study of Immigrants in Tehran Province
Authors: Mohammad Ayobi
Abstract:
Afghans have been immigrating to Iran for many years; The re-establishment of the Taliban in Afghanistan caused a flood of Afghan immigrants to Iran. One of the important issues related to the arrival of Afghan immigrants is the view that Afghan immigrants have toward Iranians. In this research, we seek to identify the schema of Afghan immigrants living in Iran about Iranians. A schema is a set of data or generalized knowledge that is formed in connection with a particular group or a particular person, or even a particular nationality to identify a person with pre-determined judgments about certain matters. The schemata between certain nationalities have a direct impact on the formation of interactions between them and can be effective in establishing or not establishing proper communication between the Afghan immigrant nationality and Iranians. For the scientific understanding of research, we use the theory of “schemata.” The method of this study is qualitative, and its data will be collected through semi-structured deep interviews, and data will be analyzed by thematic analysis. The expected findings in this study are that the schemata of Afghan immigrants are more negative than Iranians because Iranians are self-centered and fanatical about Afghans, and Afghans are only workers to them.Keywords: schema study, Afghan immigrants, Iranians, in-depth interview
Procedia PDF Downloads 8622987 Shocks and Flows - Employing a Difference-In-Difference Setup to Assess How Conflicts and Other Grievances Affect the Gender and Age Composition of Refugee Flows towards Europe
Authors: Christian Bruss, Simona Gamba, Davide Azzolini, Federico Podestà
Abstract:
In this paper, the authors assess the impact of different political and environmental shocks on the size and on the age and gender composition of asylum-related migration flows to Europe. With this paper, the authors contribute to the literature by looking at the impact of different political and environmental shocks on the gender and age composition of migration flows in addition to the size of these flows. Conflicting theories predict different outcomes concerning the relationship between political and environmental shocks and the migration flows composition. Analyzing the relationship between the causes of migration and the composition of migration flows could yield more insights into the mechanisms behind migration decisions. In addition, this research may contribute to better informing national authorities in charge of receiving these migrant, as women and children/the elderly require different assistance than young men. To be prepared to offer the correct services, the relevant institutions have to be aware of changes in composition based on the shock in question. The authors analyze the effect of different types of shocks on the number, the gender and age composition of first time asylum seekers originating from 154 sending countries. Among the political shocks, the authors consider: violence between combatants, violence against civilians, infringement of political rights and civil liberties, and state terror. Concerning environmental shocks, natural disasters (such as droughts, floods, epidemics, etc.) have been included. The data on asylum seekers applying to any of the 32 Schengen Area countries between 2008 and 2015 is on a monthly basis. Data on asylum applications come from Eurostat, data on shocks are retrieved from various sources: georeferenced conflict data come from the Uppsala Conflict Data Program (UCDP), data on natural disasters from the Centre for Research on the Epidemiology of Disasters (CRED), data on civil liberties and political rights from Freedom House, data on state terror from the Political Terror Scale (PTS), GDP and population data from the World Bank, and georeferenced population data from the Socioeconomic Data and Applications Center (SEDAC). The authors adopt a Difference-in-Differences identification strategy, exploiting the different timing of several kinds of shocks across countries. The highly skewed distribution of the dependent variable is taken into account by using count data models. In particular, a Zero Inflated Negative Binomial model is adopted. Preliminary results show that different shocks - such as armed conflict and epidemics - exert weak immediate effects on asylum-related migration flows and almost non-existent effects on the gender and age composition. However, this result is certainly affected by the fact that no time lags have been introduced so far. Finding the correct time lags depends on a great many variables not limited to distance alone. Therefore, finding the appropriate time lags is still a work in progress. Considering the ongoing refugee crisis, this topic is more important than ever. The authors hope that this research contributes to a less emotionally led debate.Keywords: age, asylum, Europe, forced migration, gender
Procedia PDF Downloads 26122986 Global Solar Irradiance: Data Imputation to Analyze Complementarity Studies of Energy in Colombia
Authors: Jeisson A. Estrella, Laura C. Herrera, Cristian A. Arenas
Abstract:
The Colombian electricity sector has been transforming through the insertion of new energy sources to generate electricity, one of them being solar energy, which is being promoted by companies interested in photovoltaic technology. The study of this technology is important for electricity generation in general and for the planning of the sector from the perspective of energy complementarity. Precisely in this last approach is where the project is located; we are interested in answering the concerns about the reliability of the electrical system when climatic phenomena such as El Niño occur or in defining whether it is viable to replace or expand thermoelectric plants. Reliability of the electrical system when climatic phenomena such as El Niño occur, or to define whether it is viable to replace or expand thermoelectric plants with renewable electricity generation systems. In this regard, some difficulties related to the basic information on renewable energy sources from measured data must first be solved, as these come from automatic weather stations. Basic information on renewable energy sources from measured data, since these come from automatic weather stations administered by the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM) and, in the range of study (2005-2019), have significant amounts of missing data. For this reason, the overall objective of the project is to complete the global solar irradiance datasets to obtain time series to develop energy complementarity analyses in a subsequent project. Global solar irradiance data sets to obtain time series that will allow the elaboration of energy complementarity analyses in the following project. The filling of the databases will be done through numerical and statistical methods, which are basic techniques for undergraduate students in technical areas who are starting out as researchers technical areas who are starting out as researchers.Keywords: time series, global solar irradiance, imputed data, energy complementarity
Procedia PDF Downloads 7122985 Multi Objective Optimization for Two-Sided Assembly Line Balancing
Authors: Srushti Bhatt, M. B. Kiran
Abstract:
Two-sided assembly line balancing problem is yet to be addressed simply to compete for the global market for manufacturers. The task assigned in an ordered sequence to get optimum performance of the system is known as assembly line balancing problem mainly classified as single and two sided. It is very challenging in manufacturing industries to balance two-sided assembly line, wherein the set of sequential workstations the task operations are performed in two sides of the line. The conflicting major objective in two-sided assembly line balancing problem is either to maximize /minimize the performance parameters. The present study emphases on combining different evolutionary algorithm; ant colony, Tabu search and petri net method; and compares their results of an algorithm for solving two-sided assembly line balancing problem. The concept of multi objective optimization of performance parameters is now a day adopted to make a decision involving more than one objective function to be simultaneously optimized. The optimum result can be expected among the selected methods using multi-objective optimization. The performance parameters considered in the present study are a number of workstation, slickness and smoothness index. The simulation of the assembly line balancing problem provides optimal results of classical and practical problems.Keywords: Ant colony, petri net, tabu search, two sided ALBP
Procedia PDF Downloads 27822984 Domestic Trade, Misallocation and Relative Prices
Authors: Maria Amaia Iza Padilla, Ibai Ostolozaga
Abstract:
The objective of this paper is to analyze how transportation costs between regions within a country can affect not only domestic trade but also the allocation of resources in a given region, aggregate productivity, and relative domestic prices (tradable versus non-tradable). On the one hand, there is a vast literature that analyzes the transportation costs faced by countries when trading with the rest of the world. However, this paper focuses on the effect of transportation costs on domestic trade. Countries differ in their domestic road infrastructure and transport quality. There is also some literature that focuses on the effect of road infrastructure on the price difference between regions but not on relative prices at the aggregate level. On the other hand, this work is also related to the literature on resource misallocation. Finally, the paper is also related to the literature analyzing the effect of trade on the development of the manufacturing sector. Using the World Bank Enterprise Survey database, it is observed cross-country differences in the proportion of firms that consider transportation as an obstacle. From the International Comparison Program, we obtain a significant negative correlation between GDP per worker and relative prices (manufacturing sector prices relative to the service sector). Furthermore, there is a significant negative correlation between a country’s transportation quality and the relative price of manufactured goods with respect to the price of services in that country. This is consistent with the empirical evidence of a negative correlation between transportation quality and GDP per worker, on the one hand, and the negative correlation between GDP per worker and domestic relative prices, on the other. It is also shown that in a country, the share of manufacturing firms whose main market is at the local (regional) level is negatively related to the quality of the transportation infrastructure within the country. Similarly, this index is positively related to the share of manufacturing firms whose main market is national or international. The data also shows that those countries with a higher proportion of manufacturing firms operating locally have higher relative prices. With this information in hand, the paper attempts to quantify the effects of the allocation of resources between and within sectors. The higher the trade barriers caused by transportation costs, the less efficient allocation, which causes lower aggregate productivity. Second, it is built a two-sector model where regions within a country trade with each other. On the one hand, it is found that with respect to the manufacturing sector, those countries with less trade between their regions will be characterized by a smaller variety of goods, less productive manufacturing firms on average, and higher relative prices for manufactured goods relative to service sector prices. Thus, the decline in the relative price of manufactured goods in more advanced countries could also be explained by the degree of trade between regions. This trade allows for efficient intra-industry allocation (traders are more productive, and resources are allocated more efficiently)).Keywords: misallocation, relative prices, TFP, transportation cost
Procedia PDF Downloads 8422983 Alzheimer’s Disease Measured in Work Organizations
Authors: Katherine Denise Queri
Abstract:
The effects of sick workers have an impact in administration of labor. This study aims to provide knowledge on the disease that is Alzheimer’s while presenting an answer to the research question of when and how is the disease considered as a disaster inside the workplace. The study has the following as its research objectives: 1. Define Alzheimer’s disease, 2. Evaluate the effects and consequences of an employee suffering from Alzheimer’s disease, 3. Determine the concept of organizational effectiveness in the area of Human Resources, and 4. Identify common figures associated with Alzheimer’s disease. The researcher gathered important data from books, video presentations, and interviews of workers suffering from Alzheimer’s disease and from the internet. After using all the relevant data collection instruments mentioned, the following data emerged: 1. Alzheimer’s disease has certain consequences inside the workplace, 2. The occurrence of Alzheimer’s Disease in an employee’s life greatly affects the company where the worker is employed, and 3. The concept of workplace efficiency suggests that an employer must prepare for such disasters that Alzheimer’s disease may bring to the company where one is employed. Alzheimer’s disease can present disaster in any workplace.Keywords: administration, Alzheimer's disease, conflict, disaster, employment
Procedia PDF Downloads 44522982 Students with Disabilities in Today's College Classrooms
Authors: Ashwini Tiwari
Abstract:
This qualitative case study examines students' perceptions of accommodations in higher education institutions. The data were collected from focus groups and one-to-one interviews with 15 students enrolled in a 4-year state university in the southern United States. The data were analyzed using a thematic analysis process. The findings suggest that students perceived that their instructors were willing to accommodate their educational needs. However, the participants expressed concerns about the lack of a formal labeling process in higher education settings, creating a barrier to receiving adequate services to gain meaningful educational experiences.Keywords: disability, accomodation, services, higher educaiton
Procedia PDF Downloads 8822981 Conditional Relation between Migration, Demographic Shift and Human Development in India
Authors: Rakesh Mishra, Rajni Singh, Mukunda Upadhyay
Abstract:
Since the last few decades, the prima facie of development has shifted towards the working population in India. There has been a paradigm shift in the development approach with the realization that the present demographic dividend has to be harnessed for sustainable development. Rapid urbanization and improved socioeconomic characteristics experienced within its territory has catalyzed various forms of migration into it, resulting in massive transference of workforce between its states. Workforce in any country plays a very crucial role in deciding development of both the places, from where they have out-migrated and the place they are residing currently. In India, people are found to be migrating from relatively less developed states to a well urbanized and developed state for satisfying their neediness. Linking migration to HDI at place of destination, the regression coefficient (β ̂) shows affirmative association between them, because higher the HDI of the place would be, higher would be chance of earning and hence likeliness of the migrants would be more to choose that place as a new destination and vice versa. So the push factor is compromised by the cost of rearing and provides negative impulse on the in migrants letting down their numbers to metro cities or megacities of the states but increasing their mobility to the suburban areas and vice versa. The main objective of the study is to check the role of migration in deciding the dividend of the place of destination as well as people at the place of their usual residence with special focus to highly urban states in India. Idealized scenario of Indian migrants refers to some new theories in making. On analyzing the demographic dividend of the places we got to know that Uttar Pradesh provides maximum dividend to Maharashtra, West Bengal and Delhi, and the demographic divided of migrants are quite comparable to the native’s shares in the demographic dividend in these places. On analyzing the data from National Sample Survey 64th round and Census of India-2001, we have observed that for males in rural areas, the share of unemployed person declined by 9 percentage points (from 45% before migration to 36 % after migration) and for females in rural areas the decline was nearly 12 percentage points (from 79% before migration to 67% after migration. It has been observed that the shares of unemployed males in both rural and urban areas, which were significant before migration, got reduced after migration while the share of unemployed females in the rural as well as in the urban areas remained almost negligible both for before and after migration. So increase in the number of employed after migration provides an indication of changes in the associated cofactors like health and education of the place of destination and arithmetically to the place from where they have migrated out. This paper presents the evidence on the patterns of prevailing migration dynamics and corresponding demographic benefits in India and its states, examines trends and effects, and discusses plausible explanations.Keywords: migration, demographic shift, human development index, multilevel analysis
Procedia PDF Downloads 388