Search results for: demand selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5434

Search results for: demand selection

874 Automatic Differentiation of Ultrasonic Images of Cystic and Solid Breast Lesions

Authors: Dmitry V. Pasynkov, Ivan A. Egoshin, Alexey A. Kolchev, Ivan V. Kliouchkin

Abstract:

In most cases, typical cysts are easily recognized at ultrasonography. The specificity of this method for typical cysts reaches 98%, and it is usually considered as gold standard for typical cyst diagnosis. However, it is necessary to have all the following features to conclude the typical cyst: clear margin, the absence of internal echoes and dorsal acoustic enhancement. At the same time, not every breast cyst is typical. It is especially characteristic for protein-contained cysts that may have significant internal echoes. On the other hand, some solid lesions (predominantly malignant) may have cystic appearance and may be falsely accepted as cysts. Therefore we tried to develop the automatic method of cystic and solid breast lesions differentiation. Materials and methods. The input data were the ultrasonography digital images with the 256-gradations of gray color (Medison SA8000SE, Siemens X150, Esaote MyLab C). Identification of the lesion on these images was performed in two steps. On the first one, the region of interest (or contour of lesion) was searched and selected. Selection of such region is carried out using the sigmoid filter where the threshold is calculated according to the empirical distribution function of the image brightness and, if necessary, it was corrected according to the average brightness of the image points which have the highest gradient of brightness. At the second step, the identification of the selected region to one of lesion groups by its statistical characteristics of brightness distribution was made. The following characteristics were used: entropy, coefficients of the linear and polynomial regression, quantiles of different orders, an average gradient of brightness, etc. For determination of decisive criterion of belonging to one of lesion groups (cystic or solid) the training set of these characteristics of brightness distribution separately for benign and malignant lesions were received. To test our approach we used a set of 217 ultrasonic images of 107 cystic (including 53 atypical, difficult for bare eye differentiation) and 110 solid lesions. All lesions were cytologically and/or histologically confirmed. Visual identification was performed by trained specialist in breast ultrasonography. Results. Our system correctly distinguished all (107, 100%) typical cysts, 107 of 110 (97.3%) solid lesions and 50 of 53 (94.3%) atypical cysts. On the contrary, with the bare eye it was possible to identify correctly all (107, 100%) typical cysts, 96 of 110 (87.3%) solid lesions and 32 of 53 (60.4%) atypical cysts. Conclusion. Automatic approach significantly surpasses the visual assessment performed by trained specialist. The difference is especially large for atypical cysts and hypoechoic solid lesions with the clear margin. This data may have a clinical significance.

Keywords: breast cyst, breast solid lesion, differentiation, ultrasonography

Procedia PDF Downloads 264
873 Assessing the Effect of Urban Growth on Land Surface Temperature: A Case Study of Conakry Guinea

Authors: Arafan Traore, Teiji Watanabe

Abstract:

Conakry, the capital city of the Republic of Guinea, has experienced a rapid urban expansion and population increased in the last two decades, which has resulted in remarkable local weather and climate change, raise energy demand and pollution and treating social, economic and environmental development. In this study, the spatiotemporal variation of the land surface temperature (LST) is retrieved to characterize the effect of urban growth on the thermal environment and quantify its relationship with biophysical indices, a normalized difference vegetation index (NDVI) and a normalized difference built up Index (NDBI). Landsat data TM and OLI/TIRS acquired respectively in 1986, 2000 and 2016 were used for LST retrieval and Land use/cover change analysis. A quantitative analysis based on the integration of a remote sensing and a geography information system (GIS) has revealed an important increased in the LST pattern in the average from 25.21°C in 1986 to 27.06°C in 2000 and 29.34°C in 2016, which was quite eminent with an average gain in surface temperature of 4.13°C over 30 years study period. Additionally, an analysis using a Pearson correlation (r) between (LST) and the biophysical indices, normalized difference vegetation index (NDVI) and a normalized difference built-up Index (NDBI) has revealed a negative relationship between LST and NDVI and a strong positive relationship between LST and NDBI. Which implies that an increase in the NDVI value can reduce the LST intensity; conversely increase in NDBI value may strengthen LST intensity in the study area. Although Landsat data were found efficient in assessing the thermal environment in Conakry, however, the method needs to be refined with in situ measurements of LST in the future studies. The results of this study may assist urban planners, scientists and policies makers concerned about climate variability to make decisions that will enhance sustainable environmental practices in Conakry.

Keywords: Conakry, land surface temperature, urban heat island, geography information system, remote sensing, land use/cover change

Procedia PDF Downloads 238
872 Development of Microsatellite Markers for Dalmatian Pyrethrum Using Next-Generation Sequencing

Authors: Ante Turudic, Filip Varga, Zlatko Liber, Jernej Jakse, Zlatko Satovic, Ivan Radosavljevic, Martina Grdisa

Abstract:

Microsatellites (SSRs) are highly informative repetitive sequences of 2-6 base pairs, which are the most used molecular markers in assessing the genetic diversity of plant species. Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip) is an outcrossing diploid (2n = 18) endemic to the eastern Adriatic coast and source of the natural insecticide pyrethrin. Due to the high repetitiveness and large size of the genome (haploid genome size of 9,58 pg), previous attempts to develop microsatellite markers using the standard methods were unsuccessful. A next-generation sequencing (NGS) approach was applied on genomic DNA extracted from fresh leaves of Dalmatian pyrethrum. The sequencing was conducted using NovaSeq6000 Illumina sequencer, after which almost 400 million high-quality paired-end reads were obtained, with a read length of 150 base pairs. Short reads were assembled by combining two approaches; (1) de-novo assembly and (2) joining of overlapped pair-end reads. In total, 6.909.675 contigs were obtained, with the contig average length of 249 base pairs. Of the resulting contigs, 31.380 contained one or multiple microsatellite sequences, in total 35.556 microsatellite loci were identified. Out of detected microsatellites, dinucleotide repeats were the most frequent, accounting for more than half of all microsatellites identifies (21,212; 59.7%), followed by trinucleotide repeats (9,204; 25.9%). Tetra-, penta- and hexanucleotides had similar frequency of 1,822 (5.1%), 1,472 (4.1%), and 1,846 (5.2%), respectively. Contigs containing microsatellites were further filtered by SSR pattern type, transposon occurrences, assembly characteristics, GC content, and the number of occurrences against the draft genome of T. cinerariifolium published previously. After the selection process, 50 microsatellite loci were used for primer design. Designed primers were tested on samples from five distinct populations, and 25 of them showed a high degree of polymorphism. The selected loci were then genotyped on 20 samples belonging to one population resulting in 17 microsatellite markers. Availability of codominant SSR markers will significantly improve the knowledge on population genetic diversity and structure as well as complex genetics and biochemistry of this species. Acknowledgment: This work has been fully supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir/ Sch. Bip.) insecticidal potential’ - (PyrDiv) (IP-06-2016-9034).

Keywords: genome assembly, NGS, SSR, Tanacetum cinerariifolium

Procedia PDF Downloads 128
871 Identifying Large-Scale Photovoltaic and Concentrated Solar Power Hot Spots: Multi-Criteria Decision-Making Framework

Authors: Ayat-Allah Bouramdane

Abstract:

Solar Photovoltaic (PV) and Concentrated Solar Power (CSP) do not burn fossil fuels and, therefore, could meet the world's needs for low-carbon power generation as they do not release greenhouse gases into the atmosphere as they generate electricity. The power output of the solar PV module and CSP collector is proportional to the temperature and the amount of solar radiation received by their surface. Hence, the determination of the most convenient locations of PV and CSP systems is crucial to maximizing their output power. This study aims to provide a hands-on and plausible approach to the multi-criteria evaluation of site suitability of PV and CSP plants using a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP). Applying the GRI-based AHP approach is meant to specify the criteria and sub-criteria, to identify the unsuitable areas, the low-, moderate-, high- and very high suitable areas for each layer of GRI, to perform the pairwise comparison matrix at each level of the hierarchy structure based on experts' knowledge, and calculate the weights using AHP to create the final map of solar PV and CSP plants suitability in Morocco with a particular focus on the Dakhla city. The results recognize that solar irradiation is the main decision factor for the integration of these technologies on energy policy goals of Morocco but explicitly account for other factors that cannot only limit the potential of certain locations but can even exclude the Dakhla city classified as unsuitable area. We discuss the sensitivity of the PV and CSP site suitability to different aspects, such as the methodology, the climate conditions, and the technology used in each source, and provide the final recommendations to the Moroccan energy strategy by analyzing if actual Morocco's PV and CSP installations are located within areas deemed suitable and by discussing several cases to provide mutual benefits across the Food-Energy-Water nexus. The adapted methodology and conducted suitability map could be used by researchers or engineers to provide helpful information for decision-makers in terms of sites selection, design, and planning of future solar plants, especially in areas suffering from energy shortages, such as the Dakhla city, which is now one of Africa's most promising investment hubs and it is especially attractive to investors looking to root their operations in Africa and import to European markets.

Keywords: analytic hierarchy process, concentrated solar power, dakhla, geographic referenced information, Morocco, multi-criteria decision-making, photovoltaic, site suitability

Procedia PDF Downloads 164
870 The Modern Era in the Cricket World: How Far Have We Really Come?

Authors: Habib Noorbhai

Abstract:

History of Cricket: Cricket has a known history spanning from the 16th century till present, with international matches having been played since 1844. The game of cricket arrived in Australia as soon as colonization began in 1788. Cricketers started playing on turf wickets in the late 1800’s and dimensions for both the boundary and pitch later became assimilated. As the years evolved, cricket bats and balls, protective equipment, playing surfaces and the three formats of the game adapted to the playing conditions and laws of cricket. Business of Cricket: During the late 1900's, the shorter version of the game (T20) was introduced in order to attract the crowds to stadiums and television viewers for broadcasting rights. One could argue if this was merely a business venture or a platform for enhancing the performance of cricketers. Between the 16th and 20th century, cricket was a common sport played for passion and pure enjoyment. Industries saw a potential in diversified business ventures in the game (as well as other sports played globally) and cricket subsequently became a career for players, administrators and coaches, the media, health professionals, managers and the corporate world. Pros and Cons of Cricket Developments: At present, the game has significantly gained from the use of technology, sports sciences and varied mechanisms to optimize the performances and forecast frameworks for injury prevention in cricket players. Unfortunately, these had not been utilized in the earlier times of cricket and it would prove interesting to observe how the greats of the game would have benefited with such developments. Cricketers in the 21st century are faced with many overwhelming commitments. One of these is playing cricket for 11 months in a year, making it more than 250 days away from home and their families. As the demand of player contracts increase, the supply of commitment and performances from players increase. Way Forward and Future Implications: The questions are: Are such disadvantages contributing to the overload and injury risks of players? How far have we really come in the cricketing world or has everything since the game’s inception become institutionalized with a business model? These are the fundamental questions which need to be addressed and legislation, policies and ethical considerations need to be drafted and implemented. These will ensure that there is equilibrium of effective transitions and management of not only the players, but also the credibility of the wonderful game.

Keywords: enterprising business of cricket, technology, legislation, credibility

Procedia PDF Downloads 444
869 Fast Transient Workflow for External Automotive Aerodynamic Simulations

Authors: Christina Peristeri, Tobias Berg, Domenico Caridi, Paul Hutcheson, Robert Winstanley

Abstract:

In recent years the demand for rapid innovations in the automotive industry has led to the need for accelerated simulation procedures while retaining a detailed representation of the simulated phenomena. The project’s aim is to create a fast transient workflow for external aerodynamic CFD simulations of road vehicles. The geometry used was the SAE Notchback Closed Cooling DrivAer model, and the simulation results were compared with data from wind tunnel tests. The meshes generated for this study were of two types. One was a mix of polyhedral cells near the surface and hexahedral cells away from the surface. The other was an octree hex mesh with a rapid method of fitting to the surface. Three different grid refinement levels were used for each mesh type, with the biggest total cell count for the octree mesh being close to 1 billion. A series of steady-state solutions were obtained on three different grid levels using a pseudo-transient coupled solver and a k-omega-based RANS turbulence model. A mesh-independent solution was found in all cases with a medium level of refinement with 200 million cells. Stress-Blended Eddy Simulation (SBES) was chosen for the transient simulations, which uses a shielding function to explicitly switch between RANS and LES mode. A converged pseudo-transient steady-state solution was used to initialize the transient SBES run that was set up with the SIMPLEC pressure-velocity coupling scheme to reach the fastest solution (on both CPU & GPU solvers). An important part of this project was the use of FLUENT’s Multi-GPU solver. Tesla A100 GPU has been shown to be 8x faster than an Intel 48-core Sky Lake CPU system, leading to significant simulation speed-up compared to the traditional CPU solver. The current study used 4 Tesla A100 GPUs and 192 CPU cores. The combination of rapid octree meshing and GPU computing shows significant promise in reducing time and hardware costs for industrial strength aerodynamic simulations.

Keywords: CFD, DrivAer, LES, Multi-GPU solver, octree mesh, RANS

Procedia PDF Downloads 112
868 Evaluation of Water Management Options to Improve the Crop Yield and Water Productivity for Semi-Arid Watershed in Southern India Using AquaCrop Model

Authors: V. S. Manivasagam, R. Nagarajan

Abstract:

Modeling the soil, water and crop growth interactions are attaining major importance, considering the future climate change and water availability for agriculture to meet the growing food demand. Progress in understanding the crop growth response during water stress period through crop modeling approach provides an opportunity for improving and sustaining the future agriculture water use efficiency. An attempt has been made to evaluate the potential use of crop modeling approach for assessing the minimal supplementary irrigation requirement for crop growth during water limited condition and its practical significance in sustainable improvement of crop yield and water productivity. Among the numerous crop models, water driven-AquaCrop model has been chosen for the present study considering the modeling approach and water stress impact on yield simulation. The study has been evaluated in rainfed maize grown area of semi-arid Shanmuganadi watershed (a tributary of the Cauvery river system) located in southern India during the rabi cropping season (October-February). In addition to actual rainfed maize growth simulation, irrigated maize scenarios were simulated for assessing the supplementary irrigation requirement during water shortage condition for the period 2012-2015. The simulation results for rainfed maize have shown that the average maize yield of 0.5-2 t ha-1 was observed during deficit monsoon season (<350 mm) whereas 5.3 t ha-1 was noticed during sufficient monsoonal period (>350 mm). Scenario results for irrigated maize simulation during deficit monsoonal period has revealed that 150-200 mm of supplementary irrigation has ensured the 5.8 t ha-1 of irrigated maize yield. Thus, study results clearly portrayed that minimal application of supplementary irrigation during the critical growth period along with the deficit rainfall has increased the crop water productivity from 1.07 to 2.59 kg m-3 for major soil types. Overall, AquaCrop is found to be very effective for the sustainable irrigation assessment considering the model simplicity and minimal inputs requirement.

Keywords: AquaCrop, crop modeling, rainfed maize, water stress

Procedia PDF Downloads 262
867 Personal Development of School-Children on Lessons Physical Culture

Authors: Rogaleva Liudmila, Malkin Valery

Abstract:

Physical culture lessons are considered not only to be a means of physical development of students, but a matter of their personal development. Physical culture lessons can enable to develop such qualities of students as activity and initiation, readiness to cooperate, self-confidence, ability to define and reach targets, readiness to overcome difficulties and assess their abilities (and disadvantages) properly in any precise situation as well to be responsible for their own decision. The solution of this problem is possible under the circumstance if the students aware themselves as the subject of the activity that are able to develop their possibilities. The research was aimed to learn the matters that enable female teenagers of senior forms to become strong personalities attending physical culture lessons. There were two stages of the research. At the first stage we define the interests and demands of the girls. According the results of research we changed the programme of physical culture lessons. We took into consideration values of youth subculture: youth music, preferences to sport-dancing physical activities, demand of self-determination, revealing their individualities, needs of cooperative work. At the second stage we worked out motivating technology of course. This technology was aimed to create sush conditions under which students could show themselves as the subjects of activity and self-development. The active participation sport-dance festivals during 2-3 years creates the conditions for their self-realization. 78% students of the experimental groups considered their main motives to were: the interest, developing of their abilities, the satisfaction of the achievements of targets. Control groups 67% of the students claimed the success school good marks. The girls said that due to festivals they became self-confident (94%), responsible (86%), ability to cooperate (73%), aspiration for reaching the target (68%), self-exactingness (57 %). The main factors that provide successful performance were called: efforts to reach the target (87%), mutual support and mutual understanding (77%). The research on values showed that in the experimental groups we can find increase of importance of such values as: social initiative (active life) 83%, friends (75%), self-control (73%), effectiveness in deeds (58%).

Keywords: physical culture, subject, personal development, self-determination

Procedia PDF Downloads 465
866 Integrating Renewable Energy Forecasting Systems with HEMS and Developing It with a Bottom-Up Approach

Authors: Punit Gandhi, J. C. Brezet, Tim Gorter, Uchechi Obinna

Abstract:

This paper introduces how weather forecasting could help in more efficient energy management for smart homes with the use of Home Energy Management Systems (HEMS). The paper also focuses on educating consumers and helping them make more informed decisions while using the HEMS. A combined approach of technical and user perspective has been selected to develop a novel HEMS-product-service combination in a more comprehensive manner. The current HEMS switches on/off the energy intensive appliances based on the fluctuating electricity tariffs, but with weather forecasting, it is possible to shift the time of use of energy intensive appliances to maximum electricity production from the renewable energy system installed in the house. Also, it is possible to estimate the heating/cooling load of the house for the day ahead demand. Hence, relevant insight is gained in the expected energy production and consumption load for the next day, facilitating better (more efficient, peak shaved, cheaper, etc.) energy management practices for smart homes. In literature, on the user perspective, it has been observed that consumers lose interest in using HEMS after three to four months. Therefore, to further help in better energy management practices, the new system had to be designed in a way that consumers would sustain their interaction with the system on a structural basis. It is hypothesized that, if consumers feel more comfortable with using such system, it would lead to a prolonged usage, including more energy savings and hence financial savings. To test the hypothesis, a survey for the HEMS is conducted, to which 59 valid responses were recorded. Analysis of the survey helped in designing a system which imparts better information about the energy production and consumption to the consumers. It is also found from the survey that, consumers like a variety of options and they do not like a constant reminder of what they should do. Hence, the final system is designed to encourage consumers to make an informed decision about their energy usage with a wide variety of behavioral options available. It is envisaged that the new system will be tested in several pioneering smart energy grid projects in both the Netherlands and India, with a continued ‘design thinking’ approach, combining the technical and user perspective, as the basis for further improvements.

Keywords: weather forecasting, smart grid, renewable energy forecasting, user defined HEMS

Procedia PDF Downloads 226
865 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System

Authors: Eronini Iheanyi Umez-Eronini

Abstract:

Most studies and existing implementations of compressed air energy storage (CAES) coupled with a wind farm to overcome intermittency and variability of wind power are based on bulk or centralized CAES plants. A dynamic model of a hybrid wind farm with wind turbines and distributed CAES, consisting of air storage tanks and compressor and expander trains at each wind turbine station, is developed and simulated in MATLAB. An ad hoc supervisory controller, in which the wind turbines are simply operated under classical power optimizing region control while scheduling power production by the expanders and air storage by the compressors, including modulation of the compressor power levels within a control range, is used to regulate overall farm power production to track minute-scale (3-minutes sampling period) TSO absolute power reference signal, over an eight-hour period. Simulation results for real wind data input with a simple wake field model applied to a hybrid plant composed of ten 5-MW wind turbines in a row and ten compatibly sized and configured Diabatic CAES stations show the plant controller is able to track the power demand signal within an error band size on the order of the electrical power rating of a single expander. This performance suggests that much improved results should be anticipated when the global D-CAES control is combined with power regulation for the individual wind turbines using available approaches for wind farm active power control. For standalone power plant fuel electrical efficiency estimate of up to 60%, the round trip electrical storage efficiency computed for the distributed CAES wherein heat generated by running compressors is utilized in the preheat stage of running high pressure expanders while fuel is introduced and combusted before the low pressure expanders, was comparable to reported round trip storage electrical efficiencies for bulk Adiabatic CAES.

Keywords: hybrid wind farm, distributed CAES, diabatic CAES, active power control, dynamic modeling and simulation

Procedia PDF Downloads 78
864 Investigation on Development of Pv and Wind Power with Hydro Pumped Storage to Increase Renewable Energy Penetration: A Parallel Analysis of Taiwan and Greece

Authors: Robel Habtemariam

Abstract:

Globally, wind energy and photovoltaics (PV) solar energy are among the leading renewable energy sources (RES) in terms of installed capacity. In order to increase the contribution of RES to the power supply system, large scale energy integration is required, mainly due to wind energy and PV. In this paper, an investigation has been made on the electrical power supply systems of Taiwan and Greece in order to integrate high level of wind and photovoltaic (PV) to increase the penetration of renewable energy resources. Currently, both countries heavily depend on fossil fuels to meet the demand and to generate adequate electricity. Therefore, this study is carried out to look into the two cases power supply system by developing a methodology that includes major power units. To address the analysis, an approach for simulation of power systems is formulated and applied. The simulation is based on the non-dynamic analysis of the electrical system. This simulation results in calculating the energy contribution of different types of power units; namely the wind, PV, non-flexible and flexible power units. The calculation is done for three different scenarios (2020, 2030, & 2050), where the first two scenarios are based on national targets and scenario 2050 is a reflection of ambitious global targets. By 2030 in Taiwan, the input of the power units is evaluated as 4.3% (wind), 3.7% (PV), 65.2 (non-flexible), 25.3% (flexible), and 1.5% belongs to hydropower plants. In Greece, much higher renewable energy contribution is observed for the same scenario with 21.7% (wind), 14.3% (PV), 38.7% (non-flexible), 14.9% (flexible), and 10.3% (hydro). Moreover, it examines the ability of the power systems to deal with the variable nature of the wind and PV generation. For this reason, an investigation has also been done on the use of the combined wind power with pumped storage systems (WPS) to enable the system to exploit the curtailed wind energy & surplus PV and thus increase the wind and PV installed capacity and replace the peak supply by conventional power units. Results show that the feasibility of pumped storage can be justified in the high scenario (that is the scenario of 2050) of RES integration especially in the case of Greece.

Keywords: large scale energy integration, photovoltaics solar energy, pumped storage systems, renewable energy sources

Procedia PDF Downloads 275
863 Evaluation of Environmental Management System Implementation of Construction Projects in Turkey

Authors: Aydemir Akyürek, Osman Nuri Ağdağ

Abstract:

Construction industry is in a rapid development for many years around the world and especially in Turkey. In the last three years sector has 10% growth and provides significant support on Turkey’s national economy. Many construction projects are on-going at urban and rural areas of Turkey which have substantial environmental impacts. Environmental impacts during construction phase are quite diversified and widespread. Environmental impacts of construction industry cannot be inspected properly in all cases and negative impacts may occur frequently in many projects in Turkey. In this study, implementation of ISO 14001 Environmental Management System (EMS) in construction plants is evaluated. In the beginning stage quality management systems generally reviewed and ISO 14001 EMS is selected for implementation. Standard requirements are examined first and implementation of every standard requirement is elaborated for the selected construction plant in the following stage. Key issues and common problems, gained benefits by execution of this type of international EMS standard are examined. As can be seen in sample projects, construction projects are being completed very fast and contractors are working in a highly competitive environment with low profit ratios in our country and mostly qualified work force cannot be accessible. Addition to this there are deficits on waste handling and environmental infrastructure. Besides construction companies which have substantial investments on EMSs can be faced with difficulties on competitiveness in domestic market, however professional Turkish contractors which implementing managements systems in larger scale at international projects are gaining successful results. Also the concept of ‘construction project management’ which is being implemented in successful projects worldwide cannot be implemented except larger projects in Turkey. In case of nonexistence of main management system (quality) implementation of EMSs cannot be managed. Despite all constraints, EMSs that will be implemented in this industry with commitment of top managements and demand of customers will be an enabling, facilitating tool to determine environmental aspects and impacts of construction sites, will provide higher compliance levels for environmental legislation, to establish best available methods for operational control on waste management, chemicals management etc. and to plan monitoring and measurement, to prioritize environmental aspects for investment schedules and waste management.

Keywords: environmental management system, construction projects, ISO 14001, quality

Procedia PDF Downloads 355
862 Identification of Fluorinated Methylsiloxanes in Environmental Matrices Near a Manufacturing Plant in Eastern China

Authors: Liqin Zhi, Lin Xu, Wenxia Wei, Yaqi Cai

Abstract:

Recently, replacing some of the methyl groups in polydimethylsiloxanes with other functional groups has been extensively explored to obtain modified polymethylsiloxanes with special properties that enable new industrial applications. Fluorinated polysiloxanes, one type of these modified polysiloxanes, are based on a siloxane backbone with fluorinated groups attached to the side chains of polysiloxanes. As a commercially significant material, poly[methyl(trifluoropropyl)siloxane] (PMTFPS) has sufficient fluorine content to be useful as a fuel-and oil-resistant elastomer, which combines both the chemical and solvent resistance of fluorocarbons and the wide temperature range applicability of organosilicones. PMTFPS products can be used in many applications in which resistance to fuel, oils and hydrocarbon solvents is required, including use as lubricants in bearings, sealants, and elastomers for aerospace and automotive fuel systems. Fluorinated methylsiloxanes, a type of modified methylsiloxane, include tris(trifluoropropyl)trimethylcyclotrisiloxane (D3F) and tetrakis(trifluoropropyl)tetramethylcyclotetrasiloxane (D4F), both of which contain trifluoropropyl groups in the side chains of cyclic methylsiloxanes. D3F, as an important monomer in the manufacture of PMTFPS, is often present as an impurity in PMTFPS. In addition, the synthesis of PMTFPS from D3F could form other fluorinated methylsiloxanes with low molecular weights (such as D4F). The yearly demand and production volumes of D3F increased rapidly all over world. Fluorinated methylsiloxanes might be released into the environment via different pathways during the production and application of PMTFPS. However, there is a lack of data concerning the emission, environmental occurrence and potential environmental impacts of fluorinated methylsiloxanes. Here, we report fluorinated methylsiloxanes (D3F and D4F) in surface water and sediment samples collected near a fluorinated methylsiloxane manufacturing plant in Weihai, China. The concentrations of D3F and D4F in surface water ranged from 3.29 to 291 ng/L and from 7.02 to 168 ng/L, respectively. The concentrations of D3F and D4F in sediment ranged from 11.8 to 5478 ng/g and from 17.2 to 6277 ng/g, respectively. In simulation experiment, the half-lives of D3F and D4F at different pH values (5.2, 6.4, 7.2, 8.3 and 9.2) varied from 80.6 to 154 h and from 267 to 533 h respectively. CF₃(CH₂)₂MeSi(OH)₂ was identified as one of the main hydrolysis products of fluorinated methylsiloxanes. It was also detected in the river samples at concentrations of 72.1-182.9 ng/L. In addition, the slow rearrangement of D3F (spiked concentration = 500 ng/L) to D4F (concentration = 11.0-22.7 ng/L) was also found during 336h hydrolysis experiment.

Keywords: fluorinated methylsiloxanes, environmental matrices, hydrolysis, sediment

Procedia PDF Downloads 113
861 Evaluation of Sequential Polymer Flooding in Multi-Layered Heterogeneous Reservoir

Authors: Panupong Lohrattanarungrot, Falan Srisuriyachai

Abstract:

Polymer flooding is a well-known technique used for controlling mobility ratio in heterogeneous reservoirs, leading to improvement of sweep efficiency as well as wellbore profile. However, low injectivity of viscous polymer solution attenuates oil recovery rate and consecutively adds extra operating cost. An attempt of this study is to improve injectivity of polymer solution while maintaining recovery factor, enhancing effectiveness of polymer flooding method. This study is performed by using reservoir simulation program to modify conventional single polymer slug into sequential polymer flooding, emphasizing on increasing of injectivity and also reduction of polymer amount. Selection of operating conditions for single slug polymer including pre-injected water, polymer concentration and polymer slug size is firstly performed for a layered-heterogeneous reservoir with Lorenz coefficient (Lk) of 0.32. A selected single slug polymer flooding scheme is modified into sequential polymer flooding with reduction of polymer concentration in two different modes: Constant polymer mass and reduction of polymer mass. Effects of Residual Resistance Factor (RRF) is also evaluated. From simulation results, it is observed that first polymer slug with the highest concentration has the main function to buffer between displacing phase and reservoir oil. Moreover, part of polymer from this slug is also sacrificed for adsorption. Reduction of polymer concentration in the following slug prevents bypassing due to unfavorable mobility ratio. At the same time, following slugs with lower viscosity can be injected easily through formation, improving injectivity of the whole process. A sequential polymer flooding with reduction of polymer mass shows great benefit by reducing total production time and amount of polymer consumed up to 10% without any downside effect. The only advantage of using constant polymer mass is slightly increment of recovery factor (up to 1.4%) while total production time is almost the same. Increasing of residual resistance factor of polymer solution yields a benefit on mobility control by reducing effective permeability to water. Nevertheless, higher adsorption results in low injectivity, extending total production time. Modifying single polymer slug into sequence of reduced polymer concentration yields major benefits on reducing production time as well as polymer mass. With certain design of polymer flooding scheme, recovery factor can even be further increased. This study shows that application of sequential polymer flooding can be certainly applied to reservoir with high value of heterogeneity since it requires nothing complex for real implementation but just a proper design of polymer slug size and concentration.

Keywords: polymer flooding, sequential, heterogeneous reservoir, residual resistance factor

Procedia PDF Downloads 473
860 Inpatient Drug Related Problems and Pharmacist Intervention at a Tertiary Care Teaching Hospital in South India: A Retrospective Study

Authors: Bollu Mounica

Abstract:

Background: Nowadays drug related problems were seen very commonly within the health care practice. These could result in the medication errors, adverse events, drug interactions and harm to patients. Pharmacist has an identified role in minimizing and preventing such type of problems. Objectives: To detect the incidence of drug related problems for the hospitalized patient, and to analyze the clinical pharmacist interventions performed during the review of prescription orders of the general medicine, psychiatry, surgery, pediatrics, gynaecology units of a large tertiary care teaching hospital. Methods: It was a retrospective, observational and interventional study. The analysis took place daily with the following parameters: dose, rate of administration, presentation and/or dosage form, presence of inappropriate/unnecessary drugs, necessity of additional medication, more proper alternative therapies, presence of relevant drug interactions, inconsistencies in prescription orders, physical-chemical incompatibilities/solution stability. From this evaluation, the drug therapy problems were classified, as well as the resulting clinical interventions. For a period starting November 2012 until December 2014, the inpatient medication charts and orders were identified and rectified by ward and practicing clinical pharmacists within the inpatient pharmacy services in a tertiary care teaching hospital on routine daily activities. Data was collected and evaluated. The causes of this problem were identified. Results: A total of 360 patients were followed. Male (71.66%) predominance was noted over females (28.33%). Drug related problems were more commonly seen in patients aged in between 31-60. Most of the DRP observed in the study resulted from the dispensing errors (26.11%), improper drug selection (17.22%), followed by untreated indications (14.4%) Majority of the clinical pharmacist recommendations were on need for proper dispensing (26.11%), and drug change (18.05%). Minor significance of DRPs were noted high (41.11 %), whereas (35.27 %) were moderate and (23.61 %) were major. The acceptance rate of intervening clinical pharmacist recommendation and change in drug therapy was found to be high (86.66%). Conclusion: Our study showed that the prescriptions reviewed had some drug therapy problem and the pharmacist interventions have promoted positive changes needed in the prescriptions. In this context, routine participation of clinical pharmacists in clinical medical rounds facilitates the identification of DRPs and may prevent their occurrence.

Keywords: drug related problems, clinical pharmacist, drug prescriptions, drug related problems, intervention

Procedia PDF Downloads 301
859 A Left Testicular Cancer with Multiple Metastases Nursing Experience

Authors: Syue-Wen Lin

Abstract:

Objective:This article reviews the care experience of a 40-year-old male patient who underwent a thoracoscopic right lower lobectomy following a COVID-19 infection. His complex medical history included multiple metastases (lungs, liver, spleen, and left kidney) and lung damage from COVID-19, which complicated the weaning process from mechanical ventilation. The care involved managing cancer treatment, postoperative pain, wound care, and palliative care. Methods:Nursing care was provided from August 16 to August 17, 2024. Challenges included difficulty with sputum clearance, which exacerbated the patient's anxiety and fear of reintubation. Pain management strategies combined analgesic drugs, non-drug methods, essential oil massages with family members, and playing the patient’s favorite music to reduce pain and anxiety. Progressive rehabilitation began with stabilizing vital signs, followed by assistance with sitting on the edge of the bed and walking within the ward. Strict sterile procedures and advanced wound care technology were used for daily dressing changes, with meticulous documentation of wound conditions and appropriate dressing selection. Holistic cancer care and palliative measures were integrated to address the patient’s physical and psychological needs. Results:The interdisciplinary care team developed a comprehensive plan addressing both physical and psychological aspects. Respiratory therapy, lung expansion exercises, and a high-frequency chest wall oscillation vest facilitated sputum expulsion and assisted in weaning from mechanical ventilation. The integration of cancer care, pain management, wound care, and palliative care led to improved quality of life and recovery. The collaborative approach between nursing staff and family ensured that the patient received compassionate and effective care. Conclusion: The complex interplay of emergency surgery, COVID-19, and advanced cancer required a multifaceted care strategy. The care team’s approach, combining critical care with tailored cancer and palliative care, effectively improved the patient’s quality of life and facilitated recovery. The comprehensive care plan, developed with family collaboration, provided both high-quality medical care and compassionate support for the terminally ill patient.

Keywords: multiple metastases, testicular cancer, palliative care, nursing experience

Procedia PDF Downloads 12
858 Identification and Classification of Fiber-Fortified Semolina by Near-Infrared Spectroscopy (NIR)

Authors: Amanda T. Badaró, Douglas F. Barbin, Sofia T. Garcia, Maria Teresa P. S. Clerici, Amanda R. Ferreira

Abstract:

Food fortification is the intentional addition of a nutrient in a food matrix and has been widely used to overcome the lack of nutrients in the diet or increasing the nutritional value of food. Fortified food must meet the demand of the population, taking into account their habits and risks that these foods may cause. Wheat and its by-products, such as semolina, has been strongly indicated to be used as a food vehicle since it is widely consumed and used in the production of other foods. These products have been strategically used to add some nutrients, such as fibers. Methods of analysis and quantification of these kinds of components are destructive and require lengthy sample preparation and analysis. Therefore, the industry has searched for faster and less invasive methods, such as Near-Infrared Spectroscopy (NIR). NIR is a rapid and cost-effective method, however, it is based on indirect measurements, yielding high amount of data. Therefore, NIR spectroscopy requires calibration with mathematical and statistical tools (Chemometrics) to extract analytical information from the corresponding spectra, as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is well suited for NIR, once it can handle many spectra at a time and be used for non-supervised classification. Advantages of the PCA, which is also a data reduction technique, is that it reduces the data spectra to a smaller number of latent variables for further interpretation. On the other hand, LDA is a supervised method that searches the Canonical Variables (CV) with the maximum separation among different categories. In LDA, the first CV is the direction of maximum ratio between inter and intra-class variances. The present work used a portable infrared spectrometer (NIR) for identification and classification of pure and fiber-fortified semolina samples. The fiber was added to semolina in two different concentrations, and after the spectra acquisition, the data was used for PCA and LDA to identify and discriminate the samples. The results showed that NIR spectroscopy associate to PCA was very effective in identifying pure and fiber-fortified semolina. Additionally, the classification range of the samples using LDA was between 78.3% and 95% for calibration and 75% and 95% for cross-validation. Thus, after the multivariate analysis such as PCA and LDA, it was possible to verify that NIR associated to chemometric methods is able to identify and classify the different samples in a fast and non-destructive way.

Keywords: Chemometrics, fiber, linear discriminant analysis, near-infrared spectroscopy, principal component analysis, semolina

Procedia PDF Downloads 207
857 Impact of Civil Engineering and Economic Growth in the Sustainability of the Environment: Case of Albania

Authors: Rigers Dodaj

Abstract:

Nowadays, the environment is a critical goal for civil engineers, human activity, construction projects, economic growth, and whole national development. Regarding the development of Albania's economy, people's living standards are increasing, and the requirements for the living environment are also increasing. Under these circumstances, environmental protection and sustainability this is the critical issue. The rising industrialization, urbanization, and energy demand affect the environment by emission of carbon dioxide gas (CO2), a significant parameter known to impact air pollution directly. Consequently, many governments and international organizations conducted policies and regulations to address environmental degradation in the pursuit of economic development, for instance in Albania, the CO2 emission calculated in metric tons per capita has increased by 23% in the last 20 years. This paper analyzes the importance of civil engineering and economic growth in the sustainability of the environment focusing on CO2 emission. The analyzed data are time series 2001 - 2020 (with annual frequency), based on official publications of the World Bank. The statistical approach with vector error correction model and time series forecasting model are used to perform the parameter’s estimations and long-run equilibrium. The research in this paper adds a new perspective to the evaluation of a sustainable environment in the context of carbon emission reduction. Also, it provides reference and technical support for the government toward green and sustainable environmental policies. In the context of low-carbon development, effectively improving carbon emission efficiency is an inevitable requirement for achieving sustainable economic and environmental protection. Also, the study reveals that civil engineering development projects impact greatly the environment in the long run, especially in areas of flooding, noise pollution, water pollution, erosion, ecological disorder, natural hazards, etc. The potential for reducing industrial carbon emissions in recent years indicates that reduction is becoming more difficult, it needs another economic growth policy and more civil engineering development, by improving the level of industrialization and promoting technological innovation in industrial low-carbonization.

Keywords: CO₂ emission, civil engineering, economic growth, environmental sustainability

Procedia PDF Downloads 78
856 Research Methodology of Living Environment of Modern Residential Development in St. Petersburg

Authors: Kalina Alina Aidarovna, Khayrullina Yulia Sergeevna

Abstract:

The question of forming quality housing and living environment remains a vexed problem in the current situation of high-rise apartment building in big cities of Russia. At this start up stage of the modern so-called "mass housing" market it needs to identify key quality characteristics on a different scale from apartments to the district. This paper describes the methodology of qualitative assessment of modern mass housing construction, made on the basis of the ITMO university in cooperation with the institute of spatial planning "Urbanika," based on the case study of St. Petersburg’s residential mass housing built in 2011-2014. The methodology of the study of housing and living environment goes back to the native and foreign urbanists of 60s - 80s, such Jane Jacobs, Jan Gehl, Oscar Newman, Krasheninnikov, as well as Sommer, Stools, Kohnen and Sherrod, Krasilnikova, Sychev, Zhdanov, Tinyaeva considering spatial features of living environment in a wide range of its characteristics (environmental control, territorial and personalization, privacy, etc.). Assessment is carrying out on the proposed system of criteria developed for each residential environment scale-district, quarter, courtyard, building surrounding grounds, houses, and flats. Thus the objects of study are planning unit of residential development areas (residential area, neighborhood, quarter) residential units areas (living artist, a house), and households (apartments) consisting of residential units. As a product of identified methodology, after the results of case studies of more than 700 residential complexes in St. Petersburg, we intend the creation of affordable online resource that would allow conducting a detailed qualitative evaluation or comparative characteristics of residential complexes for all participants of the construction market-developers, designers, realtors and buyers. Thereby the main objective of the rating may be achieved to improve knowledge, requirements, and demand for quality housing and living environment among the major stakeholders of the construction market.

Keywords: methodology of living environment, qualitative assessment of mass housing, scale-district, vexed problem

Procedia PDF Downloads 454
855 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application

Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal

Abstract:

This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.

Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism

Procedia PDF Downloads 130
854 Microbiota Associated With the Larval Culture of Red Cusk Eel Genipterus Chilensis in Chile

Authors: Luz Hurtado, Rodrigo Rojas, Jaime Romero, Christopher Concha

Abstract:

The culture of the marine fish red cusk eel Genypterus chilensis is currently considered a priority for Chilean aquaculture which is a Chilean native species of high gastronomic demand and market value. The microbiota was analyzed in terms of diversity and structure using massive Illumina sequencing. The analysis of alpha diversity was performed in samples of G. chilensis larvae of 6, 18 and 32 dph (days post-hatching) and it was observed that there were significant differences (P = 0.05) between the days of culture for the Chao1 index, being the larvae of 18 dph the one with the highest index followed by the larvae of 6 dph, The lowest value for this index was presented in larvae of 32 dph. There were no significant differences in larvae between the days of culture for the Shannon (P=0.0857) and Simpson (P=0.0714) indices. In general, the larvae of G. chilensis have high rates of diversity. When analyzing the beta diversity, a differentiation between the bacterial communities is observed depending on the day of the culture of the larvae. Considering the PCoA elaborated from the unweighted UniFrac statistic, the explained variance was 46.2% (PC1 29.2% and PC2 17.0%) and in the case of the PCoA elaborated with the weighted UniFrac statistic; the explained variance was 65.5% (PC1 41.8% and PC2 23.7%) these differences were significant based on the Permanova statistical analysis (P= 0.002 and 0.037 respectively). When analyzing the taxonomic composition of the microbiota of the larvae in the different days of culture it was observed that at the phyla level the most abundant in the larvae of 6 dph were Proteobacteria (57%) Verrucomicrobia (24%) and Firmicutes (14%), for the larvae of 18 dph the predominant phyla were Proteobacteria (90%), Dependientiae (5%), Actinobacteria (2%) and Plactomyces (2%), for the larvae of 32 dph the phyla that presented the highest relative abundance were Proteobacteria (57%), Firmicutes (29%), Verrucomicrobia (5%) and Actinobacteria (5%), when comparing the larvae between the days it was observed that the phylum Proteobacteria was the most abundant in the samples of larvae of 6, 18 and 32 dph being the larvae of 18 dph those that present the highest relative abundance, the larvae of 6 dph were those that presented the highest relative abundance for the phylum Verrucomicrobia and in the larvae of 32 dph was observed greater abundance of the phylum Firmicutes compared to the other days of larval culture. At the level of genera, those with the highest relative abundance in larvae of 6 dph were Rubritalea (30%), Psychrobacter (28%), staphylococcus (17%) and Ralstonia (10%), for the larvae of 18 dph the genera with the highest abundance were Psychrobacter (47%), Litoreibacter (13%), Nautella (9%) and Cohesibacter (8%), for the larvae of 32 dph the most abundant genera were Alloiococcus (25%), Dialister (14%), Neptunomonas (13%) and Piscirickettsia (11%). When observing the taxonomic composition of the larvae between the days of larval culture, it is observed that there are differences between them.

Keywords: microbiota, diversity, G. Chilensis, larvae

Procedia PDF Downloads 69
853 Responsibility of States in Air Traffic Management: Need for International Unification

Authors: Nandini Paliwal

Abstract:

Since aviation industry is one of the fastest growing sectors of the world economy, states depend on the air transport industry to maintain or stimulate economic growth. It significantly promotes and contributes to the economic well-being of every nation as well as world in general. Because of the continuous and rapid growth in civil aviation, it is inevitably leading to congested skies, flight delays and most alarmingly, a decrease in the safety of air navigation facilities. Safety is one of the most important concerns of aviation industry that has been unanimously recognised across the whole world. The available capacity of the air navigation system is not sufficient for the demand that is being generated. It has been indicated by forecast that the current growth in air traffic has the potential of causing delays in 20% of flights by 2020 unless changes are brought in the current system. Therefore, a safe, orderly and expeditious air navigation system is needed at the national and global levels, which, requires the implementation of an air traffic management (hereinafter referred as ‘ATM’) system to ensure an optimum flow of air traffic by utilising and enhancing capabilities provided by technical advances. The objective of this paper is to analyse the applicability of national regulations in case of liability arising out of air traffic management services and whether the current legal regime is sufficient to cover multilateral agreements including the Single European Sky regulations. In doing so, the paper will examine the international framework mainly the Article 28 of the Chicago Convention and its relevant annexes to determine the responsibility of states for providing air navigation services. Then, the paper will discuss the difference between the concept of responsibility and liability under the air law regime and how states might claim sovereign immunity for the functions of air traffic management. Thereafter, the paper will focus on the cross border agreements including the bilateral and multilateral agreements. In the end, the paper will address the scheme of Single European Sky and the need for an international convention dealing with the liability of air navigation service providers. The paper will conclude with some suggestions for unification of the laws at an international level dealing with liability of air navigation service providers and the requirement of enhanced co-operation among states in order to keep pace with technological advances.

Keywords: air traffic management, safety, single European sky, co-operation

Procedia PDF Downloads 166
852 The Impact of Mycotoxins on the Anaerobic Digestion Process

Authors: Harald Lindorfer, Bettina Frauz, Dietmar Ramhold

Abstract:

Next to the well-known inhibitors in anaerobic digestion like ammonia, antibiotics or disinfectants, the number of process failures connected with mould growth in the feedstock increased significantly in the last years. It was assumed that mycotoxins are the cause of the negative effects. The financial damage to plants associated with these process failures is considerable. The aim of this study was to find a way of predicting the failures and furthermore strategies for a fast process recovery. In a first step, mould-contaminated feedstocks causing process failures in full-scale digesters were sampled and analysed on mycotoxin content. A selection of these samples was applied to biological inhibition tests. In this test, crystalline cellulose is applied in addition to the feedstock sample as standard substrate. Affected digesters were also sampled and analytical process data as well as operational data of the plants were recorded. Additionally, different mycotoxin substances, Deoxynivalenol, Zearalenon, Aflatoxin B1, Mycophenolic acid and Citrinin, were applied as pure substances to lab-scale digesters, individually and in various combinations, and effects were monitored. As expected, various mycotoxins were detected in all of the mould-contaminated samples. Nevertheless, inhibition effects were observed with only one of the collected samples, after applying it to an inhibition test. With this sample, the biogas yield of the standard substrate was reduced by approx. 20%. This result corresponds with observations made on full-scale plants. However, none of the tested mycotoxins applied as pure substance caused a negative effect on biogas production in lab scale digesters, neither after application as individual substance nor in combination. The recording of the process data in full-scale plants affected by process failures in most cases showed a severe accumulation of fatty acids alongside a decrease in biogas production and methane concentration. In the analytical data of the digester samples, a typical distribution of fatty acids with exceptionally high acetic acid concentrations could be identified. This typical fatty acid pattern can be used as a rapid identification parameter pointing to the cause of the process troubles and enable a fast implication of countermeasures. The results of the study show that more attention needs to be paid to feedstock storage and feedstock conservation before their application to anaerobic digesters. This is all the more important since first studies indicate that the occurrence of mycotoxins will likely increase in Europe due to the ongoing climate change.

Keywords: Anaerobic digestion, Biogas, Feedstock conservation, Fungal mycotoxins, Inhibition, process failure

Procedia PDF Downloads 126
851 Probing Environmental Sustainability via Brownfield Remediation: A Framework to Manage Brownfields in Ethiopia Lesson to Africa

Authors: Mikiale Gebreslase Gebremariam, Chai Huaqi, Tesfay Gebretsdkan Gebremichael, Dawit Nega Bekele

Abstract:

In recent years, brownfield redevelopment projects (BRPs) have contributed to the overarching paradigm of the United Nations 2030 agendas. In the present circumstance, most developed nations adopted BRPs, an efficacious urban policy tool. However, in developing and some advanced countries, BRPs are lacking due to limitations of awareness, policy tools, and financial capability for cleaning up brownfield sites. For example, the growth and development of Ethiopian cities were achieved at the cost of poor urban planning, including no community consultations and excessive urbanization for future growth. The demand for land resources is more and more urgent as the result of an intermigration to major cities and towns for socio-economic reasons and population growth. In the past, the development mode of spreading major cities has made horizontal urbanizations stretching outwards. Expansion in search of more land resources, while the outer cities are growing, the inner cities are polluted by environmental pollution. It is noteworthy that the rapid development of cities has not brought about an increase in people's happiness index. Thus, the proposed management framework for managing brownfields in Ethiopia as a lesson to the developing nation facing similar challenges and growth will add immense value in solving the problems and give insights into brownfield land utilization. Under the umbrella of the grey incidence decision-making model and with the consideration of multiple stakeholders and tight environmental and economic constraints, the proposed management framework integrates different criteria from economic, social, environmental, technical, and risk aspects into the grey incidence decision-making model and gives useful guidance to manage brownfields in Ethiopia. Furthermore, it will contribute to the future development of the social economy and the missions of the 2030 UN sustainable development goals.

Keywords: Brownfields, environmental sustainability, Ethiopia, grey-incidence decision-making, sustainable urban development

Procedia PDF Downloads 83
850 Improved Technology Portfolio Management via Sustainability Analysis

Authors: Ali Al-Shehri, Abdulaziz Al-Qasim, Abdulkarim Sofi, Ali Yousef

Abstract:

The oil and gas industry has played a major role in improving the prosperity of mankind and driving the world economy. According to the International Energy Agency (IEA) and Integrated Environmental Assessment (EIA) estimates, the world will continue to rely heavily on hydrocarbons for decades to come. This growing energy demand mandates taking sustainability measures to prolong the availability of reliable and affordable energy sources, and ensure lowering its environmental impact. Unlike any other industry, the oil and gas upstream operations are energy-intensive and scattered over large zonal areas. These challenging conditions require unique sustainability solutions. In recent years there has been a concerted effort by the oil and gas industry to develop and deploy innovative technologies to: maximize efficiency, reduce carbon footprint, reduce CO2 emissions, and optimize resources and material consumption. In the past, the main driver for research and development (R&D) in the exploration and production sector was primarily driven by maximizing profit through higher hydrocarbon recovery and new discoveries. Environmental-friendly and sustainable technologies are increasingly being deployed to balance sustainability and profitability. Analyzing technology and its sustainability impact is increasingly being used in corporate decision-making for improved portfolio management and allocating valuable resources toward technology R&D.This paper articulates and discusses a novel workflow to identify strategic sustainable technologies for improved portfolio management by addressing existing and future upstream challenges. It uses a systematic approach that relies on sustainability key performance indicators (KPI’s) including energy efficiency quotient, carbon footprint, and CO2 emissions. The paper provides examples of various technologies including CCS, reducing water cuts, automation, using renewables, energy efficiency, etc. The use of 4IR technologies such as Artificial Intelligence, Machine Learning, and Data Analytics are also discussed. Overlapping technologies, areas of collaboration and synergistic relationships are identified. The unique sustainability analyses provide improved decision-making on technology portfolio management.

Keywords: sustainability, oil& gas, technology portfolio, key performance indicator

Procedia PDF Downloads 179
849 Bacteriocin-Antibiotic Synergetic Consortia: Augmenting Antimicrobial Activity and Expanding the Inhibition Spectrum of Vancomycin Resistant and Methicillin Resistant Staphylococcus aureus

Authors: Asma Bashir, Neha Farid, Kashif Ali, Kiran Fatima

Abstract:

Background: Bacteriocins are a subclass of antimicrobial peptides that are becoming extremely important in treatments. It is possible to utilise bacteriocins in place of or in addition to traditional antibiotics. It is possible to treat a variety of infections, including Vancomycin-Resistant Staphylococcus aureus (VRSA) and Methicillin-Resistant Staphylococcus aureus (MRSA), using the targeted spectrum of activity of these microorganisms. Method: This study aimed to examine the efficiency of antibiotics and bacteriocin against VRSA and MRSA. The effects of bacteriocins, such as enterocin KAE01, enterocin KAE03, enterocin KAE05, and enterocin KAE06 isolated from Enterococcus faecium strains, alone and in combination with vancomycin and methicillin antibiotics were examined. The selection technique utilized the minimum inhibitory concentrations (MICs) against Gram-positive indicator strain ATCC 6538 Methicillin-Resistant Staphylococcus aureus (MRSA) and indicator strain KSA 02 Vancomycin-Resistant Staphylococcus aureus (VRSA). Results: We report the isolation and identification of enterocins KAE01, KAE03, KAE05, and KAE06 from food isolates of Enterococcus faecium (KAE01, KAE03, KAE05, and KAE06). After isolating the protein, it was partially purified with ammonium sulphate precipitation and purified with fast protein liquid chromatography (FPLC) procedures. Combinations of enterocin KAE01, 1 citric acid, 1 lactic acid, and microcin J25, 1 reuterin, 1 citric acid, and microcin J25, 1 reuterin, 1 lactic acid shown synergistic benefits (FIC index = 0.5) against Vancomycin-Resistant Staphylococcus aureus (VRSA). In addition, a moderately synergistic (FIC index = 0.75) interaction was seen between pediocin PA-1, 1 citric acid, 1 lactic acid, and reuterin 1 citric acid, 1 lactic acid against L. ivanovii HPB28. In the presence of acids, nisin Z exhibited a modestly synergistic effect (FIC index = 0.625-0.75); however, it exhibited additive effects (FIC index = 1) when combined with reuterin or pediocin PA-1 against L. ivanovii HPB28. The efficacy of synergistic consortiums against Gram-positive bacteria was examined. Conclusion: Combining antimicrobials with various modes of action boosted efficacy and expanded the spectrum of inhibition, particularly against multidrug-resistant pathogens, according to our research.

Keywords: Enterococcus faecium, bacteriocin, antimicrobial resistance, antagonistic activity, vancomycin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus aureus

Procedia PDF Downloads 144
848 Biosensor for Determination of Immunoglobulin A, E, G and M

Authors: Umut Kokbas, Mustafa Nisari

Abstract:

Immunoglobulins, also known as antibodies, are glycoprotein molecules produced by activated B cells that transform into plasma cells and result in them. Antibodies are critical molecules of the immune response to fight, which help the immune system specifically recognize and destroy antigens such as bacteria, viruses, and toxins. Immunoglobulin classes differ in their biological properties, structures, targets, functions, and distributions. Five major classes of antibodies have been identified in mammals: IgA, IgD, IgE, IgG, and IgM. Evaluation of the immunoglobulin isotype can provide a useful insight into the complex humoral immune response. Evaluation and knowledge of immunoglobulin structure and classes are also important for the selection and preparation of antibodies for immunoassays and other detection applications. The immunoglobulin test measures the level of certain immunoglobulins in the blood. IgA, IgG, and IgM are usually measured together. In this way, they can provide doctors with important information, especially regarding immune deficiency diseases. Hypogammaglobulinemia (HGG) is one of the main groups of primary immunodeficiency disorders. HGG is caused by various defects in B cell lineage or function that result in low levels of immunoglobulins in the bloodstream. This affects the body's immune response, causing a wide range of clinical features, from asymptomatic diseases to severe and recurrent infections, chronic inflammation and autoimmunity Transient infant hypogammaglobulinemia (THGI), IgM deficiency (IgMD), Bruton agammaglobulinemia, IgA deficiency (SIgAD) HGG samples are a few. Most patients can continue their normal lives by taking prophylactic antibiotics. However, patients with severe infections require intravenous immune serum globulin (IVIG) therapy. The IgE level may rise to fight off parasitic infections, as well as a sign that the body is overreacting to allergens. Also, since the immune response can vary with different antigens, measuring specific antibody levels also aids in the interpretation of the immune response after immunization or vaccination. Immune deficiencies usually occur in childhood. In Immunology and Allergy clinics, apart from the classical methods, it will be more useful in terms of diagnosis and follow-up of diseases, if it is fast, reliable and especially in childhood hypogammaglobulinemia, sampling from children with a method that is more convenient and uncomplicated. The antibodies were attached to the electrode surface via the poly hydroxyethyl methacrylamide cysteine nanopolymer. It was used to evaluate the anodic peak results obtained in the electrochemical study. According to the data obtained, immunoglobulin determination can be made with a biosensor. However, in further studies, it will be useful to develop a medical diagnostic kit with biomedical engineering and to increase its sensitivity.

Keywords: biosensor, immunosensor, immunoglobulin, infection

Procedia PDF Downloads 97
847 Direct Oxidation Synthesis for a Dual-Layer Silver/Silver Orthophosphate with Controllable Tetrahedral Structure as an Active Photoanode for Solar-Driven Photoelectrochemical Water Splitting

Authors: Wen Cai Ng, Saman Ilankoon, Meng Nan Chong

Abstract:

The vast increase in global energy demand, coupled with the growing concerns on environmental issues, has triggered the search for cleaner alternative energy sources. In view of this, the photoelectrochemical (PEC) water splitting offers a sustainable hydrogen (H2) production route that only requires solar energy, water, and PEC system operating in an ambient environment. However, the current advancement of PEC water splitting technologies is still far from the commercialization benchmark indicated by the solar-to-H2 (STH) efficiency of at least 10 %. This is largely due to the shortcomings of photoelectrodes used in the PEC system, such as the rapid recombination of photogenerated charge carriers and limited photo-responsiveness in the visible-light spectrum. Silver orthophosphate (Ag3PO4) possesses many desirable intrinsic properties for the fabrication into photoanode used in PEC systems, such as narrow bandgap of 2.4 eV and low valence band (VB) position. Hence, in this study, a highly efficient Ag3PO4-based photoanode was synthesized and characterized. The surface of the Ag foil substrate was directly oxidized to fabricate a top layer composed of {111}-bound Ag3PO4 tetrahedrons layer with a porous structure, forming the dual-layer Ag/Ag3PO4 photoanode. Furthermore, the key synthesis parameters were systematically investigated by varying the concentration ratio of capping agent-to-precursor (R), the volume ratio of hydrogen peroxide (H2O2)-to-water, and reaction period. Results showed that the optimized dual-layer Ag/Ag3PO4 photoanode achieved a photocurrent density as high as 4.19 mA/cm2 at 1 V vs. Ag/AgCl for the R-value of 4, the volume ratio of H2O2-to-water of 3:5 and 20 h reaction period. The current work provides a solid foundation for further nanoarchitecture modification strategies on Ag3PO4-based photoanodes for more efficient PEC water splitting applications. This piece of information needs to be backed up by evidence; therefore, you need to provide a reference. As the abstract should be self-contained, all information requiring a reference should be removed. This is a fact known to the area of research, and not necessarily required a reference to support.

Keywords: solar-to-hydrogen fuel, photoelectrochemical water splitting, photoelectrode, silver orthophosphate

Procedia PDF Downloads 117
846 Teachers’ Education in Brazil: A Case Study on Students’ Performance

Authors: Priscila A. M. Rodrigues

Abstract:

In Brazil, higher education is usually offered in three parts of the day: in the morning, afternoon and evening. Students have to decide what part of the day they are going to study in the application process. Most of the admitted students who choose to study in the evening also work during the day, because of their financial conditions. Brazilian higher education courses in the evening were initially created to meet the demand for teacher training. These teacher-training courses are socially discredited and considered easily accessible in the country, mostly due to the fact that students who enroll for those courses come from very poor basic education. The research has analyzed the differences between the social profiles and studying conditions of students of teacher education, especially the training intended for would-be elementary education teachers. An investigation has been conducted with these undergraduate students, who were divided into a group of those who study both in the morning and in the afternoon (group 1) and a group of those who study in the evening (group 2). The hypothesis predicted that students in group 1 would perform better than students in group 2. The analysis of training and studying conditions departed from the point of view of students and their teachers. The hypothesis predicted that students in group 1 would perform better than students in group 2. The analysis of training and studying conditions departed from the point of view of students and their teachers. Data was collected from survey, qualitative interviews, field observation and reports from students. Sociological concepts of habitus, cultural capital, trajectories and strategies are essential for this study as well as the literature on quality of higher education. The research revealed that there are differences of studying conditions between group 1 and group 2, precisely when it comes to the university atmosphere, that is to say, academic support resources and enrichment activities which promote educational, cultural and social opportunities, for example conferences, events, scholarships of different types, etc. In order to counteract the effects of their poor educational performance, students who generally come from popular strata require conditions of greater dedication and investment in higher education, which most of them do not have. Despite the considerable difficulties that students in group 2 encounter in their academic experience, the university experience per se brings a gain for the lives of these students, which translates into the expansion of their capital structure – i.e. symbolic, cultural and educational capital – with repercussions on their social trajectory, especially in professional conditions.

Keywords: higher education, higher education students’ performance, quality of higher education, teacher’s education

Procedia PDF Downloads 273
845 Ecosystem Services and Human Well-Being: Case Study of Tiriya Village, Bastar India

Authors: S. Vaibhav Kant Sahu, Surabhi Bipin Seth

Abstract:

Human well-being has multiple constituents including the basic material for a good life, freedom and choice, health, good social relations, and security. Poverty is also multidimensional and has been defined as the pronounced deprivation of well-being. Dhurwa tribe of Bastar (India) have symbiotic relation with nature, it provisions ecosystem service such as food, fuel and fiber; regulating services such as climate regulation and non-material benefits such as spiritual or aesthetic benefits and they are managing their forest from ages. The demand for ecosystem services is now so great that trade-off among services become rule. Aim of study to explore evidences for linkages between ecosystem services and well-being of indigenous community, how much it helps them in poverty reduction and interaction between them. Objective of study was to find drivers of change and evidence concerning link between ecosystem, human development and sustainability, evidence in decision making does it opt for multi sectoral objectives. Which means human well-being as the central focus for assessment, while recognizing that biodiversity and ecosystems also have intrinsic value. Ecosystem changes that may have little impact on human well-being over days or weeks may have pronounced impacts over years or decades; so assessments needed to be conducted at spatial and temporal scales under social, political, economic scales to have high-resolution data. Researcher used framework developed by Millennium ecosystem assessment; since human action now directly or unknowingly virtually alter ecosystem. Researcher used ethnography study to get primary qualitative data, secondary data collected from panchayat office. The responses were transcribed and translated into English, as interview held in Hindi and local indigenous language. Focus group discussion were held with group of 10 women at Tiriya village. Researcher concluded with well-being is not just gap between ecosystem service supply but also increases vulnerability. Decision can have consequences external to the decision framework these consequences are called externalities because they are not part of the decision-making calculus.

Keywords: Bastar, Dhurwa tribe, ecosystem services, millennium ecosystem assessment, sustainability

Procedia PDF Downloads 298