Search results for: finite domain time difference
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24599

Search results for: finite domain time difference

20069 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model

Authors: Didier Auroux, Vladimir Groza

Abstract:

This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.

Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization

Procedia PDF Downloads 321
20068 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO

Procedia PDF Downloads 117
20067 A Hybrid Recommendation System Based on Association Rules

Authors: Ahmed Mohammed Alsalama

Abstract:

Recommendation systems are widely used in e-commerce applications. The engine of a current recommendation system recommends items to a particular user based on user preferences and previous high ratings. Various recommendation schemes such as collaborative filtering and content-based approaches are used to build a recommendation system. Most of the current recommendation systems were developed to fit a certain domain such as books, articles, and movies. We propose a hybrid framework recommendation system to be applied on two-dimensional spaces (User x Item) with a large number of Users and a small number of Items. Moreover, our proposed framework makes use of both favorite and non-favorite items of a particular user. The proposed framework is built upon the integration of association rules mining and the content-based approach. The results of experiments show that our proposed framework can provide accurate recommendations to users.

Keywords: data mining, association rules, recommendation systems, hybrid systems

Procedia PDF Downloads 456
20066 From Comfort to Safety: Assessing the Influence of Car Seat Design on Driver Reaction and Performance

Authors: Sabariah Mohd Yusoff, Qamaruddin Adzeem Muhamad Murad

Abstract:

This study investigates the impact of car seat design on driver response time, addressing a critical gap in understanding how ergonomic features influence both performance and safety. Controlled driving experiments were conducted with fourteen participants (11 male, 3 female) across three locations chosen for their varying traffic conditions to account for differences in driver alertness. Participants interacted with various seat designs while performing driving tasks, and objective metrics such as braking and steering response times were meticulously recorded. Advanced statistical methods, including regression analysis and t-tests, were employed to identify design factors that significantly affect driver response times. Subjective feedback was gathered through detailed questionnaires—focused on driving experience and knowledge of response time—and in-depth interviews. This qualitative data was analyzed thematically to provide insights into driver comfort and usability preferences. The study aims to identify key seat design features that impact driver response time and to gain a deeper understanding of driver preferences for comfort and usability. The findings are expected to inform evidence-based guidelines for optimizing car seat design, ultimately enhancing driver performance and safety. The research offers valuable implications for automotive manufacturers and designers, contributing to the development of seats that improve driver response time and overall driving safety.

Keywords: car seat design, driver response time, cognitive driving, ergonomics optimization

Procedia PDF Downloads 31
20065 Numerical Method for Heat Transfer Problem in a Block Having an Interface

Authors: Beghdadi Lotfi, Bouziane Abdelhafid

Abstract:

A finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. To valid the accuracy of the method two numerical experiments s are used: conduction in a regular block (with known analytical solution) and conduction in a rotated block (case with curved boundaries).The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively.

Keywords: Stokes theorem, unstructured grid, heat transfer, complex geometry

Procedia PDF Downloads 295
20064 Critical Reading Achievement of Rural Migrant Children in China: The Roles of Educational Expectation

Authors: Liman Zhao, Jianlong Zhang, Mingman Ren, Chuang Wang, Jian Liu

Abstract:

Rural migrant children have become a fast-growing population in China as a consequence of the large-scale population flow from rural to urban areas in the context of urbanization. In China, the socioeconomic status of migrant children is relatively low in comparison to non-migrant children. Parents of migrant children often work in occupations with long working hours, high labor intensity, and low pay due to their poor academic qualifications. Most migrant children's parents have not received higher education and have no time to read with their children. The family of migrant children usually does not have a good collection of books either, which leads to these children’s insufficient reading and low reading levels. Moreover, migrant children frequently relocate with their parents, and their needs for knowledge and reading are often neglected by schools, which puts migrant children at risk of academic failure in China. Therefore, the academic achievement of rural migrant children has become a focus of education in China. This study explores the relationship between the educational expectation of rural migrant children and their critical reading competence in general and the moderating effect of the difference between parental educational expectation to their children and the children’s own educational expectation. The responses to a survey from 5113 seventh-grade children in a district of the capital city in China revealed that children who moved to cities in grades 4-6 of primary school performed the best in critical reading, and children who moved to cities after middle school showed the worst performance in critical reading. In addition, parents’ educational expectations of their children and their own educational expectations were both significant predictors of rural migrant children’s reading competence. The higher a child's expectations of a degree and the smaller the gap between parents' expectations of a child's education and the child's own education expectations, the better the child's performance in critical reading.

Keywords: educational expectation, critical reading competence, rural migrant children, moderating effect

Procedia PDF Downloads 205
20063 The Differentiation of Performances among Immigrant Entrepreneurs: A Biographical Approach

Authors: Daniela Gnarini

Abstract:

This paper aims to contribute to the field of immigrants' entrepreneurial performance. The debate on immigrant entrepreneurship has been dominated by cultural explanations, which argue that immigrants’ entrepreneurial results are linked to groups’ characteristics. However, this approach does not consider important dimensions that influence entrepreneurial performances. Furthermore, cultural theories do not take into account the huge differences in performances also within the same ethnic group. For these reason, this study adopts a biographical approach, both at theoretical and at methodological level, which can allow to understand the main aspects that make the difference in immigrants' entrepreneurial performances, by exploring the narratives of immigrant entrepreneurs, who operate in the restaurant sector in two different Italian metropolitan areas: Milan and Rome. Through the qualitative method of biographical interviews, this study analyses four main dimensions and their combinations: a) individuals' entrepreneurial and migratory path: this aspect is particularly relevant to understand the biographical resources of immigrant entrepreneurs and their change and evolution during time; b) entrepreneurs' social capital, with a particular focus on their networks, through the adoption of a transnational perspective, that takes into account both the local level and the transnational connections. This study highlights that, though entrepreneurs’ connections are significant, especially as far as those with family members are concerned, often their entrepreneurial path assumes an individualised trajectory. c) Entrepreneurs' human capital, including both formal education and skills acquired through informal channels. The latter are particularly relevant since in the interviews and data collected the role of informal transmission emerges. d) Embeddedness within the social, political and economic context, to understand the main constraints and opportunities both at local and national level. The comparison between two different metropolitan areas within the same country helps to understand this dimension.

Keywords: biographies, immigrant entrepreneurs, life stories, performance

Procedia PDF Downloads 230
20062 Value of Unilateral Spinal Anaesthesia For Hip Fracture Surgery In The Elderly (75 Cases)

Authors: Fedili Benamar, Beloulou Mohamed Lamine, Ouahes Hassane, Ghattas Samir

Abstract:

Background and aims: While in Western countries, unilateral spinal anesthesia has been widely practiced for a long time, it remains little known in the local anesthesia community, and has not been the object of many studies. However, it is a simple, practical and effective technique. Our objective was to evaluate this practice in emergency anesthesia management in frail patients and to compare it with conventional spinal anesthesia. Methods: This is a prospective, observational, comparative study between hypobaric unilateral and conventional spinal anaesthesia for hip fracture surgery carried out in the operating room of the university military hospital of Staoueli. The work was spread over of 12-month period from 2019 to 2020. The parameters analyzed were hemodynamic variations, vasopressor use, block efficiency, postoperative adverse events, and postoperative morphine consumption. Results: -75 cases (mean age 72±14 years) -Group1= 41 patients (54.6%) divided into (ASA1=14.6% ASA2=60.98% ASA3=24.39%) single shoot spinal anaesthesia -Group2= 34 patients (45.3%) divided into (ASA1=2.9%, ASA2=26.4% ASA3=61.7%, ASA4=8.8%) unilateral hypobaric spinal anesthesia. -Hemodynamic variations were more severe in group 1 (51% hypotension) compared to 30% in group 2 RR=1.69 and odds ratio=2.4 -these variations were more marked in the ASA3 subgroup (group 1=70% hypotension versus group 2=30%) with an RR=2.33 and an odds ratio=5.44 -39% of group 1 required vasoactive drugs (15mg +/- 11) versus 32% of group 2 (8mg+/- 6.49) - no difference in the use of morphine in post-op. Conclusions: Within the limits of the population studied, this work demonstrates the clinical value of unilateral spinal anesthesia in ortho-trauma surgery in the frail patient.

Keywords: spinal anaesthesia, vasopressor, morphine, hypobaric unilateral spinal anesthesia, ropivacaine, hip surgery, eldery, hemodynamic

Procedia PDF Downloads 79
20061 The Effects of Subsidised Irrigation Service Fees on Irrigation Performance in Vietnam

Authors: Trang Pham

Abstract:

Approximately 70% of the Vietnamese population lives in rural areas where the main livelihood is farming. For many years, the Vietnamese Government has been working towards improving farmers’ quality of life. In 2008, the Government issued the decree 115/2008/ND-CP to subsidize farmers’ water fees. The subsidy covers operation and management costs of major water infrastructure. Water users have only to pay for the operation and management of minor or tertiary canal systems. But the “subsidized water fee” has become contentious; there are two opposing schools of thought. One view is that the subsidy lessens the burden on farmers in terms of reducing their production costs, at the same time generating a sufficient budget for Irrigation Management Companies (IMCs) and Water User Association (WUAs). The alternate point of view is that the subsidy negatively effects irrigation performance, especially in tertiary canals. The aim of this study was to gain clear awareness of the perceptions of farmers, WUA members, and IMC staffs in regard to irrigation performance and management since the introduction of subsidies and local water fees. In order to find out how the government intervention has affected local farming communities, a series of questionnaires and interviews were administered in 2013. Four case studies were chosen which represent four different agricultural areas and four different irrigation systems in Vietnam. Interviews were conducted with IMC staffs and WUA members and questionnaires were used to gather information from farmers. The study compares the difference in operation and management costs across the four case studies both before and after the implementation of the decree. The results disclose factors behind the subsidized water fee that either allow or hinder improved irrigation performance and better irrigation management.

Keywords: water fee, irrigation performance, local farming, tertiary canal systems

Procedia PDF Downloads 330
20060 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling

Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar

Abstract:

Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.

Keywords: toolpath, part program, optimization, pocket

Procedia PDF Downloads 289
20059 Surveying Energy Dissipation in Stepped Spillway Using Finite Element Modeling

Authors: Mehdi Fuladipanah

Abstract:

Stepped spillway includes several steps from the crest to the toe. The steps of stepped spillway could cause to decrease the energy with making energy distribution in the longitude mode and also to reduce the outcome speed. The aim of this study was to stimulate the stepped spillway combined with stilling basin-step using Fluent model and the turbulent superficial flow using RNG, K-ε. The free surface of the flow was monitored by VOF model. The velocity and the depth of the flow were measured by tail water depth by the numerical model and then the dissipated energy was calculated along the spillway. The results indicated that the stilling basin-step complex may cause energy dissipation increment in the stepped spillway. Also, the numerical model was suggested as an effective method to predict the circular and complicated flows in the stepped spillways.

Keywords: stepped spillway, fluent model, VOF model, K-ε model, energy distribution

Procedia PDF Downloads 374
20058 Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field

Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen

Abstract:

Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure.

Keywords: smart structures, piezolamintes, material nonlinearity, strong electric field

Procedia PDF Downloads 429
20057 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms

Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,

Abstract:

Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.

Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model

Procedia PDF Downloads 291
20056 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 209
20055 Assessing a New Industrial Growth Media for the Development of Algae Technology in the Kingdom of Saudi Arabia

Authors: Zain Alammari, Emna M. Mhedhbi, Claudio G. Grunewald

Abstract:

This study aims to compare a standard F2 media to a local media called Altakamul. The new media was tested in Nannochloropsissp cultures at a lab scale. The main difference between both media is the Nitrogen source (NaNO3 in F/2 and NH4 in Altakamul). According to the preliminary results during three weeks experiments, no significant differences were found between F2 and Alatakamul media in terms of Nannochloropsis growth. We can anticipate that Altakamul media will be the cheapest media option for microalgae cultivation at a higher scale, reducing the OPEX

Keywords: microalgae, nannochloropsis, culture, nitrogen

Procedia PDF Downloads 170
20054 Prediction of the Performance of a Bar-Type Piezoelectric Vibration Actuator Depending on the Frequency Using an Equivalent Circuit Analysis

Authors: J. H. Kim, J. H. Kwon, J. S. Park, K. J. Lim

Abstract:

This paper has investigated a technique that predicts the performance of a bar-type unimorph piezoelectric vibration actuator depending on the frequency. This paper has been proposed an equivalent circuit that can be easily analyzed for the bar-type unimorph piezoelectric vibration actuator. In the dynamic analysis, rigidity and resonance frequency, which are important mechanical elements, were derived using the basic beam theory. In the equivalent circuit analysis, the displacement and bandwidth of the piezoelectric vibration actuator depending on the frequency were predicted. Also, for the reliability of the derived equations, the predicted performance depending on the shape change was compared with the result of a finite element analysis program.

Keywords: actuator, piezoelectric, performance, unimorph

Procedia PDF Downloads 466
20053 Kalman Filter Gain Elimination in Linear Estimation

Authors: Nicholas D. Assimakis

Abstract:

In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions.

Keywords: discrete time, estimation, Kalman filter, Kalman filter gain

Procedia PDF Downloads 200
20052 Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images

Authors: U. Datta

Abstract:

The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.

Keywords: co-registration, GLRT, infrastructure growth, multispectral, multitemporal, pixel-based change detection

Procedia PDF Downloads 139
20051 Production of Low-Density Nanocellular Foam Based on PMMA/PEBAX Blends

Authors: Nigus Maregu Demewoz, Shu-Kai Yeh

Abstract:

Low-density nanocellular foam is a fascinating new-generation advanced material due to its mechanical strength and thermal insulation properties. In nanocellular foam, reducing the density increases the insulation ability. However, producing a nanocellular foam of densities less than 0.3 with a cell size of less than 100 nm is very challenging. In this study, poly (methyl methacrylate) (PMMA) was blended with Polyether block amide (PEBAX) to study the effects of PEBAX on the nanocellular foam structure of the PMMA matrix. We added 2 wt% of PEBAX in the PMMA matrix, and the PEBAX nanostructured domain size of 45 nm was well dispersed in the PMMA matrix. The foaming result produced a new generation special bouquet-like nanocellular foam of cell size less than 50 nm with a relative density of 0.24. Also, we were able to produce a nanocellular foam of a relative density of about 0.17. In addition to thermal insulation applications, bouquet-like nanocellular foam may be expected for filtration applications.

Keywords: nanocellular foam, low-density, cell size, relative density, PMMA/PEBAX blend

Procedia PDF Downloads 98
20050 A Heart Arrhythmia Prediction Using Machine Learning’s Classification Approach and the Concept of Data Mining

Authors: Roshani S. Golhar, Neerajkumar S. Sathawane, Snehal Dongre

Abstract:

Background and objectives: As the, cardiovascular illnesses increasing and becoming cause of mortality worldwide, killing around lot of people each year. Arrhythmia is a type of cardiac illness characterized by a change in the linearity of the heartbeat. The goal of this study is to develop novel deep learning algorithms for successfully interpreting arrhythmia using a single second segment. Because the ECG signal indicates unique electrical heart activity across time, considerable changes between time intervals are detected. Such variances, as well as the limited number of learning data available for each arrhythmia, make standard learning methods difficult, and so impede its exaggeration. Conclusions: The proposed method was able to outperform several state-of-the-art methods. Also proposed technique is an effective and convenient approach to deep learning for heartbeat interpretation, that could be probably used in real-time healthcare monitoring systems

Keywords: electrocardiogram, ECG classification, neural networks, convolutional neural networks, portable document format

Procedia PDF Downloads 74
20049 Possibilities, Challenges and the State of the Art of Automatic Speech Recognition in Air Traffic Control

Authors: Van Nhan Nguyen, Harald Holone

Abstract:

Over the past few years, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation and training, monitoring live operators for with the aim of safety improvements, air traffic controller workload measurement and conducting analysis on large quantities controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, automatic speech recognition has not been widely adopted in this field. With the aim of providing a good starting point for researchers who are interested bringing automatic speech recognition into ATC, this paper gives an overview of possibilities and challenges of applying automatic speech recognition in air traffic control. To provide this overview, we present an updated literature review of speech recognition technologies in general, as well as specific approaches relevant to the ATC context. Based on this literature review, criteria for selecting speech recognition approaches for the ATC domain are presented, and remaining challenges and possible solutions are discussed.

Keywords: automatic speech recognition, asr, air traffic control, atc

Procedia PDF Downloads 403
20048 Modeling of Historical Lime Masonry Structure in Abaqus

Authors: Ram Narayan Khare, Adhyatma Khare, Aradhna Shrivastava

Abstract:

In this study, numerical modeling of ‘Lime Surkhi’ masonry building has been carried out for a prototype ancient building situated at seismic zone III using the Finite Element Method by Abaqus software. The model is designed in order to get the failure envelope and then decide the best method of retrofitting the structure so that the structure is made to withstand more decades, given its historical background. Previously, due to a lack of technologies, it was difficult to determine the mode of failure. Present technological development can predict the mode of failure, and subsequently, the structure can be refabricated accordingly. The study makes an important addition to the understanding of retrofitting ancient and old buildings based on the results of FEM modeling.

Keywords: seismic retrofitting, Abaqus, FEM, historic building, Lime Surkhi masonry

Procedia PDF Downloads 40
20047 In vitro Effects of Salvia officinalis on Bovine Spermatozoa

Authors: Eva Tvrdá, Boris Botman, Marek Halenár, Tomáš Slanina, Norbert Lukáč

Abstract:

In vitro storage and processing of animal semen represents a risk factor to spermatozoa vitality, potentially leading to reduced fertility. A variety of substances isolated from natural sources may exhibit protective or antioxidant properties on the spermatozoon, thus extending the lifespan of stored ejaculates. This study compared the ability of different concentrations of the Salvia officinalis extract on the motility, mitochondrial activity, viability and reactive oxygen species (ROS) production by bovine spermatozoa during different time periods (0, 2, 6 and 24 h) of in vitro culture. Spermatozoa motility was assessed using the Computer-assisted sperm analysis (CASA) system. Cell viability was examined using the metabolic activity MTT assay, the eosin-nigrosin staining technique was used to evaluate the sperm viability and ROS generation was quantified using luminometry. The CASA analysis revealed that the motility in the experimental groups supplemented with 0.5-2 µg/mL Salvia extract was significantly lower in comparison with the control (P<0.05; Time 24 h). At the same time, a long-term exposure of spermatozoa to concentrations ranging between 0.05 µg/mL and 2 µg/mL had a negative impact on the mitochondrial metabolism (P<0.05; Time 24 h). The viability staining revealed that 0.001-1 µg/mL Salvia extract had no effects on bovine male gametes, however 2 µg/mL Salvia had a persisting negative effect on spermatozoa (P<0.05). Furthermore 0.05-2 µg/mL Salvia exhibited an immediate ROS-promoting effect on the sperm culture (P>0.05; Time 0 h and 2 h), which remained significant throughout the entire in vitro culture (P<0.05; Time 24 h). Our results point out to the necessity to examine specific effects the biomolecules present in Salvia officinalis may have individually or collectively on the in vitro sperm vitality and oxidative profile.

Keywords: bulls, CASA, MTT test, reactive oxygen species, sage, Salvia officinalis, spermatozoa

Procedia PDF Downloads 342
20046 Psychosocial Challenges of Multi-Drug Resistant Tuberculosis (MDR-TB) Patients at St. Peter TB Specialized Hospital in Addis Ababa

Authors: Tamrat Girma Biru

Abstract:

Multidrug-resistant tuberculosis (MDR-TB) is defined as resistant to at least Refampicin and Isoniazed: the most two power full TB drugs. It is a leading cause of high rates of morbidity and mortality, and increasing psychosocial challenges to patients, especially when co-infected with Human Immunodeficiency Virus (HIV). Ethiopia faces the highest rates of MDR-TB infection in the world. Objectives: The main objective of this study was to identify the psychosocial challenges of MDR-TB patients, to investigate the extent of the psychosocial challenges on (self-esteem, depression, and stigma) that MDR-TB patients encounter, to examine whether there is a sex difference in experiencing psychosocial challenges and assess the counseling needs of MDR-TB patients. Methodology: A cross-sectional study was conducted at St. Peter TB Specialized Hospital, Addis Ababa on 40 patients (25 males and 15 females) who are hospitalized for treatment. The patients were identified by using purposive sampling and made fill a questionnaire measuring their level of self-esteem, depression and stigma. Besides, data were collected from 16 participants, 28 care providers and 8 guardians, using semi-structured interview. The obtained data were analyzed using SPSS statistical program, descriptive statistics, independent t-test, and qualitative description. Results and Discussion: The results of the study showed that the majority (80%) of the respondents had suffered psychological challenges and social discriminations. Thus, the significance of MDR-TB and its association with HIV/AIDS problems is considered. Besides the psychosocial challenges, various aggravating factors such as length of treatment, drug burden and insecurity in economy together highly challenges the life of patients. In addition, 60% of participants showed low level of self-esteem. The patients also reported that they experienced high self-stigma and stigma by other members of the society. The majority of the participants (75%) showed moderate and severe level of depression. In terms of sex there is no difference between the mean scores of males and females in the level of depression and stigmatization by others and by themselves. But females showed lower level of self-esteem than males. The analysis of the t-test also shows that there were no statistically significant sex difference on the level of depression and stigma. Based on the qualitative data MDR-TB patients face various challenges in their life sphere such as: Psychological (depression, low self value, lowliness, anxiety), social (stigma, isolation from social relations, self-stigmatization,) and medical (drug side effect, drug toxicity, drug burden, treatment length, hospital stays). Recommendations: Based on the findings of this study possible recommendations were forwarded: develop and extend MDR-TB disease awareness creation through by media (printing and electronic), school net TB clubs, and door to door community education. Strengthen psychological wellbeing and social relationship of MDR-TB patients using proper and consistent psychosocial support and counseling. Responsible bodies like Ministry of Health (MOH) and its stakeholders and Non Governmental Organizations (NGOs) need to assess the challenges of patients and take measures on this pressing issue.

Keywords: psychosocial challenges, counseling, multi-drug resistant tuberculosis (MDR-TB), tuberculosis therapy

Procedia PDF Downloads 396
20045 Stable Time Reversed Integration of the Navier-Stokes Equation Using an Adjoint Gradient Method

Authors: Jurriaan Gillissen

Abstract:

This work is concerned with stabilizing the numerical integration of the Navier-Stokes equation (NSE), backwards in time. Applications involve the detection of sources of, e.g., sound, heat, and pollutants. Stable reverse numerical integration of parabolic differential equations is also relevant for image de-blurring. While the literature addresses the reverse integration problem of the advection-diffusion equation, the problem of numerical reverse integration of the NSE has, to our knowledge, not yet been addressed. Owing to the presence of viscosity, the NSE is irreversible, i.e., when going backwards in time, the fluid behaves, as if it had a negative viscosity. As an effect, perturbations from the perfect solution, due to round off errors or discretization errors, grow exponentially in time, and reverse integration of the NSE is inherently unstable, regardless of using an implicit time integration scheme. Consequently, some sort of filtering is required, in order to achieve a stable, numerical, reversed integration. The challenge is to find a filter with a minimal adverse affect on the accuracy of the reversed integration. In the present work, we explore an adjoint gradient method (AGM) to achieve this goal, and we apply this technique to two-dimensional (2D), decaying turbulence. The AGM solves for the initial velocity field u0 at t = 0, that, when integrated forward in time, produces a final velocity field u1 at t = 1, that is as close as is feasibly possible to some specified target field v1. The initial field u0 defines a minimum of a cost-functional J, that measures the distance between u1 and v1. In the minimization procedure, the u0 is updated iteratively along the gradient of J w.r.t. u0, where the gradient is obtained by transporting J backwards in time from t = 1 to t = 0, using the adjoint NSE. The AGM thus effectively replaces the backward integration by multiple forward and backward adjoint integrations. Since the viscosity is negative in the adjoint NSE, each step of the AGM is numerically stable. Nevertheless, when applied to turbulence, the AGM develops instabilities, which limit the backward integration to small times. This is due to the exponential divergence of phase space trajectories in turbulent flow, which produces a multitude of local minima in J, when the integration time is large. As an effect, the AGM may select unphysical, noisy initial conditions. In order to improve this situation, we propose two remedies. First, we replace the integration by a sequence of smaller integrations, i.e., we divide the integration time into segments, where in each segment the target field v1 is taken as the initial field u0 from the previous segment. Second, we add an additional term (regularizer) to J, which is proportional to a high-order Laplacian of u0, and which dampens the gradients of u0. We show that suitable values for the segment size and for the regularizer, allow a stable reverse integration of 2D decaying turbulence, with accurate results for more then O(10) turbulent, integral time scales.

Keywords: time reversed integration, parabolic differential equations, adjoint gradient method, two dimensional turbulence

Procedia PDF Downloads 229
20044 Corporate Sustainability Practices in Asian Countries: Pattern of Disclosure and Impact on Financial Performance

Authors: Santi Gopal Maji, R. A. J. Syngkon

Abstract:

The changing attitude of the corporate enterprises from maximizing economic benefit to corporate sustainability after the publication of Brundtland Report has attracted the interest of researchers to investigate the sustainability practices of firms and its impact on financial performance. To enrich the empirical literature in Asian context, this study examines the disclosure pattern of corporate sustainability and the influence of sustainability reporting on financial performance of firms from four Asian countries (Japan, South Korea, India and Indonesia) that are publishing sustainability report continuously from 2009 to 2016. The study has used content analysis technique based on Global Reporting Framework (3 and 3.1) reporting framework to compute the disclosure score of corporate sustainability and its components. While dichotomous coding system has been employed to compute overall quantitative disclosure score, a four-point scale has been used to access the quality of the disclosure. For analysing the disclosure pattern of corporate sustainability, box plot has been used. Further, Pearson chi-square test has been used to examine whether there is any difference in the proportion of disclosure between the countries. Finally, quantile regression model has been employed to examine the influence of corporate sustainability reporting on the difference locations of the conditional distribution of firm performance. The findings of the study indicate that Japan has occupied first position in terms of disclosure of sustainability information followed by South Korea and India. In case of Indonesia, the quality of disclosure score is considerably less as compared to other three countries. Further, the gap between the quality and quantity of disclosure score is comparatively less in Japan and South Korea as compared to India and Indonesia. The same is evident in respect of the components of sustainability. The results of quantile regression indicate that a positive impact of corporate sustainability becomes stronger at upper quantiles in case of Japan and South Korea. But the study fails to extricate any definite pattern on the impact of corporate sustainability disclosure on the financial performance of firms from Indonesia and India.

Keywords: corporate sustainability, quality and quantity of disclosure, content analysis, quantile regression, Asian countries

Procedia PDF Downloads 199
20043 Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa

Authors: Kassahun Birhanu Tadesse, Megersa Olumana Dinka

Abstract:

Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics.

Keywords: heteroscedasticity, stationarity test, trend analysis, validation, white noise

Procedia PDF Downloads 210
20042 Transcriptome Analysis of Dry and Soaked Tomato (Solanum lycopersicum) Seeds in Response to Fast Neutron Irradiation

Authors: Yujie Zhou, Hee-Seong Byun, Sang-In Bak, Eui-Joon Kil, Kyung Joo Min, Vivek Chavan, Won Kyong Cho, Sukchan Lee, Seung-Woo Hong, Tae-Sun Park

Abstract:

Fast neutron irradiation (FNI) can cause mutations on plant genome but, in the most of cases, these irradiated plants have not shown significant characteristics phenotypically. In this study, we utilized RNA-Seq to generate a high-resolution transcriptome map of the tomato (Solanum lycopersicum) genome effected by FNI. To quantify the different transcription levels in tomato irradiated by FNI, tomato seeds were irradiated by using MC-50 cyclotron (KIRAMS, Korea) for 0, 30 and 90 minutes, respectively. To investigate the effects on the pre-soaking condition, experimental groups were divided into dry and soaked seeds, which were soaked for 8 hours before irradiation. There was no noticeable difference in the percentage germination (PG) among dry seeds, while irradiated soaked seeds have about 10 % lower PG compared to the unirradiated control group. Using whole transcriptome sequencing by HiSeq 2000, we analyzed the differential gene expression in response to different time of FNI in dry and soaked seeds. More than 1.4 million base pair reads were mapped onto the tomato reference genome and the expression pattern differences between irradiated and unirradiated seeds were assessed. In 0, 30 and 90 minutes irradiation, 12,135, 28,495 and 28,675 transcripts were generated, respectively. Gene ontology analysis suggested the different enrichment of transcripts involved in response to different FNI. The present study showed that FNI effects on plant gene expression, which can become a new parameters for evaluating the responses against FNI on plants. In addition, the comparative analysis of differentially expressed genes in D and S seeds by FNI will also give us a chance to deep explore novel candidate genes for FNI, which could be a good model system to understand the mechanisms behind the adaption of plant to space biology research.

Keywords: tomato (solanum lycopersicum), fast neutron irradiation, RNA-sequence, transcriptome expression

Procedia PDF Downloads 321
20041 Electrochemical Studies of Si, Si-Ge- and Ge-Air Batteries

Authors: R. C. Sharma, Rishabh Bansal, Prajwal Menon, Manoj K. Sharma

Abstract:

Silicon-air battery is highly promising for electric vehicles due to its high theoretical energy density (8470 Whkg⁻¹) and its discharge products are non-toxic. For the first time, pure silicon and germanium powders are used as anode material. Nickel wire meshes embedded with charcoal and manganese dioxide powder as cathode and concentrated potassium hydroxide is used as electrolyte. Voltage-time curves have been presented in this study for pure silicon and germanium powder and 5% and 10% germanium with silicon powder. Silicon powder cell assembly gives a stable voltage of 0.88 V for ~20 minutes while Si-Ge provides cell voltage of 0.80-0.76 V for ~10-12 minutes, and pure germanium cell provides cell voltage 0.80-0.76 V for ~30 minutes. The cell voltage is higher for concentrated (10%) sodium hydroxide solution (1.08 V) and it is stable for ~40 minutes. A sharp decrease in cell voltage beyond 40 min may be due to rapid corrosion.

Keywords: Silicon-air battery, Germanium-air battery, voltage-time curve, open circuit voltage, Anodic corrosion

Procedia PDF Downloads 241
20040 Time Series Simulation by Conditional Generative Adversarial Net

Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto

Abstract:

Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.

Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series

Procedia PDF Downloads 148