Search results for: solar-aided power generation system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23290

Search results for: solar-aided power generation system

18760 p210 BCR-ABL1 CML with CMML Clones: A Rare Presentation

Authors: Mona Vijayaran, Gurleen Oberoi, Sanjay Mishra

Abstract:

Introduction: p190 BCR‐ABL1 in CML is often associated with monocytosis. In the case described here, monocytosis is associated with coexisting p210 BCR‐ABL and CMML clones. Mutation analysis using next‐generation sequence (NGS) in our case showed TET2 and SRSF2 mutations. Aims & Objectives: A 75-year male was evaluated for monocytosis and thrombocytopenia. CBC showed Hb-11.8g/dl, TLC-12,060/cmm, Monocytes-35%, Platelets-39,000/cmm. Materials & Methods: Bone marrow examination showed a hypercellular marrow with myeloid series showing sequential maturation up to neutrophils with 30% monocytes. Immunophenotyping by flow cytometry from bone marrow had 3% blasts. Making chronic myelomonocytic leukemia as the likely diagnosis. NGS for myeloid mutation panel had TET2 (48.9%) and SRSF2 (32.5%) mutations. This report further supported the diagnosis of CMML. To fulfil the WHO diagnostic criteria for CMML, a BCR ABL1 by RQ-PCR was sent. The report came positive for p210 (B3A2, B2A2) Major Transcript (M-BCR) % IS of 38.418. Result: The patient was counselled regarding the unique presentation of the presence of 2 clones- P210 CML and CMML. After discussion with an international faculty with vast experience in CMML. It was decided to start this elderly gentleman on Imatinib 200mg and not on azacytidine, as ASXL1 was not present; hence, his chances of progressing to AML would be less and on the other end, if CML is left untreated then chances of progression to blast phase would always be a possibility. After 3 months on Imatinib his platelet count improved to 80,000 to 90,000/cmm, but his monocytosis persists. His 3rd month BCR-ABL1 IS% is 0.004%. Conclusion: After searching the literature, there were no case reports of a coexisting CML p210 with CMML. This case might be the first case report. p190 BCR ABL1 is often associated with monocytosis. There are few case reports of p210 BCR ABL1 positivity in patients with monocytosis but none with coexisting CMML. This case highlights the need for extensively evaluating patients with monocytosis with next-generation sequencing for myeloid mutation panel and BCR-ABL1 by RT-PCR to correctly diagnose and treat them.

Keywords: CMML, NGS, p190 CML, Imatinib

Procedia PDF Downloads 74
18759 Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision

Authors: Subhasisa Nath, David Waugh, Graham Ormondroyd, Morwenna Spear, Andy Pitman, Paul Mason

Abstract:

Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes.

Keywords: CO2 Laser, Nd: YAG laser, incision, drilling, wood, hole characteristics

Procedia PDF Downloads 233
18758 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation

Authors: Miguel Contreras, David Long, Will Bachman

Abstract:

Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.

Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models

Procedia PDF Downloads 198
18757 Automation of AAA Game Development using AI and Procedural Generation

Authors: Paul Toprac, Branden Heng, Harsheni Siddharthan, Allison Tseng, Sarah Abraham, Etienne Vouga

Abstract:

The goal of this project was to evaluate and document the capabilities and limitations of AI tools for empowering small teams to create high budget, high profile (AAA) 3D games typically developed by large studios. Two teams of novice game developers attempted to create two different games using AI and Unreal Engine 5.3. First, the teams evaluated 60 AI art, design, sound, and programming tools by considering their capability, ease of use, cost, and license restrictions. Then, the teams used a shortlist of 13 AI tools for game development. During this process, the following tools were found to be the most productive: (1) ChatGPT 4.0 for both game and narrative concepting and documentation; (2) Dall-E 3 and OpenArt for concept art; (3) Beatoven for music drafting; (4) Epic PCG for level design; and (5) ChatGPT 4.0 and Github Copilot for generating simple code and to complement human-made tutorials as an additional learning resource. While current generative AI may appear impressive at first glance, the assets they produce fall short of AAA industry standards. Generative AI tools are helpful when brainstorming ideas such as concept art and basic storylines, but they still cannot replace human input or creativity at this time. Regarding programming, AI can only effectively generate simple code and act as an additional learning resource. Thus, generative AI tools are at best tools to enhance developer productivity rather than as a system to replace developers.

Keywords: AAA games, AI, automation tools, game development

Procedia PDF Downloads 4
18756 SisGeo: Support System for the Research of Georeferenced Comparisons Applied to Professional and Academic Devices

Authors: Bruno D. Souza, Gerson G. Cunha, Michael O. Ferreira, Roberto Rosenhaim, Robson C. Santos, Sergio O. Santos

Abstract:

Devices and applications that use satellite-based positioning are becoming more popular day-by-day. Thus, evolution and improvement in this technology are mandatory. Accordingly, satellite georeferenced systems need to accomplish the same evolution rhythm. Either GPS (Global Positioning System) or its similar Russian GLONASS (Global Navigation Satellite System) are system samples that offer us powerful tools to plot coordinates on the earth surface. The development of this research aims the study of several aspects related to use of GPS and GLONASS technologies, given its application and collected data improvement during geodetic data acquisition. So, both relevant theoretic and practical aspects are considered. In this context, at the theoretical part, the main systems' characteristics are shown, observing its similarities and differences. At the practical part, a series of experiences are performed and obtained data packages are compared in order to demonstrate equivalence or differences among them. The evaluation methodology targets both quantitative and qualitative analysis provided by GPS and GPS/GLONASS receptors. Meanwhile, a specific collected data storage system was developed to better compare and analyze them (SisGeo - Georeferenced Research Comparison Support System).

Keywords: satellites, systems, applications, experiments, receivers

Procedia PDF Downloads 249
18755 Remote Monitoring and Control System of Potentiostat Based on the Internet of Things

Authors: Liang Zhao, Guangwen Wang, Guichang Liu

Abstract:

Constant potometer is an important component of pipeline anti-corrosion systems in the chemical industry. Based on Internet of Things (IoT) technology, Programmable Logic Controller (PLC) technology and database technology, this paper developed a set of a constant potometer remote monitoring management system. The remote monitoring and remote adjustment of the working status of the constant potometer are realized. The system has real-time data display, historical data query, alarm push management, user permission management, and supporting Web access and mobile client application (APP) access. The actual engineering project test results show the stability of the system, which can be widely used in cathodic protection systems.

Keywords: internet of things, pipe corrosion protection, potentiostat, remote monitoring

Procedia PDF Downloads 139
18754 Performance Improvement of Solar Thermal Cooling Systems Integrated with Encapsulated PCM

Authors: Lana Migla

Abstract:

Phase change materials (PCMs) have an important role in improving the efficiency of thermal heat storage. As these materials are characterized by low thermal conductivity, it is necessary to develop heat transfer techniques to improve their thermophysical properties. This scientific article focuses on the geometrical configurations of encapsulated PCM containers and the impact of designs to improve the performance of the solar thermal cooling system. The literature review showed that in-depth research is being conducted on different methods of improving the efficiency of PCM heat transfer, which is the main design task for the containers. Techniques such as microencapsulated PCMs, adding fins and different combinations of fins and nanoparticles are used. The use of graphite, metal foam and doping of high photothermal materials is also being studied. To determine most efficient container configuration, the article looks at different designs of PCM containers with fins for the storage tank. This paper experimentally investigates the effect of the encapsulation design on the performance of a lab-scale thermal energy storage tank. The development of optimized energy storage with integrated phase change material containers reduces auxiliary heater energy consumption, increases the COP of the solar cooling system, and reduces the environmental impact of the cooling system. The review shows that in the cylindrical construction, the ratio between the radius of shell and tube is significant, which means this ratio is the main issue to enhance transfer efficiency and to increase the value of stored heat. Therefore, three cylindrical tube containers with different radiuses 20mm, 35mm, 50mm filled with commercial phase change material were tested. The results show that using a smaller radius achieved a higher power, leading to a reduction in the charging and discharging time. The three fins were added to the selected cylindrical tube to determine their effects on heat exchanging efficiency. The observed optimized performance given by the fin’s arrangement achieved a 40% reduction of PCM's melting time compared to the heat exchanging without fins. The exact dimensions of the PCM containers and fins placements will be presented on-site.

Keywords: energy performance, PCM containers, solar thermal cooling, storage tank

Procedia PDF Downloads 134
18753 Experimental Research on the Effect of Activating Temperature on Combustion and Nox Emission Characteristics of Pulverized Coal in a Novel Purification-combustion Reaction System

Authors: Ziqu Ouyang, Kun Su

Abstract:

A novel efficient and clean coal combustion system, namely the purification-combustion system, was designed by the Institute of Engineering Thermal Physics, Chinese Academy of Science, in 2022. Among them, the purification system was composed of a mesothermal activating unit and a hyperthermal reductive unit, and the combustion system was composed of a mild combustion system. In the purification-combustion system, the deep in-situ removal of coal-N could be realized by matching the temperature and atmosphere in each unit, and thus the NOx emission was controlled effectively. To acquire the methods for realizing the efficient and clean coal combustion, this study investigated the effect of the activating temperature (including 822 °C, 858 °C, 933 °C, 991 °C), which was the key factor affecting the system operation, on combustion and NOx emission characteristics of pulverized coal in a 30 kW purification-combustion test bench. The research result turned out that the activating temperature affected the combustion and NOx emission characteristics significantly. As the activating temperature increased, the temperature increased first and then decreased in the mild combustion unit, and the temperature change in the lower part was much higher than that in the upper part. Moreover, the main combustion region was always located at the top of the unit under different activating temperatures, and the combustion intensity along the unit was weakened gradually. Increasing the activating temperature excessively could destroy the reductive atmosphere early in the upper part of the unit, which wasn’t conducive to the full removal of coal-N in the reductive coal char. As the activating temperature increased, the combustion efficiency increased first and then decreased, while the NOx emission decreased first and then increased, illustrating that increasing the activating temperature properly promoted the efficient and clean coal combustion, but there was a limit to its growth. In this study, the optimal activating temperature was 858 °C. Hence, this research illustrated that increasing the activating temperature properly could realize the mutual matching of improving the combustion efficiency and reducing the NOx emission, and thus guaranteed the clean and efficient coal combustion well.

Keywords: activating temperature, combustion characteristics, nox emission, purification-combustion system

Procedia PDF Downloads 82
18752 Device for Thermo-Magnetic Depolymerisation of Plant Biomass Prior to Methane Fermentation

Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski

Abstract:

This publication presents a device for depolymerisation of plant substrates applicable to agricultural biogas plants and closed-chamber sewage treatment plants where sludge fermentation is bolstered with plant mass. The device consists of a tank with a cover equipped with a heating system, an inlet for the substrate, and an outlet for the depolymerised substrate. Within the tank, a magnet shaft encased in a spiral casing is attached, equipped on its upper end with an internal magnetic disc. A motoreducer is mounted on an external magnetic disc located on the centre of the cover. Depolymerisation of the plant substrate allows for substrate destruction at much lower power levels than by conventional means. The temperature within the reactor can be lowered by 40% in comparison to existing designs. During the depolymerisation process, free radicals are generated within the magnetic field, oxidizing the conditioned substrate and promoting biodegradation. Thus, the fermentation time in the fermenters is reduced by approximately 20%.

Keywords: depolymerisation, pre-treatment, biomass, fermentation

Procedia PDF Downloads 513
18751 Utilizing Hybrid File Mapping for High-Performance I/O

Authors: Jaechun No

Abstract:

As the technology of NAND flash memory rapidly grows, SSD is becoming an excellent alternative for storage solutions, because of its high random I/O throughput and low power consumption. These SSD potentials have drawn great attention from IT enterprises that seek for better I/O performance. However, high SSD cost per capacity makes it less desirable to construct a large-scale storage subsystem solely composed of SSD devices. An alternative is to build a hybrid storage subsystem where both HDD and SSD devices are incorporated in an economic manner, while employing the strengths of both devices. This paper presents a hybrid file system, called hybridFS, that attempts to utilize the advantages of HDD and SSD devices, to provide a single, virtual address space by integrating both devices. HybridFS not only proposes an efficient implementation for the file management in the hybrid storage subsystem but also suggests an experimental framework for making use of the excellent features of existing file systems. Several performance evaluations were conducted to verify the effectiveness and suitability of hybridFS.

Keywords: hybrid file mapping, data layout, hybrid device integration, extent allocation

Procedia PDF Downloads 501
18750 Power Asymmetry and Major Corporate Social Responsibility Projects in Mhondoro-Ngezi District, Zimbabwe

Authors: A. T. Muruviwa

Abstract:

Empirical studies of the current CSR agenda have been dominated by literature from the North at the expense of the nations from the South where most TNCs are located. Therefore, owing to the limitations of the current discourse that is dominated by Western ideas such as voluntarism, philanthropy, business case and economic gains, scholars have been calling for a new CSR agenda that is South-centred and addresses the needs of developing nations. The development theme has dominated in the recent literature as scholars concerned with the relationship between business and society have tried to understand its relationship with CSR. Despite a plethora of literature on the roles of corporations in local communities and the impact of CSR initiatives, there is lack of adequate empirical evidence to help us understand the nexus between CSR and development. For all the claims made about the positive and negative consequences of CSR, there is surprisingly little information about the outcomes it delivers. This study is a response to these claims made about the developmental aspect of CSR in developing countries. It offers some empirical bases for assessing the major CSR projects that have been fulfilled by a major mining company, Zimplats in Mhondoro-Ngezi Zimbabwe. The neo-liberal idea of capitalism and market dominations has empowered TNCs to stamp their authority in the developing countries. TNCs have made their mark in developing nations as they stamp their global private authority, rivalling or implicitly challenging the state in many functions. This dominance of corporate power raises great concerns over their tendencies of abuses in terms of environmental, social and human rights concerns as well as how to make them increasingly accountable. The hegemonic power of TNCs in the developing countries has had a tremendous impact on the overall CSR practices. While TNCs are key drivers of globalization they may be acting responsibly in their Global Northern home countries where there is a combination of legal mechanisms and the fear of civil society activism associated with corporate scandals. Using a triangulated approach in which both qualitative and quantitative methods were used the study found out that most CSR projects in Zimbabwe are dominated and directed by Zimplats because of the power it possesses. Most of the major CSR projects are beneficial to the mining company as they serve the business plans of the mining company. What was deduced from the study is that the infrastructural development initiatives by Zimplats confirm that CSR is a tool to advance business obligations. This shows that although proponents of CSR might claim that business has a mandate for social obligations to society, we need not to forget the dominant idea that the primary function of CSR is to enhance the firm’s profitability.

Keywords: hegemonic power, projects, reciprocity, stakeholders

Procedia PDF Downloads 247
18749 Inventory Policy with Continuous Price Reduction in Solar Photovoltaic Supply Chain

Authors: Xiangrong Liu, Chuanhui Xiong

Abstract:

With the concern of large pollution emissions from coal-fired power plants and new commitment to green energy, global solar power industry was emerging recently. Due to the advanced technology, the price of solar photovoltaic(PV) module was reduced at a fast rate, which arose an interesting but challenge question to solar supply chain. This research is modeling the inventory strategies for a PV supply chain with a PV manufacturer, an assembler and an end customer. Through characterizing the manufacturer's and PV assembler's optimal decision in decentralized and centralized situation, this study shed light on how to improve supply chain performance through parameters setting in the contract design. The results suggest the assembler to lower the optimal stock level gradually each period before price reduction and set up a newsvendor base-stock policy in all periods after price reduction. As to the PV module manufacturer, a non-stationary produce-up-to policy is optimal.

Keywords: photovoltaic, supply chain, inventory policy, base-stock policy

Procedia PDF Downloads 344
18748 The Effect of Bacteria on Mercury's Biological Removal

Authors: Nastaran Soltani

Abstract:

Heavy metals such as Mercury are toxic elements that enter the environment through different ways and endanger the environment, plants, animals, and humans’ health. Microbial activities reduce the amount of heavy metals. Therefore, an effective mechanism to eliminate heavy metals in the nature and factory slops, is using bacteria living in polluted areas. Karun River in Khuzestan Province in Iran has been always polluted by heavy metals as it is located among different industries in the region. This study was performed based on the data from sampling water and sediments of four stations across the river during the four seasons of a year. The isolation of resistant bacteria was performed through enrichment and direct cultivation in a solid medium containing mercury. Various bacteria such as Pseudomonas sp., Serratia Marcescens, and E.coli were identified as mercury-resistant bacteria. The power of these bacteria to remove mercury varied from 28% to 86%, with strongest power belonging to Pseudomonas sp. isolated in spring making a good candidate to be used for mercury biological removal from factory slops.

Keywords: bacteria, Karun River, mercury, biological removal, mercury-resistant

Procedia PDF Downloads 281
18747 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture

Authors: Juan Huang, Hugo Ninanya

Abstract:

Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.

Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis

Procedia PDF Downloads 200
18746 Visualization of Wave Propagation in Monocoupled System with Effective Negative Stiffness, Effective Negative Mass, and Inertial Amplifier

Authors: Abhigna Bhatt, Arnab Banerjee

Abstract:

A periodic system with only a single coupling degree of freedom is called a monocoupled system. Monocoupled systems with mechanisms like mass in the mass system generates effective negative mass, mass connected with rigid links generates inertial amplification, and spring-mass connected with a rigid link generateseffective negative stiffness. In this paper, the representative unit cell is introduced, considering all three mechanisms combined. Further, the dynamic stiffness matrix of the unit cell is constructed, and the dispersion relation is obtained by applying the Bloch theorem. The frequency response function is also calculated for the finite length of periodic unit cells. Moreover, the input displacement signal is given to the finite length of periodic structure and using inverse Fourier transform to visualize the wave propagation in the time domain. This visualization explains the sudden attenuation in metamaterial due to energy dissipation by an embedded resonator at the resonance frequency. The visualization created for wave propagation is found necessary to understand the insights of physics behind the attenuation characteristics of the system.

Keywords: mono coupled system, negative effective mass, negative effective stiffness, inertial amplifier, fourier transform

Procedia PDF Downloads 115
18745 Concept of Tourist Village on Kampung Karaton of Karaton Kasunanan Surakarta, Central Java, Indonesia

Authors: Naniek Widayati Priyomarsono

Abstract:

Introduction: In beginning of Karaton formation, namely, era of Javanese kingdom town had the power region outside castle town (called as Mancanegara), settlement of karaton can function as “the space-between” and “space-defense”, besides it was one of components from governmental structure and karaton power at that time (internal servant/abdi dalem and sentana dalem). Upon the Independence of Indonesia in 1945 “Kingdom-City” converted its political status into part of democratic town managed by statutes based on the classification. The latter affects local culture hierarchy alteration due to the physical development and events. Dynamics of social economy activities in Kampung Karaton surrounded by buildings of Complex of Karaton Kasunanan ini, have impact on the urban system disturbed into the región. Also cultural region image fades away with the weak visual access from existant cultural artefacts. That development lacks of giving appreciation to the established region image providing identity of Karaton Kasunanan particularly and identity of Surakarta city in general. Method used is strategy of grounded theory research (research providing strong base of a theory). Research is focused on actors active and passive relevantly getting involved in change process of Karaton settlement. Data accumulated is “Investigation Focus” oriented on actors affecting that change either internal or external. Investigation results are coupled with field observation data, documentation, literature study, thus it takes accurate findings. Findings: Karaton village has potential products as attraction, possessing human resource support, strong motivation from society still living in that settlement, possessing facilities and means supports, tourism event-supporting facilities, cultural art institution, available fields or development area. Data analyzed: To get the expected result it takes restoration in social cultural development direction, and economy, with ways of: Doing social cultural development strategy, economy, and politics. To-do steps are program socialization of Karaton village as Tourism Village, economical development of local society, regeneration pattern, filtering, and selection of tourism development, integrated planning system development, development with persuasive approach, regulation, market mechanism, social cultural event sector development, political development for region activity sector. Summary: In case the restoration is done by getting society involved as subject of that settlement (active participation in the field), managed and packed interestingly and naturally with tourism-supporting facilities development, village of Karaton Kasunanan Surakarta is ready to receive visit of domestic and foreign tourists.

Keywords: karaton village, finding, restoration, economy, Indonesia

Procedia PDF Downloads 434
18744 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 40
18743 Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits

Authors: Ainul Haque, Ameeye Kumar Nayak

Abstract:

Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation.

Keywords: electroosmotic flow, hydrophobic surface, power-law fluid, shear effect

Procedia PDF Downloads 374
18742 Rotor Side Speed Control Methods Using MATLAB/Simulink for Wound Induction Motor

Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal

Abstract:

In recent advancements in electric machine and drives, wound rotor motor is extensively used. The merit of using wound rotor induction motor is to control speed/torque characteristics by inserting external resistance. Wound rotor induction motor can be used in the cases such as (a) low inrush current, (b) load requiring high starting torque, (c) lower starting current is required, (d) loads having high inertia, and (e) gradual built up of torque. Examples include conveyers, cranes, pumps, elevators, and compressors. This paper includes speed control of wound induction motor using MATLAB/Simulink for rotor resistance and slip power recovery method. The characteristics of these speed control methods are hence analyzed.

Keywords: MATLAB/Simulink, rotor resistance method, slip power recovery method, wound rotor induction motor

Procedia PDF Downloads 365
18741 SNR Classification Using Multiple CNNs

Authors: Thinh Ngo, Paul Rad, Brian Kelley

Abstract:

Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.

Keywords: classification, CNN, deep learning, prediction, SNR

Procedia PDF Downloads 130
18740 Self-Weight Reduction of Tall Structures by Taper Cladding System

Authors: Divya Dharshini Omprakash, Anjali Subramani

Abstract:

Most of the tall structures are constructed using shear walls and tube systems in the recent decades. This makes the structure heavy and less resistant to lateral effects as the height of the structure goes up. This paper aims in the reduction of self-weight in tall structures by the use of Taper Cladding System (TCS) and also enumerates the construction techniques used in TCS. TCS has a tapering clad either fixed at the top or bottom of the structural core at the tapered end. This system eliminates the use of RC structural elements on the exterior of the structure and uses fewer columns only on the interior part to take up the gravity loads in order to reduce the self-weight of the structure. The self-weight reduction by TCS is 50% more compared to the present structural systems. The lateral loads on the hull will be taken care of by the tapered steel frame. Analysis were done to study the structural behaviour of taper cladded buildings subjected to lateral loads. TCS has a great impact in the construction of tall structures in seismic and dense urban areas. An effective construction management can be done by the use of Taper Cladding System. In this paper, sustainability, design considerations and implications of the system has also been discussed.

Keywords: Lateral Loads Resistance, reduction of self-weight, sustainable, taper clads

Procedia PDF Downloads 286
18739 Marine Environmental Monitoring Using an Open Source Autonomous Marine Surface Vehicle

Authors: U. Pruthviraj, Praveen Kumar R. A. K. Athul, K. V. Gangadharan, S. Rao Shrikantha

Abstract:

An open source based autonomous unmanned marine surface vehicle (UMSV) is developed for some of the marine applications such as pollution control, environmental monitoring and thermal imaging. A double rotomoulded hull boat is deployed which is rugged, tough, quick to deploy and moves faster. It is suitable for environmental monitoring, and it is designed for easy maintenance. A 2HP electric outboard marine motor is used which is powered by a lithium-ion battery and can also be charged from a solar charger. All connections are completely waterproof to IP67 ratings. In full throttle speed, the marine motor is capable of up to 7 kmph. The motor is integrated with an open source based controller using cortex M4F for adjusting the direction of the motor. This UMSV can be operated by three modes: semi-autonomous, manual and fully automated. One of the channels of a 2.4GHz radio link 8 channel transmitter is used for toggling between different modes of the USMV. In this electric outboard marine motor an on board GPS system has been fitted to find the range and GPS positioning. The entire system can be assembled in the field in less than 10 minutes. A Flir Lepton thermal camera core, is integrated with a 64-bit quad-core Linux based open source processor, facilitating real-time capturing of thermal images and the results are stored in a micro SD card which is a data storage device for the system. The thermal camera is interfaced to an open source processor through SPI protocol. These thermal images are used for finding oil spills and to look for people who are drowning at low visibility during the night time. A Real Time clock (RTC) module is attached with the battery to provide the date and time of thermal images captured. For the live video feed, a 900MHz long range video transmitter and receiver is setup by which from a higher power output a longer range of 40miles has been achieved. A Multi-parameter probe is used to measure the following parameters: conductivity, salinity, resistivity, density, dissolved oxygen content, ORP (Oxidation-Reduction Potential), pH level, temperature, water level and pressure (absolute).The maximum pressure it can withstand 160 psi, up to 100m. This work represents a field demonstration of an open source based autonomous navigation system for a marine surface vehicle.

Keywords: open source, autonomous navigation, environmental monitoring, UMSV, outboard motor, multi-parameter probe

Procedia PDF Downloads 232
18738 Effects of Fe Addition and Process Parameters on the Wear and Corrosion Characteristics of Icosahedral Al-Cu-Fe Coatings on Ti-6Al-4V Alloy

Authors: Olawale S. Fatoba, Stephen A. Akinlabi, Esther T. Akinlabi, Rezvan Gharehbaghi

Abstract:

The performance of material surface under wear and corrosion environments cannot be fulfilled by the conventional surface modifications and coatings. Therefore, different industrial sectors need an alternative technique for enhanced surface properties. Titanium and its alloys possess poor tribological properties which limit their use in certain industries. This paper focuses on the effect of hybrid coatings Al-Cu-Fe on a grade five titanium alloy using laser metal deposition (LMD) process. Icosahedral Al-Cu-Fe as quasicrystals is a relatively new class of materials which exhibit unusual atomic structure and useful physical and chemical properties. A 3kW continuous wave ytterbium laser system (YLS) attached to a KUKA robot which controls the movement of the cladding process was utilized for the fabrication of the coatings. The titanium cladded surfaces were investigated for its hardness, corrosion and tribological behaviour at different laser processing conditions. The samples were cut to corrosion coupons, and immersed into 3.65% NaCl solution at 28oC using Electrochemical Impedance Spectroscopy (EIS) and Linear Polarization (LP) techniques. The cross-sectional view of the samples was analysed. It was found that the geometrical properties of the deposits such as width, height and the Heat Affected Zone (HAZ) of each sample remarkably increased with increasing laser power due to the laser-material interaction. It was observed that there are higher number of aluminum and titanium presented in the formation of the composite. The indentation testing reveals that for both scanning speed of 0.8 m/min and 1m/min, the mean hardness value decreases with increasing laser power. The low coefficient of friction, excellent wear resistance and high microhardness were attributed to the formation of hard intermetallic compounds (TiCu, Ti2Cu, Ti3Al, Al3Ti) produced through the in situ metallurgical reactions during the LMD process. The load-bearing capability of the substrate was improved due to the excellent wear resistance of the coatings. The cladded layer showed a uniform crack free surface due to optimized laser process parameters which led to the refinement of the coatings.

Keywords: Al-Cu-Fe coating, corrosion, intermetallics, laser metal deposition, Ti-6Al-4V alloy, wear resistance

Procedia PDF Downloads 172
18737 HIS Integration Systems Using Modality Worklist and DICOM

Authors: Kulvinder Singh Mann

Abstract:

The usability and simulation of information systems, known as Hospital Information System (HIS), Radiology Information System (RIS), and Picture Archiving, Communication System, for electronic medical records has shown a good impact for actors in the hospital. The objective is to help and make their work easier; such as for a nurse or administration staff to record the medical records of the patient, and for a patient to check their bill transparently. However, several limitations still exists on such area regarding the type of data being stored in the system, ability for data transfer, storage and protocols to support communication between medical devices and digital images. This paper reports the simulation result of integrating several systems to cope with those limitations by using the Modality Worklist and DICOM standard. It succeeds in documenting the reason of that failure so future research will gain better understanding and be able to integrate those systems.

Keywords: HIS, RIS, PACS, modality worklist, DICOM, digital images

Procedia PDF Downloads 311
18736 A Functional Thermochemical Energy Storage System for Mobile Applications: Design and Performance Analysis

Authors: Jure Galović, Peter Hofmann

Abstract:

Thermochemical energy storage (TCES), as a long-term and lossless energy storage principle, provides a contribution for the reduction of greenhouse emissions of mobile applications, such as passenger vehicles with an internal combustion engine. A prototype of a TCES system, based on reversible sorption reactions of LiBr composite and methanol has been designed at Vienna University of Technology. In this paper, the selection of reactive and inert carrier materials as well as the design of heat exchangers (reactor vessel and evapo-condenser) was reviewed and the cycle stability under real operating conditions was investigated. The performance of the developed system strongly depends on the environmental temperatures, to which the reactor vessel and evapo-condenser are exposed during the phases of thermal conversion. For an integration of the system into mobile applications, the functionality of the designed prototype was proved in numerous conducted cycles whereby no adverse reactions were observed.

Keywords: dynamic applications, LiBr composite, methanol, performance of TCES system, sorption process, thermochemical energy storage

Procedia PDF Downloads 160
18735 A New Method for Fault Detection

Authors: Mehmet Hakan Karaata, Ali Hamdan, Omer Yusuf Adam Mohamed

Abstract:

Consider a distributed system that delivers messages from a process to another. Such a system is often required to deliver each message to its destination regardless of whether or not the system components experience arbitrary forms of faults. In addition, each message received by the destination must be a message sent by a system process. In this paper, we first identify the necessary and sufficient conditions to detect some restricted form of Byzantine faults referred to as modifying Byzantine faults. An observable form of a Byzantine fault whose effect is limited to the modification of a message metadata or content, timing and omission faults, and message replay is referred to as a modifying Byzantine fault. We then present a distributed protocol to detect modifying Byzantine faults using optimal number of messages over node-disjoint paths.

Keywords: Byzantine faults, distributed systems, fault detection, network protocols, node-disjoint paths

Procedia PDF Downloads 441
18734 Cooperative Diversity Scheme Based on MIMO-OFDM in Small Cell Network

Authors: Dong-Hyun Ha, Young-Min Ko, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

In Heterogeneous network (HetNet) can provide high quality of a service in a wireless communication system by composition of small cell networks. The composition of small cell networks improves cell coverage and capacity to the mobile users.Recently, various techniques using small cell networks have been researched in the wireless communication system. In this paper, the cooperative scheme obtaining high reliability is proposed in the small cell networks. The proposed scheme suggests a cooperative small cell system and the new signal transmission technique in the proposed system model. The new signal transmission technique applies a cyclic delay diversity (CDD) scheme based on the multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system to obtain improved performance. The improved performance of the proposed scheme is confirmed by the simulation results.

Keywords: adaptive transmission, cooperative communication, diversity gain, OFDM

Procedia PDF Downloads 496
18733 Model-Free Distributed Control of Dynamical Systems

Authors: Javad Khazaei, Rick Blum

Abstract:

Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.

Keywords: consensus tracking, distributed control, model-free control, sparse identification of dynamical systems

Procedia PDF Downloads 261
18732 Features of Fossil Fuels Generation from Bazhenov Formation Source Rocks by Hydropyrolysis

Authors: Anton G. Kalmykov, Andrew Yu. Bychkov, Georgy A. Kalmykov

Abstract:

Nowadays, most oil reserves in Russia and all over the world are hard to recover. That is the reason oil companies are searching for new sources for hydrocarbon production. One of the sources might be high-carbon formations with unconventional reservoirs. Bazhenov formation is a huge source rock formation located in West Siberia, which contains unconventional reservoirs on some of the areas. These reservoirs are formed by secondary processes with low predicting ratio. Only one of five wells is drilled through unconventional reservoirs, in others kerogen has low thermal maturity, and they are of low petroliferous. Therefore, there was a request for tertiary methods for in-situ cracking of kerogen and production of oil. Laboratory experiments of Bazhenov formation rock hydrous pyrolysis were used to investigate features of the oil generation process. Experiments on Bazhenov rocks with a different mineral composition (silica concentration from 15 to 90 wt.%, clays – 5-50 wt.%, carbonates – 0-30 wt.%, kerogen – 1-25 wt.%) and thermal maturity (from immature to late oil window kerogen) were performed in a retort under reservoir conditions. Rock samples of 50 g weight were placed in retort, covered with water and heated to the different temperature varied from 250 to 400°C with the durability of the experiments from several hours to one week. After the experiments, the retort was cooled to room temperature; generated hydrocarbons were extracted with hexane, then separated from the solvent and weighted. The molecular composition of this synthesized oil was then investigated via GC-MS chromatography Characteristics of rock samples after the heating was measured via the Rock-Eval method. It was found, that the amount of synthesized oil and its composition depending on the experimental conditions and composition of rocks. The highest amount of oil was produced at a temperature of 350°C after 12 hours of heating and was up to 12 wt.% of initial organic matter content in the rocks. At the higher temperatures and within longer heating time secondary cracking of generated hydrocarbons occurs, the mass of produced oil is lowering, and the composition contains more hydrocarbons that need to be recovered by catalytical processes. If the temperature is lower than 300°C, the amount of produced oil is too low for the process to be economically effective. It was also found that silica and clay minerals work as catalysts. Selection of heating conditions allows producing synthesized oil with specified composition. Kerogen investigations after heating have shown that thermal maturity increases, but the yield is only up to 35% of the maximum amount of synthetic oil. This yield is the result of gaseous hydrocarbons formation due to secondary cracking and aromatization and coaling of kerogen. Future investigations will allow the increase in the yield of synthetic oil. The results are in a good agreement with theoretical data on kerogen maturation during oil production. Evaluated trends could be tooled up for in-situ oil generation by shale rocks thermal action.

Keywords: Bazhenov formation, fossil fuels, hydropyrolysis, synthetic oil

Procedia PDF Downloads 112
18731 Education for Sustainable Development Pedagogies: Examining the Influences of Context on South African Natural Sciences and Technology Teaching and Learning

Authors: A. U. Ugwu

Abstract:

Post-Apartheid South African education system had witnessed waves of curriculum reforms. Accordingly, there have been evidences of responsiveness towards local and global challenges of sustainable development over the past decade. In other words, the curriculum shows sensitivity towards issues of Sustainable Development (SD). Moreover, the paradigm of Sustainable Development Goals (SDGs) was introduced by the UNESCO in year 2015. The SDGs paradigm is essentially a vision towards actualizing sustainability in all aspects of the global society. Education for Sustainable Development (ESD) in retrospect entails teaching and learning to actualize the intended UNESCO 2030 SDGs. This paper explores how teaching and learning of ESD can be improved, by drawing from local context of the South African schooling system. Preservice natural sciences and technology teachers in their 2nd to 4th years of study at a university’s college of education in South Africa were contacted as participants of the study. Using qualitative case study research design, the study drew from the views and experiences of five (5) purposively selected participants from a broader study, aiming to closely understating how ESD is implemented pedagogically in teaching and learning. The inquiry employed questionnaires and a focus group discussion as qualitative data generation tools. A qualitative data analysis of generated data was carried out using content and thematic analysis, underpinned by interpretive paradigm. The result of analyzed data, suggests that ESD pedagogy at the location where this research was conducted is largely influenced by contextual factors. Furthermore, the result of the study shows that there is a critical need to employ/adopt local experiences or occurrences while teaching sustainable development. Certain pedagogical approaches such as the use of videos relative to local context should also be considered in order to achieve a more realistic application. The paper recommends that educational institutions through teaching and learning should implement ESD by drawing on local contexts and problems, thereby foregrounding constructivism, appreciating and fostering students' prior knowledge and lived experiences.

Keywords: context, education for sustainable development, natural sciences and technology preservice teachers, qualitative research, sustainable development goals

Procedia PDF Downloads 163