Search results for: transforming growth factor beta (TGF-B)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11549

Search results for: transforming growth factor beta (TGF-B)

7019 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach

Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas

Abstract:

Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.

Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality

Procedia PDF Downloads 164
7018 Different Cathode Buffer Layers in Organic Solar Cells

Authors: Radia Kamel

Abstract:

Considerable progress has been made in the development of bulk-heterojunction organic solar cells (OSCs) based on a blend of p-type and n-type organic semiconductors. To optimize the interfacial properties between the active layer and the electrode, a cathode buffer layer (CBL) is introduced. This layer can reduce the leakage current, increasing the open-circuit voltage and the fill factor while improving the OSC stability. In this work, the performance of PM6:Y6 OSC with 1-Chloronaphthalene as an additive is examined. To accomplish this, three CBLs PNDIT-F3N-Br, ZrAcac, and PDINO, are compared using the conventional configuration. The device with PNDIT-F3N-Br as CBL exhibits the highest power conversion efficiency of 16.04%. The results demonstrate that modifying the cathode buffer layer is crucial for achieving high-performance OSCs.

Keywords: bulk heterojunction, cathode buffer layer, efficiency, organic solar cells

Procedia PDF Downloads 151
7017 Efficient Estimation of Maximum Theoretical Productivity from Batch Cultures via Dynamic Optimization of Flux Balance Models

Authors: Peter C. St. John, Michael F. Crowley, Yannick J. Bomble

Abstract:

Production of chemicals from engineered organisms in a batch culture typically involves a trade-off between productivity, yield, and titer. However, strategies for strain design typically involve designing mutations to achieve the highest yield possible while maintaining growth viability. Such approaches tend to follow the principle of designing static networks with minimum metabolic functionality to achieve desired yields. While these methods are computationally tractable, optimum productivity is likely achieved by a dynamic strategy, in which intracellular fluxes change their distribution over time. One can use multi-stage fermentations to increase either productivity or yield. Such strategies would range from simple manipulations (aerobic growth phase, anaerobic production phase), to more complex genetic toggle switches. Additionally, some computational methods can also be developed to aid in optimizing two-stage fermentation systems. One can assume an initial control strategy (i.e., a single reaction target) in maximizing productivity - but it is unclear how close this productivity would come to a global optimum. The calculation of maximum theoretical yield in metabolic engineering can help guide strain and pathway selection for static strain design efforts. Here, we present a method for the calculation of a maximum theoretical productivity of a batch culture system. This method follows the traditional assumptions of dynamic flux balance analysis: that internal metabolite fluxes are governed by a pseudo-steady state and external metabolite fluxes are represented by dynamic system including Michealis-Menten or hill-type regulation. The productivity optimization is achieved via dynamic programming, and accounts explicitly for an arbitrary number of fermentation stages and flux variable changes. We have applied our method to succinate production in two common microbial hosts: E. coli and A. succinogenes. The method can be further extended to calculate the complete productivity versus yield Pareto surface. Our results demonstrate that nearly optimal yields and productivities can indeed be achieved with only two discrete flux stages.

Keywords: A. succinogenes, E. coli, metabolic engineering, metabolite fluxes, multi-stage fermentations, succinate

Procedia PDF Downloads 197
7016 Study of the Toughening by Crack Bridging in Mullite Alumina Zirconia Ceramics

Authors: F. Gheldane, S. Bouras

Abstract:

Crack propagation behaviour of alumina mullite zirconia ceramic is investigated under monotonic and cyclic loading by means SENB bending method. This material show R-curve effects, i.e. an increase in crack growth resistance with increasing crack depth. The morphological study showed that the resistance of the crack propagation is mainly connected to the crack bridging. The value of bridging stress is in good agreement with the literature. Furthermore, cyclic-loading fatigue is caused by a decrease in the stress-shielding effect, due to degradation of bridging sites under cyclic loading.

Keywords: alumina mullite zirconia, R-curve, bridging, toughening, crack

Procedia PDF Downloads 514
7015 Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger

Authors: A.Kouidri, B.Madani

Abstract:

The present work deals with the study of the heat transfer in a rectangular channel equipped with a metallic foam. The tested metallic foam sample is made from copper with 20 PPI (Pore per Inch Linear) and 93% of porosity and the working fluid used is the n-pentane. In the present work the independent variables are the velocity in the range from 0.02 to 0.06 m/s and a boiling heat flux rate varying between 30 and 70 kW/m2. The heat transfer coefficient is presented versus boiling heat flux, vapor quality and superheat ΔTsat. The thermal results are compared to those found for a plain tube for the same conditions. The comparison with the plain tube shows that the insert of a metallic foam enhances the heat transfer coefficient by a factor between 1.3 and 3.

Keywords: boiling, metallic foam, heat transfer, plate heat exchanger

Procedia PDF Downloads 464
7014 The Effect of Radish (Raphanus Sativus L.) Leaves Ethanol Extract on Blood Glucose Levels in Streptozotocin-Nicotinamide-Induced Type-2 Diabetic Rats

Authors: Satria B. Mahathma, Asri Hendrawati

Abstract:

Background: Diabetes mellitus (DM) is a metabolic disorder syndrome characterized by chronic hyperglycemia. The number of people with diabetes rose from 108 million in 1980 to 422 million in 2014. In general, almost 90% of the prevalence of DM is type 2 DM which marked by insulin resistance and decreased receptor sensitivity. Aside from conventional antidiabetic therapy, the utilization of medicinal plants as alternative medicine has beneficial effects in diabetic patients. Flavonoid contents in radish leaves such as quercetin, pelargonidin, and kaempferol are thought to have antidiabetic activity on decreasing blood glucose levels by tricyclic nucleotide modulation of pancreatic beta cells and ameliorating insulin resistance. This study aimed to determine the effect of variant concentration of radish leaves ethanol extract on blood glucose levels in diabetic rats. Method: This study used pretest-posttest control group design by using 16 male Wistar rats which were induced type-2 diabetic by streptozotocin 60 mg/kg BW-nicotinamide 120 mg/kg BW intraperitoneally. Rats who had developed type-2 DM later divided randomly into 4 groups; negative control received placebo, positive control received glibenclamide 5 mg/kg BW/day, rats intervention I and intervention II received 100% and 50% of radish leaves ethanol extract, respectively. Treatments were administered orally for four weeks. The blood glucose levels were measured using the Enzymatic Colorimetric Test “GOD-PAP”. Data were analyzed by the dependent t-test for pretest-posttest intervention difference and one-way ANOVA followed by post hoc test to determine the significant difference of each treatment to obtain the significant data. Result: The result revealed that intervention group had lower blood glucose levels mean than control group which the lowest was intervention II group (negative control: 540,9 ± 191,7 mg/dl, positive control: 494, 97 ± 64,91 mg/dl, intervention I: 301,92 ± 165,70 mg/dl, and intervention II group: 276,1 ± 139,02 mg/dl. Intervention II group had the highest antidiabetic activity, followed by the intervention I group with the amount of decrease in blood glucose levels were -151,85 ± 77,43 mg/dl and -11,08 ± 186,62 mg/dl, however negative and positive control group didn’t have antidiabetic activity. The dependent t-test result showed there is a significant difference in decreasing blood glucose levels in the intervention II pretest-posttest intervention (p=0,03) while the other group didn’t. Data analyzed by one-way ANOVA also revealed the intervention II group significantly declined blood glucose levels compared to the negative and positive control group (p = 0,033 and p=0,032, respectively). Conclusion: There is a significant effect of radish leaves ethanol extract on blood glucose levels in streptozotocin-nicotinamide-induced diabetic rats with the optimal therapeutic effect at a concentration of 50%.

Keywords: blood glucose levels, medicinal plant, radish leaves, type-2 diabetes mellitus

Procedia PDF Downloads 124
7013 Phytoremediation of Zn-Contaminated Soils by Malva Sylvestris

Authors: Abdelouahab Diafat, Meribai Abdelmalek, Ahmed Bahloul

Abstract:

phytoremediation is the use of plants to remove or degrade organic or inorganic contaminants from soil and water this work aims to study the potential effect of malva sylvestris for the phytoremediation of soils contaminated by Zn. plants were grown in pots containing soil artificially contaminated with Zn at concentrations of 100, 200, and 300 mg/kg. the results obtained show that the Zn concentrations used have a negative effect on the growth of this plant the search for the metal carried out by the technique of atomic absorption spectrometry shows that this plant accumulates a small quantity of this metal. it can be concluded that the malva sylvestris plant tolerates Zn contaminated soils but it is not considered as a zinc hyperaccumulator plant

Keywords: phytoremidiation, Zn-contaminated soils, Malva Sylvestris, phytoextraction

Procedia PDF Downloads 68
7012 Combined Analysis of Sudoku Square Designs with Same Treatments

Authors: A. Danbaba

Abstract:

Several experiments are conducted at different environments such as locations or periods (seasons) with identical treatments to each experiment purposely to study the interaction between the treatments and environments or between the treatments and periods (seasons). The commonly used designs of experiments for this purpose are randomized block design, Latin square design, balanced incomplete block design, Youden design, and one or more factor designs. The interest is to carry out a combined analysis of the data from these multi-environment experiments, instead of analyzing each experiment separately. This paper proposed combined analysis of experiments conducted via Sudoku square design of odd order with same experimental treatments.

Keywords: combined analysis, sudoku design, common treatment, multi-environment experiments

Procedia PDF Downloads 334
7011 Cost-Effective Soft Lithography of Organic Semiconductors in Organic Field-Effect Transistors (OFETs)

Authors: Tae Kyu An

Abstract:

We demonstrate repurposing linear micropatterns on the CD as a master mold to fabricate TIPS-PEN microwires. From the micropatterns on CDs, we replicated polyurethane acrylate (PUA) templates which are robust and flexible until submicrometer scale patterns. Subsequently, 1.5 μm TIPS-PEN microwires separated by 1.5 μm were grown. Using crystal analysis tools with polarized optical microscopy and X-ray diffraction measurement, it was revealed that each TIPS-PEN microwires are highly crystalline and uniform compared to spin-coated films. It is attributed to the template-guided growth of TIPS-PEN crystals along the linear template, thus the OFETs comprised of TIPS-PEN microwires displayed the high field-effect mobility.

Keywords: compact disk, macro patterning, OFET, soft lithography

Procedia PDF Downloads 221
7010 The Role of Meaningful Work in Transformational Leadership and Work Outcomes Relationship

Authors: Zainur Rahman

Abstract:

Meaningful work is the topic that will be discussed in this article, especially in changing period. It has an important role because by reaching meaningful work, it will drive to be positive in the workplace. Therefore, task performance will be increased and cynicism about organizational change (CAOC) will be reduced. Moreover, it is influenced by situational factor, which is transformational leadership. In this conceptual paper, the author discusses how the construct of meaningful work influenced by transformational leadership that will have impact on the follower’ work outcomes in the organizational change. It is proposed that the construct of meaningful work are susceptible with situational variable. Transformational leaders who are respectful on the process of humanizing the followers affect task performance and reduce CAOC in organizational change.

Keywords: transformational leadership, meaningful work, task performance, CAOC

Procedia PDF Downloads 306
7009 Stochastic Default Risk Estimation Evidence from the South African Financial Market

Authors: Mesias Alfeus, Kirsty Fitzhenry, Alessia Lederer

Abstract:

The present paper provides empirical studies to estimate defaultable bonds in the South African financial market. The main goal is to estimate the unobservable factors affecting bond yields for South African major banks. The maximum likelihood approach is adopted for the estimation methodology. Extended Kalman filtering techniques are employed in order to tackle the situation that the factors cannot be observed directly. Multi-dimensional Cox-Ingersoll-Ross (CIR)-type factor models are considered. Results show that default risk increased sharply in the South African financial market during COVID-19 and the CIR model with jumps exhibits a better performance.

Keywords: default intensity, unobservable state variables, CIR, α-CIR, extended kalman filtering

Procedia PDF Downloads 92
7008 Silent Myocardial Infarction Presented with Homonymous Hemianopia in a Non-Diabetic Middle Aged Man

Authors: Seyed Fakhroddin Hejazi, Mohammad Saleh Sadeghi, Leili Iranirad

Abstract:

Silent myocardial infarction is defined as the appearance of pathological Q waves in the electrocardiogram, without objective signs of myocardial infarction and any minimal or atypical symptoms. Although this condition has been known for a long time, but little is known about its phenomenon and the mechanisms of it remain unclear. Its coincidence with stroke is also still controversial. This case report introduces a middle-aged man with silent myocardial infarction presented with homonymous hemianopia, which except stage 1 hypertension, had no other major cardiovascular risk factors including diabetes mellitus, hypercholesterolemia, family history of cardiac diseases and smoking. In conclusion, this case report indicated that existence of only one cardiovascular risk factor would lead to the development of MI or stroke.

Keywords: silent myocardial infarction, homonymous hemianopia, stroke, hypertension

Procedia PDF Downloads 267
7007 Effect of Term of Preparation on Performance of Cool Chamber Stored White Poplar Hardwood Cuttings in Nursery

Authors: Branislav Kovačević, Andrej Pilipović, Zoran Novčić, Marina Milović, Lazar Kesić, Milan Drekić, Saša Pekeč, Leopold Poljaković Pajnik, Saša Orlović

Abstract:

Poplars present one of the most important tree species used for phytoremediation in the northern hemisphere. They can be used either as direct “cleaners” of the contaminated soils or as buffer zones preventing the contaminant plume to the surrounding environment. In order to produce appropriate planting material for this purpose, there is a long process of the breeding of the most favorable candidates. Although the development of the poplar propagation technology has been evolving for decades, white poplar nursery production, as well as the establishment of short-rotation coppice plantations, still considerably depends on the success of hardwood cuttings’ survival. This is why easy rooting is among the most desirable properties in white poplar breeding. On the other hand, there are many opportunities for the optimization of the technological procedures in order to meet the demands of particular genotype (clonal technology). In this study the effect of the term of hardwood cuttings’ preparation of four white poplar clones on their survival and further growth of rooted cuttings in nursery conditions were tested. There were three terms of cuttings’ preparation: the beginning of February (2nd Feb 2023), the beginning of March (3rd Mar 2023) and the end of March (21nd Mar 2023), which is regarded as the standard term. The cuttings were stored in cool chamber at 2±2°C. All cuttings were planted on the same date (11th Apr 2023), in soil prepared with rotary tillage, and then cultivated by usual nursey procedures. According to the results obtained after the bud set (29th Sept 2023) there were significant differences in the survival and growth of rooted cuttings between examined terms of cutting preparation. Also, there were significant differences in the reaction of examined clones on terms of cutting preparation. In total, the best results provided cuttings prepared at the first term (2nd Feb 2023) (survival rate of 39.4%), while performance after two later preparation terms was significantly poorer (20.5% after second and 16.5% after third term). These results stress the significance of dormancy preservation in cuttings of examined white poplar clones for their survival, which could be especially important in context of climate change. Differences in clones’ reaction to term of cutting preparation suggest necessity of adjustment of the technology to the needs of particular clone i.e. design of clone specific technology.

Keywords: rooting, Populus alba, nursery, clonal technology

Procedia PDF Downloads 47
7006 Chemical Vapor Deposition (CVD) of Molybdenum Disulphide (MoS2) Monolayers

Authors: Omar Omar, Yuan Jun, Hong Jinghua, Jin Chuanhong

Abstract:

In this work molybdenum dioxide (MoO2) and sulphur powders are used to grow MoS2 mono layers at elevated temperatures T≥800 °C. Centimetre scale continues thin films with grain size up to 410 µm have been grown using chemical vapour deposition. To our best knowledge, these domains are the largest that have been grown so far. Advantage of our approach is not only because of the high quality films with large domain size one can produce, but also the procedure is potentially less hazardous than other methods tried. The thin films have been characterized using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy.

Keywords: molybdenum disulphide (MoS2), monolayers, chemical vapour deposition (CVD), growth and characterization

Procedia PDF Downloads 314
7005 Methods for Mitigating Corrosion Caused by Biogenic Sulfuric Acid in Sewerage Systems: State of the Art Review

Authors: M. Cortés, E. Vera, M. Avella

Abstract:

Corrosion is an imminent process in nature, which affects all types of materials. In sewerage systems, the corrosion process caused by microorganisms, also known as biogenic sulfuric acid attack, has been studied. This affects the structural integrity of the concrete drainage pipes and the sewage treatment plants. This article is a review of research which focuses on the study of how to reduce the production of hydrogen sulfide, how to improve the resistance of concrete through the use of additives and the implementation of antimicrobial techniques to reduce bacterial growth.

Keywords: bactericides, biogenic sulfuric acid, corrosion, concrete, hydrogen sulphide, nano materials, zeolites

Procedia PDF Downloads 428
7004 Engineering Escherichia coli for Production of Short Chain Fatty Acid by Exploiting Fatty Acid Metabolic Pathway

Authors: Kamran Jawed, Anu Jose Mattam, Zia Fatma, Saima Wajid, Malik Z. Abdin, Syed Shams Yazdani

Abstract:

Worldwide demand of natural and sustainable fuels and chemicals have encouraged researchers to develop microbial platform for synthesis of short chain fatty acids as they are useful precursors to replace petroleum-based fuels and chemicals. In this study, we evaluated the role of fatty acid synthesis and β-oxidation cycle of Escherichia coli to produce butyric acid, a 4-carbon short chain fatty acid, with the help of three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron. We found that E. coli strain transformed with gene for TesBT and grown in presence of 8 g/L glucose produced maximum butyric acid titer at 1.46 g/L, followed by that of TesBF at 0.85 g/L and TesAT at 0.12 g/L, indicating that these thioesterases were efficiently converting short chain fatty acyl-ACP intermediate of fatty acid synthesis pathway into the corresponding acid. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. Deletion of genes for fatty acyl-CoA synthetase and acyl-CoA dehydrogenase, which are involved in initiating the fatty acid degradation cycle, and overexpression of FadR, which is a dual transcriptional regulator and exerts negative control over fatty acid degradation pathway, reduced up to 30% of butyric acid titer. This observation suggested that β-oxidation pathway is working synergistically with fatty acid synthesis pathway in production of butyric acid. Moreover, accelerating the fatty acid elongation cycle by overexpressing acetyl-CoA carboxyltransferase (Acc) and 3-hydroxy-acyl-ACP dehydratase (FabZ) or by deleting FabR, the transcription suppressor of elongation, did not improve the butyric acid titer, rather favored the long chain fatty acid production. Finally, a balance between cell growth and butyric acid production was achieved with the use of phosphorous limited growth medium and 14.3 g/L butyric acid, and 17.5 g/L total free fatty acids (FFAs) titer was achieved during fed-batch cultivation. We have engineered an E. coli strain which utilizes the intermediate of both fatty acid synthesis and degradation pathway, i.e. butyryl-ACP and -CoA, to produce butyric acid from glucose. The strategy used in this study resulted in highest reported titers of butyric acid and FFAs in engineered E. coli.

Keywords: butenoic acid, butyric acid, Escherichia coli, fed-batch fermentation, short chain fatty acids, thioesterase

Procedia PDF Downloads 357
7003 Accelerating Entrepreneurship among Young Women in Sabah Malaysia

Authors: Imelda Albert Gisip, Tarisah T. Z. Taman

Abstract:

In Asia, particularly in Malaysia, women entrepreneurs contribute substantially to economic growth. This paper presents a review of women entrepreneurs’ program, focusing on Creating Millionaires among Young Women Entrepreneurs (CREAM@YWE) program in Sabah Malaysia, which aims to accelerate entrepreneurship among young women in Sabah Malaysia. Entrepreneurs are seen as essential for growth, job creation, and social progress, and the virtues of small business for Sabah Maju Jaya (SMJ), the Sabah state government Sabah State development plan for the year 2021-2025. SMJ guides the direction of the government's policies and programs, further guiding the implementation in a planned and strategic manner to achieve targets and goals that coincide with the development needs of the state. One of the government’s agendas is to put more effort into ensuring that women entrepreneurs are well supported and enhanced. Thus, The CreaM@YWE Program was developed in 2018 with the main objective is to produce competitive young women entrepreneurs in Sabah and achieve "millionaire" status. CreaM@YWE Program is an innovation process specifically developed to accelerate the entrepreneurship sector, particularly for women entrepreneurs in Sabah, by incorporating strategic partnerships and collaborations with government agencies and industry players. Being the first of its kind in Sabah, the novelty of this project is providing a supportive ecosystem, including six months of intensive courses guided through "hands-holding”, collaborations with strategic partners, and easy access to government assistance. Since its inception, the program has significantly impacted society’s wellbeing, particularly in empowering young women entrepreneurs in Sabah for the past six years, and has produced many successful women entrepreneurs with “millionaire” status. Generally, improving the women’s enterprise sector in Malaysia needs an overall environment that provides development opportunities for women entrepreneurs, including access to resources and support services. Since achieving the goal of women's entrepreneurship policy requires effective partnerships and inclusiveness, Cream @YWE Program has managed to practice these in assisting small entrepreneurs among young women in Sabah in accessing public goods and business opportunities. This proves that achieving women’s economic empowerment requires sound policies, a holistic approach, and long-term commitment. Thus, this paper presents how the Cream@YWE Program has been supporting Sabah young women entrepreneurs by reforming the business environment to help create opportunities for women while addressing the few existing gender-specific hurdles.

Keywords: young, women, entrepreneurs, Sabah, Malaysia

Procedia PDF Downloads 29
7002 Reducing the Impact of Pathogenic Fungi on Barley Using Bacteria: Bacterial Biocontrol in the Barley-Malt-Beer Industry

Authors: Eusèbe Gnonlonfoun, Xavier Framboisier, Michel Fick, Emmanuel Rondags

Abstract:

Pathogenic fungi represent a generic problem for cereals, including barley, as they can produce a number of thermostable toxic metabolites such as mycotoxins that contaminate plants and food products, leading to serious health issues for humans and animals and causing significant losses in global food production. In addition, mycotoxins represent a significant technological concern for the malting and brewing industries, as they may affect the quality and safety of raw materials (barley and malt) and final products (beer). Moreover, this situation is worsening due to the highly variable climatic conditions that favor microbial development and the societal desire to reduce the use of phytosanitary products, including fungicides. In this complex environmental, regulatory and economic context for the French barley-malt-beer industry, this project aims to develop an innovative biocontrol process by using technological bacteria, isolated from infection-resistant barley cultures, that are able to reduce the development of spoilage fungi and the associated mycotoxin production. The experimental approach consists of i) coculturing bacterial and pathogenic fungal strains in solid and liquid media to access the growth kinetics of these microorganisms and to evaluate the impact of these bacteria on fungal growth and mycotoxin production; then ii) the results will be used to carry out a micro-malting process in order to develop the aforementioned process, and iii) the technological and sanitary properties of the generated barley malts will finally be evaluated in order to validate the biocontrol process developed. The process is expected to make it possible to guarantee, with controlled costs, an irreproachable hygienic and technological quality of the malt, despite the increasingly complex and variable conditions for barley production. Thus, the results will not only make it possible to maintain the dominant world position of the French barley-malt chain but will also allow it to conquer emerging markets, mainly in Africa and Asia. The use of this process will also contribute to the reduction of the use of phytosanitary products in the field for barley production while reducing the level of contamination of malting plant effluents. Its environmental impact would therefore be significant, especially considering that barley is the fourth most-produced cereal in the world.

Keywords: barley, pathogenic fungi, mycotoxins, malting, bacterial biocontrol

Procedia PDF Downloads 160
7001 The Quantitative Analysis of the Influence of the Superficial Abrasion on the Lifetime of the Frog Rail

Authors: Dong Jiang

Abstract:

Turnout is the essential equipment on the railway, which also belongs to one of the strongest demanded infrastructural facilities of railway on account of the more seriously frog rail failures. In cooperation with Germany Company (DB Systemtechnik AG), our research team focuses on the quantitative analysis about the frog rails to predict their lifetimes. Moreover, the suggestions for the timely and effective maintenances are made to improve the economy of the frog rails. The lifetime of the frog rail depends strongly on the internal damage of the running surface until the breakages occur. On the basis of Hertzian theory of the contact mechanics, the dynamic loads of the running surface are calculated in form of the contact pressures on the running surface and the equivalent tensile stress inside the running surface. According to material mechanics, the strength of the frog rail is determined quantitatively in form of the Stress-cycle (S-N) curve. Under the interaction between the dynamic loads and the strength, the internal damage of the running surface is calculated by means of the linear damage hypothesis of the Miner’s rule. The emergence of the first Breakage on the running surface is to be defined as the failure criterion that the damage degree equals 1.0. From the microscopic perspective, the running surface of the frog rail is divided into numerous segments for the detailed analysis. The internal damage of the segment grows slowly in the beginning and disproportionately quickly in the end until the emergence of the breakage. From the macroscopic perspective, the internal damage of the running surface develops simply always linear along the lifetime. With this linear growth of the internal damages, the lifetime of the frog rail could be predicted simply through the immediate introduction of the slope of the linearity. However, the superficial abrasion plays an essential role in the results of the internal damages from the both perspectives. The influences of the superficial abrasion on the lifetime are described in form of the abrasion rate. It has two contradictory effects. On the one hand, the insufficient abrasion rate causes the concentration of the damage accumulation on the same position below the running surface to accelerate the rail failure. On the other hand, the excessive abrasion rate advances the disappearance of the head hardened surface of the frog rail to result in the untimely breakage on the surface. Thus, the relationship between the abrasion rate and the lifetime is subdivided into an initial phase of the increased lifetime and a subsequent phase of the more rapid decreasing lifetime with the continuous growth of the abrasion rate. Through the compensation of these two effects, the critical abrasion rate is discussed to reach the optimal lifetime.

Keywords: breakage, critical abrasion rate, frog rail, internal damage, optimal lifetime

Procedia PDF Downloads 195
7000 Theoretical Aspects and Practical Approach in the Research of the Human Capital of Student Volunteer Community

Authors: Kalinina Anatasiia, Pevnaya Mariya

Abstract:

The article concerns theoretical basis in the research of student volunteering, identifies references of student volunteering as a social community, classifies human capital indicators of student volunteers. Also there are presented the results of research of 450 student volunteers in Russia concerning the correlation between international volunteering and indicators of human capital of youth. Findings include compared characteristics of human capital of “potential” and “real” international student volunteers. Factor analysis revealed two categories of active students categories of active students.

Keywords: human capital, international volunteering, student volunteering, social community, youth volunteering, youth politics

Procedia PDF Downloads 541
6999 Improving Working Memory in School Children through Chess Training

Authors: Veena Easvaradoss, Ebenezer Joseph, Sumathi Chandrasekaran, Sweta Jain, Aparna Anna Mathai, Senta Christy

Abstract:

Working memory refers to a cognitive processing space where information is received, managed, transformed, and briefly stored. It is an operational process of transforming information for the execution of cognitive tasks in different and new ways. Many class room activities require children to remember information and mentally manipulate it. While the impact of chess training on intelligence and academic performance has been unequivocally established, its impact on working memory needs to be studied. This study, funded by the Cognitive Science Research Initiative, Department of Science & Technology, Government of India, analyzed the effect of one-year chess training on the working memory of children. A pretest–posttest with control group design was used, with 52 children in the experimental group and 50 children in the control group. The sample was selected from children studying in school (grades 3 to 9), which included both the genders. The experimental group underwent weekly chess training for one year, while the control group was involved in extracurricular activities. Working memory was measured by two subtests of WISC-IV INDIA. The Digit Span Subtest involves recalling a list of numbers of increasing length presented orally in forward and in reverse order, and the Letter–Number Sequencing Subtest involves rearranging jumbled alphabets and numbers presented orally following a given rule. Both tasks require the child to receive and briefly store information, manipulate it, and present it in a changed format. The Children were trained using Winning Moves curriculum, audio- visual learning method, hands-on- chess training and recording the games using score sheets, analyze their mistakes, thereby increasing their Meta-Analytical abilities. They were also trained in Opening theory, Checkmating techniques, End-game theory and Tactical principles. Pre equivalence of means was established. Analysis revealed that the experimental group had significant gains in working memory compared to the control group. The present study clearly establishes a link between chess training and working memory. The transfer of chess training to the improvement of working memory could be attributed to the fact that while playing chess, children evaluate positions, visualize new positions in their mind, analyze the pros and cons of each move, and choose moves based on the information stored in their mind. If working-memory’s capacity could be expanded or made to function more efficiently, it could result in the improvement of executive functions as well as the scholastic performance of the child.

Keywords: chess training, cognitive development, executive functions, school children, working memory

Procedia PDF Downloads 245
6998 Projective Lag Synchronization in Drive-Response Dynamical Networks via Hybrid Feedback Control

Authors: Mohd Salmi Md Noorani, Ghada Al-Mahbashi, Sakhinah Abu Bakar

Abstract:

This paper investigates projective lag synchronization (PLS) behavior in drive response dynamical networks (DRDNs) model with identical nodes. A hybrid feedback control method is designed to achieve the PLS with mismatch and without mismatch terms. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Moreover, the numerical simulations results demonstrate the validity of the proposed method.

Keywords: drive-response dynamical network, projective lag synchronization, hybrid feedback control, stability theory

Procedia PDF Downloads 375
6997 Level up Entrepreneurial Behaviors: A Case Study on the Use of Gamification to Encourage Entrepreneurial Acting and Thinking

Authors: Lena Murawski

Abstract:

Currently, researchers and experts from the business world recognize entrepreneurial behaviors as a decisive factor for economic success, allowing firms to adapt to changing internal and external needs. The purpose of this study is to explore how gamification can enhance entrepreneurial behaviors, reporting on a gamification project in a new venture operating in the IT sector in Germany. This article is based on data gathered from observations of pre‐ and post‐implementation in the case company. Results have indicated that the use of gamification encourages entrepreneurial behaviors, especially relating to seeking ways on how to integrate new employees, improve teamwork and communication, and to adapt existing processes to increase productivity. The interdisciplinary dialogue furthers our understanding of factors that foster entrepreneurial behaviors. The matter is of practical relevance, guiding practitioners on how to exploit the potentials of gamification to exhibit an entrepreneurial orientation in organizations.

Keywords: case study, entrepreneurial behaviors, gamification, new venture

Procedia PDF Downloads 147
6996 Relationship between Functional Properties and Supramolecular Structure of the Poly(Trimethylene 2,5-Furanoate) Based Multiblock Copolymers with Aliphatic Polyethers or Aliphatic Polyesters

Authors: S. Paszkiewicz, A. Zubkiewicz, A. Szymczyk, D. Pawlikowska, I. Irska, E. Piesowicz, A. Linares, T. A. Ezquerra

Abstract:

Over the last century, the world has become increasingly dependent on oil as its main source of chemicals and energy. Driven largely by the strong economic growth of India and China, demand for oil is expected to increase significantly in the coming years. This growth in demand, combined with diminishing reserves, will require the development of new, sustainable sources for fuels and bulk chemicals. Biomass is an attractive alternative feedstock, as it is widely available carbon source apart from oil and coal. Nowadays, academic and industrial research in the field of polymer materials is strongly oriented towards bio-based alternatives to petroleum-derived plastics with enhanced properties for advanced applications. In this context, 2,5-furandicarboxylic acid (FDCA), a biomass-based chemical product derived from lignocellulose, is one of the most high-potential biobased building blocks for polymers and the first candidate to replace the petro-derived terephthalic acid. FDCA has been identified as one of the top 12 chemicals in the future, which may be used as a platform chemical for the synthesis of biomass-based polyester. The aim of this study is to synthesize and characterize the multiblock copolymers containing rigid segments of poly(trimethylene 2,5-furanoate) (PTF) and soft segments of poly(tetramethylene oxide) (PTMO) with excellent elastic properties or aliphatic polyesters of polycaprolactone (PCL). Two series of PTF based copolymers, i.e., PTF-block-PTMO-T and PTF-block-PCL-T, with different content of flexible segments were synthesized by means of a two-step melt polycondensation process and characterized by various methods. The rigid segments of PTF, as well as the flexible PTMO/or PCL ones, were randomly distributed along the chain. On the basis of 1H NMR, SAXS and WAXS, DSC an DMTA results, one can conclude that both phases were thermodynamically immiscible and the values of phase transition temperatures varied with the composition of the copolymer. The copolymers containing 25, 35 and 45wt.% of flexible segments (PTMO) exhibited elastomeric property characteristics. Moreover, with respect to the flexible segments content, the temperatures corresponding to 5%, 25%, 50% and 90% mass loss as well as the values of tensile modulus decrease with the increasing content of aliphatic polyether or aliphatic polyester in the composition.

Keywords: furan based polymers, multiblock copolymers, supramolecular structure, functional properties

Procedia PDF Downloads 115
6995 Nanoparticles on Biological Biomarquers Models: Paramecium Tetraurelia and Helix aspersa

Authors: H. Djebar, L. Khene, M. Boucenna, M. R. Djebar, M. N. Khebbeb, M. Djekoun

Abstract:

Currently in toxicology, use of alternative models permits to understand the mechanisms of toxicity at different levels of cells. Objectives of our research concern the determination of NPs ZnO, TiO2, AlO2, and FeO2 effect on ciliate protist freshwater Paramecium sp and Helix aspersa. The result obtained show that NPs increased antioxidative enzyme activity like catalase, glutathione –S-transferase and level GSH. Also, cells treated with high concentrations of NPs showed a high level of MDA. In conclusion, observations from growth and enzymatic parameters suggest on one hand that treatment with NPs provokes an oxidative stress and on the other that snale and paramecium are excellent alternatives models for ecotoxicological studies.

Keywords: NPs, GST, catalase, GSH, MDA, toxicity, snale and paramecium

Procedia PDF Downloads 269
6994 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy

Authors: Jian Yu

Abstract:

Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.

Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process

Procedia PDF Downloads 172
6993 Analysis of Reinforced Granular Pile in Soft Soil

Authors: G. Nitesh

Abstract:

Stone column or granular pile is a proven technique to mitigate settlement in soft soil. Granular pile increases both rate of consolidation and stiffness of the ground. In this paper, a method to analyze further reduction in settlement of granular column reinforced with lime pile is presented treating the system as a unit cell and considering one-dimensional compression approach. The core of the granular pile is stiffened with a steel rod or lime column. Influence of a wide range of parameters such as area ratio of granular pile-soft soil, area ratio of lime pile-granular pile, modular ratio of granular pile and modular ratio of lime pile with respect to granular pile on settlement reduction factor, etc. are obtained and presented.

Keywords: lime pile, granular pile, soft soil, settlement

Procedia PDF Downloads 388
6992 The Harada Method: A Method for Employee Development during Production Ramp Up

Authors: M. Goerke, J. Gehrmann

Abstract:

Caused by shorter product life cycles and higher product variety the importance of production ramp ups is increasing. Even though companies are aware of that fact, up to 40% of the ramp up projects still miss technical and economical requirements. The success of a ramp up depends on the planning of human factors, organizational aspects and technological solutions. Since only partly considered in scientific literature, this paper lays its focus on the human factor during production ramp up. There are only incoherent methods which address the problems in this area. A systematic and holistic method to improve the capabilities of the employees during ramp up is missing. The Harada Method is a relatively young approach for developing highly-skilled workers. It consists of different worksheets which help employees to set guidelines and reach overall objectives. This approach is going to be transferred into a tool for ramp up management.

Keywords: employee development, Harada, production ramp up, organizational aspects

Procedia PDF Downloads 441
6991 The Effect of the Rain Intensity on the Hydrodynamic Behavior of the Low-Floor ChéLiffe

Authors: Ahmed Abbas

Abstract:

Land degradation in the Lower Cheliff region leads to loss of their fertility, physical and chemical properties by secondary salinization and film forming surface or surface crust. The main factor related to runoff and soil erosion is their susceptibility to crusting caused by the impact of raindrops, which causes the reduction of the filterability of the soil. The present study aims to investigate the hydrodynamic behavior of five types of soil taken from the plain of low Cheliff under simulated rainfall by using two intensities, one moderate, and others correspond to heavy rains at low kinetic energies. Experimental results demonstrate the influence of chemical and mechanical physical properties of soils on their hydrodynamic behavior and the influence of heavy rain on the modality of the reduction in the filterability and the amount of transported sediment.

Keywords: erosion, hydrodynamic behavior, rain simulation, soil

Procedia PDF Downloads 264
6990 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?

Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq

Abstract:

Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.

Keywords: Cox regression, neural networks, survival, cancer.

Procedia PDF Downloads 179