Search results for: structural equation modeling(SEM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5714

Search results for: structural equation modeling(SEM)

1154 Modified Silicates as Dissolved Oxygen Sensors in Water: Structural and Optical Properties

Authors: Andile Mkhohlakali, Tien-Chien Jen, James Tshilongo, Happy Mabowa

Abstract:

Among different parameters, oxygen is one of the most important analytes of interest, dissolved oxygen (DO) concentration is very crucial and significant for various areas of physical, chemical, and environmental monitoring. Herein we report oxygen-sensitive luminophores -based lanthanum(III) trifluoromethanesulfonate), [La]³⁺ was encapsulated into SiO₂-based xerogel matrix. The nanosensor is composed of organically modified silica nanoparticles, doped with the luminescent oxygen–sensitive lanthanum(III) trifluoromethanesulfonate complex. The precursor materials used for sensing film were triethyl ethoxy silane (TEOS) and (3-Mercaptopropyltriethoxysilane) (MPTMS- TEOS) used for SiO2-baed matrices. Brunauer–Emmett–Teller (BET), and BJH indicate that the SiO₂ transformed from microporous to mesoporous upon the addition of La³⁺ luminophore with increased surface area (SBET). The typical amorphous SiO₂ based xerogels were revealed with X-Ray diffraction (XRD) and Selected Area Electron Diffraction (SAED) analysis. Scanning electron microscope- (SEM) and transmission electron microscope (TEM) showed the porous morphology and reduced particle for SiO₂ and La-SiO₂ xerogels respectively. The existence of elements, siloxane networks, and thermal stability of xerogel was confirmed by energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and Thermographic analysis (TGA). UV-Vis spectroscopy and photoluminescence (PL) have been used to characterize the optical properties of xerogels. La-SiO₂ demonstrates promising characteristic features of an active sensing film for dissolved oxygen in the water. Keywords: Sol-gel, ORMOSILs, encapsulation, Luminophores quenching, O₂-sensing

Keywords: sol-gel, ORMOSILs, luminophores quenching, O₂-sensing

Procedia PDF Downloads 121
1153 Lamb Waves Wireless Communication in Healthy Plates Using Coherent Demodulation

Authors: Rudy Bahouth, Farouk Benmeddour, Emmanuel Moulin, Jamal Assaad

Abstract:

Guided ultrasonic waves are used in Non-Destructive Testing (NDT) and Structural Health Monitoring (SHM) for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average Bit Error Rate. Results have shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques.

Keywords: lamb waves communication, wireless communication, coherent demodulation, bit error rate

Procedia PDF Downloads 253
1152 Perspective for the Creation of Molecular Imprinted Polymers from Coal Waste

Authors: Alma Khasenovna Zhakina, Arnt Oxana Vasilievna, Vasilets Evgeny Petrovich

Abstract:

The aim of this project is to develop methods for obtaining new molecularly imprinted polymers from coal waste to study their structure, structural and morphological features and properties. Recently, the development of molecularly imprinted polymers has become one of the hot topics for researchers. Modern research indicates the broad prospects of rapidly developing molecular imprinting technologies for creating a new generation of sorption materials. The attractiveness of this area of research lies in the fact that the use of imprinted polymers is not limited to scientific research; they are already being introduced in the chemical, pharmaceutical and biotechnological industries, primarily at the stages of purification of the final product. For the use of molecularly imprinted polymers in the development of sorption material, their ability to selectively remove pollutants, including trace concentrations, is of fundamental importance, and the exceptional stability of polymeric materials under harsh conditions makes it possible to simplify the process of water purification as a whole. The scientific and technical effect is associated with the development of technologies for the production of new molecularly imprinted polymers, the establishment of optimal conditions for their production and the creation of effective imprinted sorbents on their basis for wastewater treatment from heavy metals. The social effect is due to the fact that the use of coal waste as a feedstock for the production of imprinted sorbents will make it possible in the future to create new industries with additional jobs and obtain competitive multi-purpose products. The economic and multiplier effect is associated with the low cost of the final product due to the involvement of local coal waste in the production, reduction of transport, customs and other costs.

Keywords: imprinted polymers, coal waste, polymerization, template, customized sorbents

Procedia PDF Downloads 61
1151 A Structured Mechanism for Identifying Political Influencers on Social Media Platforms: Top 10 Saudi Political Twitter Users

Authors: Ahmad Alsolami, Darren Mundy, Manuel Hernandez-Perez

Abstract:

Social media networks, such as Twitter, offer the perfect opportunity to either positively or negatively affect political attitudes on large audiences. The existence of influential users who have developed a reputation for their knowledge and experience of specific topics is a major factor contributing to this impact. Therefore, knowledge of the mechanisms to identify influential users on social media is vital for understanding their effect on their audience. The concept of the influential user is related to the concept of opinion leaders' to indicate that ideas first flow from mass media to opinion leaders and then to the rest of the population. Hence, the objective of this research was to provide reliable and accurate structural mechanisms to identify influential users, which could be applied to different platforms, places, and subjects. Twitter was selected as the platform of interest, and Saudi Arabia as the context for the investigation. These were selected because Saudi Arabia has a large number of Twitter users, some of whom are considerably active in setting agendas and disseminating ideas. The study considered the scientific methods that have been used to identify public opinion leaders before, utilizing metrics software on Twitter. The key findings propose multiple novel metrics to compare Twitter influencers, including the number of followers, social authority and the use of political hashtags, and four secondary filtering measures. Thus, using ratio and percentage calculations to classify the most influential users, Twitter accounts were filtered, analyzed and included. The structured approach is used as a mechanism to explore the top ten influencers on Twitter from the political domain in Saudi Arabia.

Keywords: Twitter, influencers, structured mechanism, Saudi Arabia

Procedia PDF Downloads 114
1150 Evaluation of Central Nervous System Activity of Synthesized 5, 5-Diphenylimidazolidine-2, 4-Dione Derivatives

Authors: Shweta Verma

Abstract:

Background: Epilepsy is a chronic non-communicable central nervous system (CNS) disorder which affects a large population of all ages. Different classes of drugs are used for the treatment of this neurological disorder, but due to augmented drug resistance and side effects, these drugs become incompetent. Therefore, we design the synthesis of ten new derivatives of Phenytoin. The moiety of Phenytoin was hybridized with different phenols by using three step approach. The synthesized molecules were then investigated for different physicochemical parameters, such as Log P values using diverse software programs and to predict the potential to cross the blood-brain barrier. Objective: The Phenytoin derivatives were designed, synthesized, and characterized to meet the structural necessities indispensable for antiepileptic activity. Method: Firstly, the chloroacetylation of the 5,5-diphenyl hydantoin was carried out, and then various substituted phenols were added to it. The synthesized compounds were characterized and evaluated for antianxiety activity by elevated plus maze method and antiepileptic activity by using subcutaneous pentylenetetrazole (scPTZ) and maximal electroshock (MES) models and neurotoxicity. Result: The number of derivatives of 5,5-diphenyl hydantoin was developed and optimized. The number of parameters was optimized which reveal that the compound containing chloro group such as C3 and C6 showed imperative potential when compared with the standard drug Diazepam. Other compounds containing nitro and methyl group were also found to possess activity. Conclusion: It was summarized that the new compounds of 5,5-diphenyl hydantoin derivatives were synthesized. The results of the data show that the compound containing chloro group is more potent for CNS activity. The new compounds have the probability of being optimized further to engender new scaffolds to treat various CNS disorders.

Keywords: phenytoin, parameters, CNS activity, blood-brain barrier, Log P, CNS active

Procedia PDF Downloads 69
1149 Simulation Study on Polymer Flooding with Thermal Degradation in Elevated-Temperature Reservoirs

Authors: Lin Zhao, Hanqiao Jiang, Junjian Li

Abstract:

Polymers injected into elevated-temperature reservoirs inevitably suffer from thermal degradation, resulting in severe viscosity loss and poor flooding performance. However, for polymer flooding in such reservoirs, present simulators fail to provide accurate results for lack of description on thermal degradation. In light of this, the objectives of this paper are to provide a simulation model for polymer flooding with thermal degradation and study the effect of thermal degradation on polymer flooding in elevated-temperature reservoirs. Firstly, a thermal degradation experiment was conducted to obtain the degradation law of polymer concentration and viscosity. Different types of polymers degraded in the Thermo tank with elevated temperatures. Afterward, based on the obtained law, a streamline-assistant model was proposed to simulate the degradation process under in-situ flow conditions. Model validation was performed with field data from a well group of an offshore oilfield. Finally, the effect of thermal degradation on polymer flooding was studied using the proposed model. Experimental results showed that the polymer concentration remained unchanged, while the viscosity degraded exponentially with time after degradation. The polymer viscosity was functionally dependent on the polymer degradation time (PDT), which represented the elapsed time started from the polymer particle injection. Tracing the real flow path of polymer particle was required. Therefore, the presented simulation model was streamline-assistant. Equation of PDT vs. time of flight (TOF) along streamline was built by the law of polymer particle transport. Based on the field polymer sample and dynamic data, the new model proved its accuracy. Study of degradation effect on polymer flooding indicated: (1) the viscosity loss increased with TOF exponentially in the main body of polymer-slug and remained constant in the slug front; (2) the responding time of polymer flooding was delayed, but the effective time was prolonged; (3) the breakthrough of subsequent water was eased; (4) the capacity of polymer adjusting injection profile was diminished; (5) the incremental recovery was reduced significantly. In general, the effect of thermal degradation on polymer flooding performance was rather negative. This paper provides a more comprehensive insight into polymer thermal degradation in both the physical process and field application. The proposed simulation model offers an effective means for simulating the polymer flooding process with thermal degradation. The negative effect of thermal degradation suggests that the polymer thermal stability should be given full consideration when designing polymer flooding project in elevated-temperature reservoirs.

Keywords: polymer flooding, elevated-temperature reservoir, thermal degradation, numerical simulation

Procedia PDF Downloads 134
1148 Modelling of Pipe Jacked Twin Tunnels in a Very Soft Clay

Authors: Hojjat Mohammadi, Randall Divito, Gary J. E. Kramer

Abstract:

Tunnelling and pipe jacking in very soft soils (fat clays), even with an Earth Pressure Balance tunnel boring machine (EPBM), can cause large ground displacements. In this study, the short-term and long-term ground and tunnel response is predicted for twin, pipe-jacked EPBM 3 meter diameter tunnels with a narrow pillar width. Initial modelling indicated complete closure of the annulus gap at the tail shield onto the centrifugally cast, glass-fiber-reinforced, polymer mortar jacking pipe (FRP). Numerical modelling was employed to simulate the excavation and support installation sequence, examine the ground response during excavation, confirm the adequacy of the pillar width and check the structural adequacy of the installed pipe. In the numerical models, Mohr-Coulomb constitutive model with the effect of unloading was adopted for the fat clays, while for the bedrock layer, the generalized Hoek-Brown was employed. The numerical models considered explicit excavation sequences and different levels of ground convergence prior to support installation. The well-studied excavation sequences made the analysis possible for this study on a very soft clay, otherwise, obtaining the convergency in the numerical analysis would be impossible. The predicted results indicate that the ground displacements around the tunnel and its effect on the pipe would be acceptable despite predictions of large zones of plastic behaviour around the tunnels and within the entire pillar between them due to excavation-induced ground movements.

Keywords: finite element modeling (FEM), pipe-jacked tunneling, very soft clay, EPBM

Procedia PDF Downloads 77
1147 Photoelectrochemical Water Splitting from Earth-Abundant CuO Thin Film Photocathode: Enhancing Performance and Photo-Stability through Deposition of Overlayers

Authors: Wilman Septina, Rajiv R. Prabhakar, Thomas Moehl, David Tilley

Abstract:

Cupric oxide (CuO) is a promising absorber material for the fabrication of scalable, low cost solar energy conversion devices, due to the high abundance and low toxicity of copper. It is a p-type semiconductor with a band gap of around 1.5 eV, absorbing a significant portion of the solar spectrum. One of the main challenges in using CuO as solar absorber in an aqueous system is its tendency towards photocorrosion, generating Cu2O and metallic Cu. Although there have been several reports of CuO as a photocathode for hydrogen production, it is unclear how much of the observed current actually corresponds to H2 evolution, as the inevitability of photocorrosion is usually not addressed. In this research, we investigated the effect of the deposition of overlayers onto CuO thin films for the purpose of enhancing its photostability as well as performance for water splitting applications. CuO thin film was fabricated by galvanic electrodeposition of metallic copper onto gold-coated FTO substrates, followed by annealing in air at 600 °C. Photoelectrochemical measurement of the bare CuO film using 1 M phosphate buffer (pH 6.9) under simulated AM 1.5 sunlight showed a current density of ca. 1.5 mA cm-2 (at 0.4 VRHE), which photocorroded to Cu metal upon prolonged illumination. This photocorrosion could be suppressed by deposition of 50 nm-thick TiO2, deposited by atomic layer deposition. In addition, we found that insertion of an n-type CdS layer, deposited by chemical bath deposition, between the CuO and TiO2 layers was able to enhance significantly the photocurrent compared to without the CdS layer. A photocurrent of over 2 mA cm-2 (at 0 VRHE) was observed using the photocathode stack FTO/Au/CuO/CdS/TiO2/Pt. Structural, electrochemical, and photostability characterizations of the photocathode as well as results on various overlayers will be presented.

Keywords: CuO, hydrogen, photoelectrochemical, photostability, water splitting

Procedia PDF Downloads 216
1146 The Evaluation of a Novel Cardiac Index derived from Anthropometric and Biochemical Parameters in Pediatric Morbid Obesity and Metabolic Syndrome

Authors: Mustafa Metin Donma

Abstract:

Metabolic syndrome (MetS) components are noteworthy among children with obesity and morbid obesity because they point out the cases with MetS, which have the great tendency to severe health problems such as cardiovascular diseases both in childhood and adulthood. In clinical practice, considerable efforts are being observed to bring into the open the striking differences between morbid obese cases and those with MetS findings. The most privileged aspect is concerning cardiometabolic features. The aim of this study was to derive an index which behaves different in children with and without MetS from the cardiac point of view. For the purpose, aspartate transaminase (AST), a cardiac enzyme still being used independently to predict cardiac-related problems, was used. One hundred and twenty four children were recruited from the outpatient clinic of Department of Pediatrics in Tekirdag Namik Kemal University, Faculty of Medicine. Forty-three children with normal body mass index, forty-one and forty morbid obese (MO) children with MetS and without the characteristic features of MetS, respectively, were included in the study. Weight, height, waist circumference (WC), hip C (HC), head C (HdC), neck C (NC), systolic and diastolic blood pressure values were measured and recorded. Body mass index and anthropometric ratios were calculated. Fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein cholesterol (HDL-C) analyses were performed. The values for AST, alanin transaminase (ALT) and AST/ALT were obtained. Advanced Donma cardiac index (ADCI) values were calculated. The formula for the index was [(TRG/HDL-C) * (INS/FBG)] * [(WC+HC)/Height] * [(HdC+NC)/Height]. Statistical evaluations including correlation analysis were done by a statistical package program. The statistical significance degree was accepted as p<0.05. The index, ADCI, was developed from both anthropometric and biochemical parameters. All anthropometric measurements except weight were included in the equation. Besides all biochemical parameters concerning MetS components were also added. This index was tested in each of three groups. Its performance was compared with the performance of cardiometabolic index (CMI). It was also checked whether it was compatible with AST activity. The performance of ADCI was better than that of CMI. Instead of double increase, the increase of three times was observed in children with MetS compared to MO children. The index was correlated with AST in MO group and with AST/ALT in MetS group. In conclusion, this index was superior in discovering cardiac problems in MO and in diagnosing MetS in MetS groups. It was also arbiter to point out cardiovascular and MetS aspects among the groups.

Keywords: aspartate transaminase, cardiac, children, index, obesity

Procedia PDF Downloads 64
1145 Vibration Based Damage Detection and Stiffness Reduction of Bridges: Experimental Study on a Small Scale Concrete Bridge

Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti

Abstract:

Structural systems are often subjected to degradation processes due to different kind of phenomena like unexpected loadings, ageing of the materials and fatigue cycles. This is true especially for bridges, in which their safety evaluation is crucial for the purpose of a design of planning maintenance. This paper discusses the experimental evaluation of the stiffness reduction from frequency changes due to uniform damage scenario. For this purpose, a 1:4 scaled bridge has been built in the laboratory of the University of Bologna. It is made of concrete and its cross section is composed by a slab linked to four beams. This concrete deck is 6 m long and 3 m wide, and its natural frequencies have been identified dynamically by exciting it with an impact hammer, a dropping weight, or by walking on it randomly. After that, a set of loading cycles has been applied to this bridge in order to produce a uniformly distributed crack pattern. During the loading phase, either cracking moment and yielding moment has been reached. In order to define the relationship between frequency variation and loss in stiffness, the identification of the natural frequencies of the bridge has been performed, before and after the occurrence of the damage, corresponding to each load step. The behavior of breathing cracks and its effect on the natural frequencies has been taken into account in the analytical calculations. By using a sort of exponential function given from the study of lot of experimental tests in the literature, it has been possible to predict the stiffness reduction through the frequency variation measurements. During the load test also crack opening and middle span vertical displacement has been monitored.

Keywords: concrete bridge, damage detection, dynamic test, frequency shifts, operational modal analysis

Procedia PDF Downloads 180
1144 Seismic Vulnerability of Structures Designed in Accordance with the Allowable Stress Design and Load Resistant Factor Design Methods

Authors: Mohammadreza Vafaei, Amirali Moradi, Sophia C. Alih

Abstract:

The method selected for the design of structures not only can affect their seismic vulnerability but also can affect their construction cost. For the design of steel structures, two distinct methods have been introduced by existing codes, namely allowable stress design (ASD) and load resistant factor design (LRFD). This study investigates the effect of using the aforementioned design methods on the seismic vulnerability and construction cost of steel structures. Specifically, a 20-story building equipped with special moment resisting frame and an eccentrically braced system was selected for this study. The building was designed for three different intensities of peak ground acceleration including 0.2 g, 0.25 g, and 0.3 g using the ASD and LRFD methods. The required sizes of beams, columns, and braces were obtained using response spectrum analysis. Then, the designed frames were subjected to nine natural earthquake records which were scaled to the designed response spectrum. For each frame, the base shear, story shears, and inter-story drifts were calculated and then were compared. Results indicated that the LRFD method led to a more economical design for the frames. In addition, the LRFD method resulted in lower base shears and larger inter-story drifts when compared with the ASD method. It was concluded that the application of the LRFD method not only reduced the weights of structural elements but also provided a higher safety margin against seismic actions when compared with the ASD method.

Keywords: allowable stress design, load resistant factor design, nonlinear time history analysis, seismic vulnerability, steel structures

Procedia PDF Downloads 264
1143 Sexual and Reproductive Health through a Screen

Authors: Sohayla Khaled El Fakahany

Abstract:

Cultural and structural limitations and conservative social norms have direct effects on the availability of sources of sexual and reproductive health and rights (SRHR) in the Arab Region. Nevertheless, SRHR advocates, healthcare providers, and organizations have created online spaces like websites, blogs, and social media platforms to increase people’s access and ability to share information, experiences, and services. While these efforts help increase the accessibility to information and services, they also create and reflect inequalities based on limited internet access. Furthermore, these emergent ways of sharing and raising awareness online cannot be seen as a substitute for the urgent need for public healthcare systems and services to address SRHR issues in Arab states. This research aims to analyze the impact of the increasing importance of the role of social media platforms and technologies in the dissemination of SRHR-related information online to the youth as well as the associated inequalities of access. It also seeks to assess the effects and inequalities of the dependence on online platforms, which should be complementary to public and private SRHR services. The theoretical framework adopts Asef Bayat’s concept of social non-movements to analyze how collective mobilization around SRHR issues is exercised in repressive and conservative settings in the Arab region. Using digital ethnography of four prominent digital platforms and a qualitative survey of people aged 18-30 years, the research draws attention to the urgent need for better access to knowledge and services around gender, bodily autonomy, and sexual and reproductive health in the Arab region.

Keywords: sexual and reproductive health and rights, social non-movements, digital platforms, Arab region

Procedia PDF Downloads 75
1142 Lipid-Chitosan Hybrid Nanoparticles for Controlled Delivery of Cisplatin

Authors: Muhammad Muzamil Khan, Asadullah Madni, Nina Filipczek, Jiayi Pan, Nayab Tahir, Hassan Shah, Vladimir Torchilin

Abstract:

Lipid-polymer hybrid nanoparticles (LPHNP) are delivery systems for controlled drug delivery at tumor sites. The superior biocompatible properties of lipid and structural advantages of polymer can be obtained via this system for controlled drug delivery. In the present study, cisplatin-loaded lipid-chitosan hybrid nanoparticles were formulated by the single step ionic gelation method based on ionic interaction of positively charged chitosan and negatively charged lipid. Formulations with various chitosan to lipid ratio were investigated to obtain the optimal particle size, encapsulation efficiency, and controlled release pattern. Transmission electron microscope and dynamic light scattering analysis demonstrated a size range of 181-245 nm and a zeta potential range of 20-30 mV. Compatibility among the components and the stability of formulation were demonstrated with FTIR analysis and thermal studies, respectively. The therapeutic efficacy and cellular interaction of cisplatin-loaded LPHNP were investigated using in vitro cell-based assays in A2780/ADR ovarian carcinoma cell line. Additionally, the cisplatin loaded LPHNP exhibited a low toxicity profile in rats. The in-vivo pharmacokinetics study also proved a controlled delivery of cisplatin with enhanced mean residual time and half-life. Our studies suggested that the cisplatin-loaded LPHNP being a promising platform for controlled delivery of cisplatin in cancer therapy.

Keywords: cisplatin, lipid-polymer hybrid nanoparticle, chitosan, in vitro cell line study

Procedia PDF Downloads 126
1141 Evaluation of Current Methods in Modelling and Analysis of Track with Jointed Rails

Authors: Hossein Askarinejad, Manicka Dhanasekar

Abstract:

In railway tracks, two adjacent rails are either welded or connected using bolted jointbars. In recent years the number of bolted rail joints is reduced by introduction of longer rail sections and by welding the rails at location of some joints. However, significant number of bolted rail joints remains in railways around the world as they are required to allow for rail thermal expansion or to provide electrical insulation in some sections of track. Regardless of the quality and integrity of the jointbar and bolt connections, the bending stiffness of jointbars is much lower than the rail generating large deflections under the train wheels. In addition, the gap or surface discontinuity on the rail running surface leads to generation of high wheel-rail impact force at the joint gap. These fundamental weaknesses have caused high rate of failure in track components at location of rail joints resulting in significant economic and safety issues in railways. The mechanical behavior of railway track at location of joints has not been fully understood due to various structural and material complexities. Although there have been some improvements in the methods for analysis of track at jointed rails in recent years, there are still uncertainties concerning the accuracy and reliability of the current methods. In this paper the current methods in analysis of track with a rail joint are critically evaluated and the new advances and recent research outcomes in this area are discussed. This research is part of a large granted project on rail joints which was defined by Cooperative Research Centre (CRC) for Rail Innovation with supports from Australian Rail Track Corporation (ARTC) and Queensland Rail (QR).

Keywords: jointed rails, railway mechanics, track dynamics, wheel-rail interaction

Procedia PDF Downloads 348
1140 Assessing the Legacy Effects of Wildfire on Eucalypt Canopy Structure of South Eastern Australia

Authors: Yogendra K. Karna, Lauren T. Bennett

Abstract:

Fire-tolerant eucalypt forests are one of the major forest ecosystems of south-eastern Australia and thought to be highly resistant to frequent high severity wildfires. However, the impact of different severity wildfires on the canopy structure of fire-tolerant forest type is under-studied, and there are significant knowledge gaps in relation to the assessment of tree and stand level canopy structural dynamics and recovery after fire. Assessment of canopy structure is a complex task involving accurate measurements of the horizontal and vertical arrangement of the canopy in space and time. This study examined the utility of multitemporal, small-footprint lidar data to describe the changes in the horizontal and vertical canopy structure of fire-tolerant eucalypt forests seven years after wildfire of different severities from the tree to stand level. Extensive ground measurements were carried out in four severity classes to describe and validate canopy cover and height metrics as they change after wildfire. Several metrics such as crown height and width, crown base height and clumpiness of crown were assessed at tree and stand level using several individual tree top detection and measurement algorithm. Persistent effects of high severity fire 8 years after both on tree crowns and stand canopy were observed. High severity fire increased the crown depth but decreased the crown projective cover leading to more open canopy.

Keywords: canopy gaps, canopy structure, crown architecture, crown projective cover, multi-temporal lidar, wildfire severity

Procedia PDF Downloads 170
1139 Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration

Authors: MyungGu Yeo, JongHan Ha, Gi-Hoon Yang, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications.

Keywords: bioink, cell-laden scaffold, micro/nanofibers, poly(caprolactone)

Procedia PDF Downloads 377
1138 Seismological Studies in Some Areas in Egypt

Authors: Gamal Seliem, Hassan Seliem

Abstract:

Aswan area is one of the important areas in Egypt and because it encompasses the vital engineering structure of the High dam, so it has been selected for the present study. The study of the crustal deformation and gravity associated with earthquake activity in the High Dam area of great importance for the safety of the High Dam and its economic resources. This paper deals with using micro-gravity, precise leveling and GPS data for geophysical and geodetically studies. For carrying out the detailed gravity survey in the area, were established for studying the subsurface structures. To study the recent vertical movements, a profile of 10 km length joins the High Dam and Aswan old dam were established along the road connecting the two dams. This profile consists of 35 GPS/leveling stations extending along the two sides of the road and on the High Dam body. Precise leveling was carried out with GPS and repeated micro-gravity survey in the same time. GPS network consisting of nine stations was established for studying the recent crustal movements. Many campaigns from December 2001 to December 2014 were performed for collecting the gravity, leveling and GPS data. The main aim of this work is to study the structural features and the behavior of the area, as depicted from repeated micro-gravity, precise leveling and GPS measurements. The present work focuses on the analysis of the gravity, leveling and GPS data. The gravity results of the present study investigate and analyze the subsurface geologic structures and reveal to there be minor structures; features and anomalies are taking W-E and N-S directions. The geodetic results indicated lower rates of the vertical and horizontal displacements and strain values. This may be related to the stability of the area.

Keywords: repeated micro-gravity changes, precise leveling, GPS data, Aswan High Dam

Procedia PDF Downloads 442
1137 Gender and Work-Family Conflict Gaps in Hong Kong: The Impact of Family-Friendly Policies

Authors: Lina Vyas

Abstract:

Gender gap, unfortunately, is still prevalent in the workplace around the world. In most countries, women are less likely than men to participate in the workplace. They earn considerably less than men for doing the same work and are generally expected to prioritize family obligations over work responsibilities. Women often face more conflicts while balancing the increasingly normalized roles of both worker and mother. True gender equality in the workplace is still a long way off. In Hong Kong, no less is this true. Despite the fact that female students are outnumbered by males at universities, only 55% of women are active participants in the labour market, and for those in the workforce, the gender pay gap is 22%. This structural inequality also exacerbates the issues of confronting biases at work for choosing to be employed as a mother, as well as reinforces the societal expectation of women to be the primary caregiver at home. These pressures are likely to add up for women and contribute to increased levels of work-life conflict, which may be a further barrier for the inclusion of women into the workplace. Family-friendly policies have long been thought to be an alleviator of work-life conflict through helping employees balance the demands in both work and family. Particularly, for women, this could be a facilitator of their integration into the workplace. However, little research has looked at how family-friendly policies may also have a gender differential in effect, as opposed to traditional notions of having universal efficacy. This study investigates both how and how much the gender dimension impacts work-family conflict. In addition to disentangling the reasons for gender gaps existing in work-life conflict for women, this study highlights what can be done at an organizational level to alleviate these conflicts. Most importantly, the policies recommendations derived from this study serve as an avenue for more active participation for women in the workplace and can be considered as a pathway for promoting greater gender egalitarianism and fairness in a traditionally gender-segregated society.

Keywords: family-friendly policies, Hong Kong, work-family conflict, workplace

Procedia PDF Downloads 172
1136 Effects on Cortical Thickness due to Musical Training in Elementary School Children: The Importance of Manual Structural Analysis

Authors: Saba Daneshmand, Assal Habibi

Abstract:

Studying musicians has become a prominent approach in macrostructural neuroscience research aimed at exploring the influence of environmental factors on brain development due to the significant impact of musical training on the brain. Although longitudinal studies can establish a direct causal relationship between musical training and brain development, only a limited number of studies have been conducted for a long enough duration. We recruited children for the experimental music group to participate in an after-school music program which was compared to the control group that had no such after-school program or enrichment activities. We ultimately calculated cortical thickness, a distinct measure of development. When a task such as playing an instrument occurs frequently, the associated neural processes become quicker and more refined over time, causing only the necessary pathways to remain; this, therefore, results in cortical thinning. The Brain and Music Lab has identified the anterior and posterior superior temporal gyrus, Heschl's gyrus, and the inferior regions to be involved with musicianship. The past study only found that the posterior superior temporal gyrus experienced a larger thinning in the music group compared to the control; however, we expect our ongoing study to produce similar but more intense results, including thinning in the other regions associated with musicianship. We believe the limited results of the previous study are due to its short duration which is why this ongoing and more lengthy longitudinal study is a significant and indispensable contribution in helping us discover the important developmental aspects of musical training.

Keywords: cortical thickness, music, neuroimaging, child development

Procedia PDF Downloads 2
1135 Hepatoprotective Assessment of L-Ascorbate 1-(2-Hydroxyethyl)-4,6-Dimethyl-1, 2-Dihydropyrimidine-2-On Exposure to Carbon Tetrachloride

Authors: Nail Nazarov, Alexandra Vyshtakalyuk, Vyacheslav Semenov, Irina Galyametdinova, Vladimir Zobov, Vladimir Reznik

Abstract:

Among hepatic pyrimidine used as a means of stimulating protein synthesis and recovery of liver cells in her damaged toxic and infectious etiology. When an experimental toxic hepatitis hepatoprotective activity detected some pyrimidine derivatives. There are literature data on oksimetiluratcila hepatoprotective effect. For analogs of pyrimidine nucleobases - drugs Methyluracilum pentoxy and hepatoprotective effect of weakly expressed. According to the American scientists broad spectrum of biological activity, including hepatoprotective properties, have a 2,4-dioxo-5-arilidenimino uracils. Influenced Xymedon medicinal preparation (1- (beta-hydroxyethyl) -4,6-dimethyl-1,2-dihydro-2-oksopirimidin) developed as a means of stimulating the regeneration of tissue revealed increased activity of microsomal oxidases human liver. In studies on the model of toxic liver damage in rats have shown hepatoprotective effect xymedon and stimulating its impact on the recovery of the liver tissue. Hepatoprotective properties of the new compound in the series of pyrimidine derivatives L-ascorbate 1-(2-hydroxyethyl)-4,6-dimethyl-1,2-dihydropirimidine-2-one synthesized on the basis Xymedon preparation were firstly investigated on rats under the carbon tetrachloride action. It was shown the differences of biochemical parameters from the reference value and severity of structural-morphological liver violations decreased in comparison with control group under the influence of the compound injected before exposure carbon tetrachloride. Hepatoprotective properties of the investigated compound were more pronounced in comparison with Xymedon.

Keywords: hepatoprotectors, pyrimidine derivatives, toxic liver damage, xymedon

Procedia PDF Downloads 421
1134 A Case Study of Business Analytic Use in European Football: Analysis and Implications

Authors: M. C. Schloesser

Abstract:

The purpose of this paper is to explore the use and impact of business analytics in European football. Despite good evidence from other major sports leagues, research on this topic in Europe is currently very scarce. This research relies on expert interviews on the use and objective of business analytics. Along with revenue data over 16 seasons spanning from 2004/05 to 2019/20 from Manchester City FC, we conducted a time series analysis to detect a structural breakpoint on the different revenue streams, i.e., sponsorship and ticketing, after analytical tools have been implemented. We not only find that business analytics have indeed been applied at Manchester City FC and revenue increase is the main objective of their utilization but also that business analytics is indeed a good means to increase revenues if applied sufficiently. We can thereby support findings from other sports leagues. Consequently, professional sports organizations are advised to apply business analytics if they aim to increase revenues. This research has shown that analytical practices do, in fact, support revenue growth and help to work more efficiently. As the knowledge of analytical practices is very confidential and not publicly available, we had to select one club as a case study which can be considered a research limitation. Other practitioners should explore other clubs or leagues. Further, there are other factors that can lead to increased revenues that need to be considered. Additionally, sports organizations need resources to be able to apply and utilize business analytics. Consequently, findings might only apply to the top teams of the European football leagues. Nonetheless, this paper combines insights and results on usage, objectives, and impact of business analytics in European professional football and thereby fills a current research gap.

Keywords: business analytics, expert interviews, revenue management, time series analysis

Procedia PDF Downloads 73
1133 Seismic Assessment of Passive Control Steel Structure with Modified Parameter of Oil Damper

Authors: Ahmad Naqi

Abstract:

Today, the passively controlled buildings are extensively becoming popular due to its excellent lateral load resistance circumstance. Typically, these buildings are enhanced with a damping device that has high market demand. Some manufacturer falsified the damping device parameter during the production to achieve the market demand. Therefore, this paper evaluates the seismic performance of buildings equipped with damping devices, which their parameter modified to simulate the falsified devices, intentionally. For this purpose, three benchmark buildings of 4-, 10-, and 20-story were selected from JSSI (Japan Society of Seismic Isolation) manual. The buildings are special moment resisting steel frame with oil damper in the longitudinal direction only. For each benchmark buildings, two types of structural elements are designed to resist the lateral load with and without damping devices (hereafter, known as Trimmed & Conventional Building). The target building was modeled using STERA-3D, a finite element based software coded for study purpose. Practicing the software one can develop either three-dimensional Model (3DM) or Lumped Mass model (LMM). Firstly, the seismic performance of 3DM and LMM models was evaluated and found excellent coincide for the target buildings. The simplified model of LMM used in this study to produce 66 cases for both of the buildings. Then, the device parameters were modified by ± 40% and ±20% to predict many possible conditions of falsification. It is verified that the building which is design to sustain the lateral load with support of damping device (Trimmed Building) are much more under threat as a result of device falsification than those building strengthen by damping device (Conventional Building).

Keywords: passive control system, oil damper, seismic assessment, lumped mass model

Procedia PDF Downloads 112
1132 Role of Chloride Ions on The Properties of Electrodeposited ZnO Nanostructures

Authors: L. Mentar, O. Baka, M. R. Khelladi, A. Azizi

Abstract:

Zinc oxide (ZnO), as a transparent semiconductor with a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, is one of the most promising materials for a wide range of modern applications. With the development of film growth technologies and intense recent interest in nanotechnology, several varieties of ZnO nanostructured materials have been synthesized almost exclusively by thermal evaporation methods, particularly chemical vapor deposition (CVD), which generally require a high growth temperature above 550 °C. In contrast, wet chemistry techniques such as hydrothermal synthesis and electro-deposition are promising alternatives to synthesize ZnO nanostructures, especially at a significantly lower temperature (below 200°C). In this study, the electro-deposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate from chloride bath. We present the influence of KCl concentrations on the electro-deposition process, morphological, structural and optical properties of ZnO nanostructures. The potentials of electro-deposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. Field emission scanning electron microscopy (FESEM) images showed different sizes and morphologies of the nanostructures which depends on the concentrations of Cl-. Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. X-ray diffraction (XRD) study confirms the Wurtzite phase of the ZnO nanostructures with a preferred oriented along (002) plane normal to the substrate surface. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.

Keywords: Cl-, electro-deposition, FESEM, Mott-Schottky, XRD, ZnO

Procedia PDF Downloads 285
1131 The Effect of Loud Working Environment on Incidence of Back Pain

Authors: Marcel Duh, Jadranka Stricevic, David Halozan, Dusan Celan

Abstract:

Back pain is not only the result of structural or biomechanical abnormalities of the spine but is also associated with cognitive and behavioral aspects of pain and thus represents biopsychosocial problem. Stressors are not only interpersonal conflicts, negative life events, and dangerous situations but also noise. Effects of noise on human beings are psychological (excitement, stress), sensory, and physiological. The harmful effects of noise can be seen in the 40-65 dB range and are manifested as fatigue, irritability, poor sleep and psychological discomfort of the worker. Within 65-90 dB range, body metabolism increases, oxygen consumption is higher, tachycardia and hypertension appear, and the tone of skeletal muscles increases. The purpose of the study was to determine whether the stress caused by noise at the work place increases the incidence of back pain. Measurements of noise levels were carried out in three different wards of social care institution. The measurement on each ward was repeated 3 times (total of 9 measurements) for 8 hours during the morning shift. The device was set up in the room where clients spent most of the day. The staff on the ward replied to the questionnaire consisting of closed type questions about basic demographic information and information about back pain. We find that noise levels as measured in our study had no statistically significant effect on the incidence of back pain (p = 0.90). We also find that health care workers who perceive their work as stressful, have more back pain than those who perceive their job as unstressful, but correlation is statistically insignificant (p = 0.682). With our study, we have proven findings of other authors, that noise level below 65 dB does not have a significant influence on the incidence of back pain.

Keywords: health care workers, musculoskeletal disorder, noise, sick leave

Procedia PDF Downloads 118
1130 Synthesis and Characterization of Cassava Starch-Zinc Nanocomposite Film for Food Packaging Application

Authors: Adeshina Fadeyibi

Abstract:

Application of pure thermoplastic film in food packaging is greatly limited because of its poor service performance, often enhanced by the addition of organic or inorganic particles in the range of 1–100 nm. Thus, this study was conducted to develop cassava starch zinc-nanocomposite films for applications in food packaging. Three blending ratios of 1000 g cassava starch, 45–55 % (w/w) glycerol and 0–2 % (w/w) zinc nanoparticles were formulated, mixed and mechanically homogenized to form the nanocomposite. Thermoplastic were prepared, from a dispersed mixture of 24 g of the nanocomposite and 600 ml of distilled water, and heated to 90oC for 30 minutes. Plastic molds of 350 ×180 mm dimension and 8, 10 and 12 mm depths were used for film casting and drying at 60oC and 80 % RH for 24 hour. The average thicknesses of the dried films were found to be 15, 16 and 17 µm. The films were characterized based on their barrier, thermal, mechanical and structural properties. The results show that the oxygen and water vapor barrier properties increased with glycerol concentration and decreased with thickness; but the full width at half maximum (FWHM) and d- spacing increased with thickness. The higher degree of d- spacing obtained is a consequence of higher polymer intercalation and exfoliation. Also, only 2 % weight degradation was observed when the films were exposed to temperature between 30–60oC; indicating that they are thermally stable and can be used for packaging applications in the tropics. The mechanical properties of the film were higher than that of the pure thermoplastic but comparable with the LDPE films. The information on the characterized attributes and optimization of the cassava starch zinc-nanocomposite films justifies their alternative application to pure thermoplastic and conventional films for food packaging.

Keywords: synthesis, characterization, casaava Starch, nanocomposite film, packaging

Procedia PDF Downloads 116
1129 Assessment and Evaluation Resilience of Urban Neighborhoods in Coping with Natural Disasters in in the Metropolis of Tabriz (Case Study: Region 6 of Tabriz)

Authors: Ali panahi-Kosar Khosravi

Abstract:

Earthquake resilience is one of the most important theoretical and practical concepts in crisis management. Over the past few decades, the rapid growth of urban areas and developing lower urban areas (especially in developing countries) have made them more vulnerable to human and natural crises. Therefore, the resilience of urban communities, especially low-income and unhealthy neighborhoods, is of particular importance. The present study seeks to assess and evaluate the resilience of neighborhoods in the center of district 6 of Tabriz in terms of awareness, knowledge and personal skills, social and psychological capital, managerial-institutional, and the ability to return to appropriate and sustainable conditions. The research method in this research is descriptive-analytical. The authors used library and survey methods to collect information and a questionnaire to assess resilience. The statistical population of this study is the total households living in the four neighborhoods of Shanb Ghazan, Khatib, Gharamalek, and Abuzar alley. Three hundred eighty-four families from four neighborhoods were selected based on the Cochran formula using a simple random sampling method. A one-sample t-test, simple linear regression, and structural equations were used to test the research hypotheses. Findings showed that only two social and psychological awareness and capital indicators in district 6 of Tabriz had a favorable and approved status. Therefore, considering the multidimensional concept of resilience, district 6 of Tabriz is in an unfavorable resilience situation. Also, the findings based on the analysis of variance indicated no significant difference between the neighborhoods of district 6 in terms of resilience, and most neighborhoods are in an unfavorable situation.

Keywords: resilience, statistical analysis, earthquake, district 6 of tabriz

Procedia PDF Downloads 73
1128 Study and Acquisition of the Duality of the Arabic Language

Authors: Oleg Redkin, Olga Bernikova

Abstract:

It is commonly accepted that every language is both pure linguistic phenomenon as well as socially significant communicative system, which exists on the basis of certain society - its collective 'native speaker'. Therefore the language evolution and features besides its own linguistic rules and regulations are also defined by the influence of a number of extra-linguistic factors. The above mentioned statement may be illustrated by the example of the Arabic language which may be characterized by the following peculiarities: - the inner logic of the Arabic language - the 'algebraicity' of its morphological paradigms and grammar rules; - association of the Arabic language with the sacred texts of Islam, its close ties with the pre-Islamic and Islamic cultural heritage - the pre-Islamic poetry and Islamic literature and science; - territorial distribution, which in recent years went far beyond the boundaries of its traditional realm due to the development of new technologies and the spread of mass media, and what is more important, migration processes; - association of the Arabic language with the so called 'Renaissance of Islam'. These peculiarities should be remembered while considering the status of the Modern Standard Arabic (MSA) language or the Classical Arabic (CA) language as well as the Modern Arabic (MA) dialects in synchrony or from the diachronic point of view. Continuity of any system in diachrony on the one hand depends on the level of its ability to adapt itself to changing environment and by its internal ties on the other. Structural durability of language is characterized by its inner logic, hierarchy of paradigms and its grammar rules, as well as continuity of their implementation in acts of everyday communication. Since the Arabic language is both linguistic and social phenomenon the process of the Arabic language acquisition and study should not be focused only on the knowledge about linguistic features or development of communicative skills alone, but must be supplied with the information related to culture, history and religion of peoples of certain region that will expand and enrich competences of the target audience.

Keywords: Arabic, culture, Islam, language

Procedia PDF Downloads 272
1127 An Effective Synthesis Method of Microwave Solution Combustion with the Application of Visible Light-Responsive Photocatalyst of Rb21 Dye

Authors: Rahul Jarariya

Abstract:

The textile industry uses various types of dyes and discharges a lot of highly coloured wastewater. It impacts the environment like allergic reaction, respiratory, skin problems, irritation to a mucous membrane, the upper respiratory tract has to the fore, Intoxicated dye discharges 40 to 50,000 tons with great concern. Spinel ferrites gained a lot of attention due to their wide application area from biomedical to wastewater treatment. Generally, spinel ferrite is known as M-Fe2O4. Spinel type nanoparticles possess high suspension stability. The synthesis method of Microwave solution combustion (MC) method is effective for nanoscale materials, including oxides, metals, alloys, and sulfides, works as fast and energy-efficient during the process. The review focuses on controlling, nanostructure and doping. The influence of the fuel concentration and the post-treatment temperature on the structural and magnetic properties. The effects of amounts of fuel and phase changes, particle size and shape, and magnetic properties can be characterized by various techniques. Urea is the most commonly used fuel. Ethanol or n-butanol is apt for removing impurities. As a result of the materials gives fine purity. Photocatalysis phenomena act with catalyst dosage to degrade dye from wastewater. Visible light responsive produces a large amount of hydroxyl (•OH) radical made the degradation efficiency of Rh21 type dye. It develops a narrow bandgap to make it suitable for enhanced photocatalytic activity.

Keywords: microwave solution combustion method, normal spinel, doped spinels, magnetic property, Rb21

Procedia PDF Downloads 177
1126 Changes in Cognition of Elderly People: A Longitudinal Study in Kanchanaburi Province, Thailand

Authors: Natchaphon Auampradit, Patama Vapattanawong, Sureeporn Punpuing, Malee Sunpuwan, Tawanchai Jirapramukpitak

Abstract:

Longitudinal studies related to cognitive impairment in elderly are necessary for health promotion and development. The purposes of this study were (1) to examine changes in cognition of elderly over time and (2) to examine the impacts of changes in social determinants of health (SDH) toward changes in cognition of elderly by using the secondary data derived from the Kanchanaburi Demographic Surveillance System (KDSS) by the Institute for Population and Social Research (IPSR) which contained longitudinal data on individuals, households, and villages. Two selected projects included the Health and Social Support for Elderly in KDSS in 2007 and the Population, Economic, Social, Cultural, and Long-term Care Surveillance for Thai Elderly People’s Health Promotion in 2011. The samples were 586 elderly participated in both projects. SDH included living arrangement, social relationships with children, relatives, and friends, household asset-based wealth index, household monthly income, loans for livings, loans for investment, and working status. Cognitive impairment was measured by category fluency and delayed recall. This study employed Generalized Estimating Equation (GEE) model to investigate changes in cognition by taking SDH and other variables such as age, gender, marital status, education, and depression into the model. The unstructured correlation structure was selected to use for analysis. The results revealed that 24 percent of elderly had cognitive impairment at baseline. About 13 percent of elderly still had cognitive impairment during 2007 until 2011. About 21 percent and 11 percent of elderly had cognitive decline and cognitive improvement, respectively. The cross-sectional analysis showed that household asset-based wealth index, social relationship with friends, working status, age, marital status, education, and depression were significantly associated with cognitive impairment. The GEE model revealed longitudinal effects of household asset-based wealth index and working status against cognition during 2007 until 2011. There was no longitudinal effect of social conditions against cognition. Elderly living with richer household asset-based wealth index, still being employed, and being younger were less likely to have cognitive impairment. The results strongly suggested that poorer household asset-based wealth index and being unemployed were served as a risk factor for cognitive impairment over time. Increasing age was still the major risk for cognitive impairment as well.

Keywords: changes in cognition, cognitive impairment, elderly, KDSS, longitudinal study

Procedia PDF Downloads 137
1125 Enhancement of Light Extraction of Luminescent Coating by Nanostructuring

Authors: Aubry Martin, Nehed Amara, Jeff Nyalosaso, Audrey Potdevin, FrançOis ReVeret, Michel Langlet, Genevieve Chadeyron

Abstract:

Energy-saving lighting devices based on LightEmitting Diodes (LEDs) combine a semiconductor chip emitting in the ultraviolet or blue wavelength region to one or more phosphor(s) deposited in the form of coatings. The most common ones combine a blue LED with the yellow phosphor Y₃Al₅O₁₂:Ce³⁺ (YAG:Ce) and a red phosphor. Even if these devices are characterized by satisfying photometric parameters (Color Rendering Index, Color Temperature) and good luminous efficiencies, further improvements can be carried out to enhance light extraction efficiency (increase in phosphor forward emission). One of the possible strategies is to pattern the phosphor coatings. Here, we have worked on different ways to nanostructure the coating surface. On the one hand, we used the colloidal lithography combined with the Langmuir-Blodgett technique to directly pattern the surface of YAG:Tb³⁺ sol-gel derived coatings, YAG:Tb³⁺ being used as phosphor model. On the other hand, we achieved composite architectures combining YAG:Ce coatings and ZnO nanowires. Structural, morphological and optical properties of both systems have been studied and compared to flat YAG coatings. In both cases, nanostructuring brought a significative enhancement of photoluminescence properties under UV or blue radiations. In particular, angle-resolved photoluminescence measurements have shown that nanostructuring modifies photons path within the coatings, with a better extraction of the guided modes. These two strategies have the advantage of being versatile and applicable to any phosphor synthesizable by sol-gel technique. They then appear as promising ways to enhancement luminescence efficiencies of both phosphor coatings and the optical devices into which they are incorporated, such as LED-based lighting or safety devices.

Keywords: phosphor coatings, nanostructuring, light extraction, ZnO nanowires, colloidal lithography, LED devices

Procedia PDF Downloads 173