Search results for: Parametric learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8010

Search results for: Parametric learning

3480 Personality Composition in Senior Management Teams: The Importance of Homogeneity in Dynamic Managerial Capabilities

Authors: Shelley Harrington

Abstract:

As a result of increasingly dynamic business environments, the creation and fostering of dynamic capabilities, [those capabilities that enable sustained competitive success despite of dynamism through the awareness and reconfiguration of internal and external competencies], supported by organisational learning [a dynamic capability] has gained increased and prevalent momentum in the research arena. Presenting findings funded by the Economic Social Research Council, this paper investigates the extent to which Senior Management Team (SMT) personality (at the trait and facet level) is associated with the creation of dynamic managerial capabilities at the team level, and effective organisational learning/knowledge sharing within the firm. In doing so, this research highlights the importance of micro-foundations in organisational psychology and specifically dynamic capabilities, a field which to date has largely ignored the importance of psychology in understanding these important and necessary capabilities. Using a direct measure of personality (NEO PI-3) at the trait and facet level across 32 high technology and finance firms in the UK, their CEOs (N=32) and their complete SMTs [N=212], a new measure of dynamic managerial capabilities at the team level was created and statistically validated for use within the work. A quantitative methodology was employed with regression and gap analysis being used to show the empirical foundations of personality being positioned as a micro-foundation of dynamic capabilities. The results of this study found that personality homogeneity within the SMT was required to strengthen the dynamic managerial capabilities of sensing, seizing and transforming, something which was required to reflect strong organisational learning at middle management level [N=533]. In particular, it was found that the greater the difference [t-score gaps] between the personality profiles of a Chief Executive Officer (CEO) and their complete, collective SMT, the lower the resulting self-reported nature of dynamic managerial capabilities. For example; the larger the difference between a CEOs level of dutifulness, a facet contributing to the definition of conscientiousness, and their SMT’s level of dutifulness, the lower the reported level of transforming, a capability fundamental to strategic change in a dynamic business environment. This in turn directly questions recent trends, particularly in upper echelons research highlighting the need for heterogeneity within teams. In doing so, it successfully positions personality as a micro-foundation of dynamic capabilities, thus contributing to recent discussions from within the strategic management field calling for the need to empirically explore dynamic capabilities at such a level.

Keywords: dynamic managerial capabilities, senior management teams, personality, dynamism

Procedia PDF Downloads 272
3479 Interdisciplinary Approach in Vocational Training for Orthopaedic Surgery

Authors: Mihail Nagea, Olivera Lupescu, Elena Taina Avramescu, Cristina Patru

Abstract:

Classical education of orthopedic surgeons involves lectures, self study, workshops and cadaver dissections, and sometimes supervised practical training within surgery, which quite seldom gives the young surgeons the feeling of being unable to apply what they have learned especially in surgical practice. The purpose of this paper is to present a different approach from the classical one, which enhances the practical skills of the orthopedic trainees and prepare them for future practice. The paper presents the content of the research project 2015-1-RO01-KA202-015230, ERASMUS+ VET ‘Collaborative learning for enhancing practical skills for patient-focused interventions in gait rehabilitation after orthopedic surgery’ which, using e learning as a basic tool , delivers to the trainees not only courses, but especially practical information through videos and case scenarios including gait analysis in order to build patient focused therapeutic plans, adapted to the characteristics of each patient. The outcome of this project is to enhance the practical skills in orthopedic surgery and the results are evaluated following the answers to the questionnaires, but especially the reactions within the case scenarios. The participants will thus follow the idea that any mistake within solving the cases might represent a failure of treating a real patient. This modern approach, besides using interactivity to evaluate the theoretical and practical knowledge of the trainee, increases the sense of responsibility, as well as the ability to react properly in real cases.

Keywords: interdisciplinary approach, gait analysis, orthopedic surgery, vocational training

Procedia PDF Downloads 253
3478 Trends of Seasonal and Annual Rainfall in the South-Central Climatic Zone of Bangladesh Using Mann-Kendall Trend Test

Authors: M. T. Islam, S. H. Shakif, R. Hasan, S. H. Kobi

Abstract:

Investigation of rainfall trends is crucial considering climate change, food security, and the economy of a particular region. This research aims to study seasonal and annual precipitation trends and their abrupt changes over time in the south-central climatic zone of Bangladesh using monthly time series data of 50 years (1970-2019). A trend-free pre-whitening method has been employed to make necessary adjustments for autocorrelations in the rainfall data. Trends in rainfall and their intensity have been observed using the non-parametric Mann-Kendall test and Theil-Sen estimator. Significant changes and fluctuation points in the data series have been detected using the sequential Mann-Kendall test at the 95% confidence limit. The study findings show that most of the rainfall stations in the study area have a decreasing precipitation pattern throughout all seasons. The maximum decline in the rainfall intensity has been found for the Tangail station (-8.24 mm/year) during monsoon. Madaripur and Chandpur stations have shown slight positive trends in post-monsoon rainfall. In terms of annual precipitation, a negative rainfall pattern has been identified in each station, with a maximum decrement (-) of 14.48 mm/year at Chandpur. However, all the trends are statistically non-significant within the 95% confidence interval, and their monotonic association with time ranges from very weak to weak. From the sequential Mann-Kendall test, the year of changing points for annual and seasonal downward precipitation trends occur mostly after the 90s for Dhaka and Barishal stations. For Chandpur, the fluctuation points arrive after the mid-70s in most cases.

Keywords: trend analysis, Mann-Kendall test, Theil-Sen estimator, sequential Mann-Kendall test, rainfall trend

Procedia PDF Downloads 83
3477 An Analysis of L1 Effects on the Learning of EFL: A Case Study of Undergraduate EFL Learners at Universities in Pakistan

Authors: Nadir Ali Mugheri, Shaukat Ali Lohar

Abstract:

In a multilingual society like Pakistan, code switching is commonly observed in different contexts. Mostly people use L1 (Native Languages) and L2 for common communications and L3 (i.e. English, Urdu, Sindhi) in formal contexts and for academic writings. Such a frequent code switching does affect EFL learners' acquisition of grammar and lexis of the target language which in the long run result in different types of errors in their writings. The current study is to investigate and identify common elements of L1 and L2 (spoken by students of the Universities in Pakistan) which create hindrances for EFL learners. Case study method was used for this research. Formal writings of 400 EFL learners (as participants from various Universities of the country) were observed. Among 400 participants, 200 were female and 200 were male EFL learners having different academic backgrounds. Errors found were categorized into different types according to grammatical items, the difference in meanings, structure of sentences and identifiers of tenses of L1 or L2 in comparison with those of the target language. The findings showed that EFL learners in Pakistani varsities have serious problems in their writings and they committed serious errors related to the grammar and meanings of the target language. After analysis of the committed errors, the results were found in the affirmation of the hypothesis that L1 or L2 does affect EFL learners. The research suggests in the end to adopt natural ways in pedagogy like task-based learning or communicative methods using contextualized material so as to avoid impediments of L1 or L2 in acquisition the target language.

Keywords: multilingualism, L2 acquisition, code switching, language acquisition, communicative language teaching

Procedia PDF Downloads 297
3476 Early Education Assessment Methods

Authors: Anantdeep Kaur, Sharanjeet Singh

Abstract:

Early childhood education and assessment of children is a very essential tool that helps them in their growth and development. Techniques should be developed, and tools should be created in this field as it is a very important learning phase of life. Some information and sources are included for student assessment to provide a record of growth in all developmental areas cognitive, physical, Language, social-emotional, and approaches to learning. As an early childhood educator, it is very important to identify children who need special support and counseling to improve them because they are not mentally mature to discuss with the teacher their problems and needs. It is the duty and responsibility of the educator to assess children from their body language, behavior, and their routine actions about their skills that can be improved and which can take them forward in their future life. And also, children should be assessed with their weaker points because this is the right time to correct them, and they be improved with certain methods and tools by working on them constantly. Observing children regularly with all their facets of development, including intellectual, linguistic, social-emotional, and physical development. Every day, a physical education class should be regulated to check their physical growth activities, which can help to assess their physical activeness and motor abilities. When they are outside on the playgrounds, it is very important to instill environmental understanding among them so that they should know that they are very part of this nature, and it will help them to be one with the universe rather than feeling themselves individually. This technique assists them in living their childhood full of energy all the time. All types of assessments have unique purposes. It is important first to determine what should be measured, then find the program that best assesses those.

Keywords: special needs, motor ability, environmental understanding, physical development

Procedia PDF Downloads 99
3475 Combating Contraflow to Creativity Amongst Preservice Teachers in Teacher Arts Education

Authors: Michael Flannery, Annie ó Breacháin

Abstract:

Teaching the creative arts in preservice teacher education can be challenging. Some students find artistic self-expression and its related creative processes overwhelming. Low creative self-efficacy levels and creative habits of mind can impede their levels of motivation, engagement and persistence. For some, creative arts engagement can induce a state of anxiety and distress as opposed to flow. Flow theory posits that learners are happiest when they are learning in a state of flow. During the flow state, students feel, think and perform their best. They become so involved in the learning experience that nothing else seems to matter. The creative flow state is a crucial conduit of artistic processes to enable learners to explore and produce their best work. Despite the research conducted on flow state across several contexts, the phenomenon of personal flow state remains quite elusive. While some research has examined flow in relation to characteristics, conditions and personality traits, no research has investigated individuals' personal experiences of flow in a visual and tangible manner nor explored a relationship between flow state and teachers’ artistic development. This explorative case study explores preservice teachers’ impressions of flow using an arts-based approach. It identifies, categorizes and discusses patterns of commonality and difference. Grounded by theory concerning flow, self-efficacy and creative habits, this study ponders how emerging findings regarding flow impressions might aid teacher arts educators in helping preservice teachers who struggle with creative self-expression.

Keywords: creative arts, flow theory, presence, self-efficacy, teacher education

Procedia PDF Downloads 33
3474 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution

Authors: Pitigalage Chamath Chandira Peiris

Abstract:

A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.

Keywords: single image super resolution, computer vision, vision transformers, image restoration

Procedia PDF Downloads 110
3473 Culturally Relevant Pedagogy: A Cross-Cultural Comparison

Authors: Medha Talpade, Salil Talpade

Abstract:

The intent of this quantitative project was to compare the values and perceptions of students from a predominantly white college (PWI) to those from a historically black college (HBCU) about culturally relevant teaching and learning practices in the academic realm. The reason for interrelating student culture with teaching practices is to enable a pedagogical response to the low retention rates of African American students and first generation Caucasian students in high schools, colleges, and their low rates of social mobility and educational achievement. Culturally relevant pedagogy, according to related research, is deemed rewarding to students, teachers, the local and national community. Critical race theory (CRT) is the main framework used in this project to explain the ubiquity of a culturally relevant pedagogy. The purpose of this quantitative study was to test the critical race theory that relates the presence of the factors associated with culturally relevant teaching strategies with perceived relevance. The culturally relevant teaching strategies were identified based on the recommendations and findings of past research. Participants in this study included approximately 145 students from a HBCU and 55 students from the PWI. A survey consisting of 37 items related to culturally relevant pedagogy was administered. The themes used to construct the items were: Use of culturally-specific examples in class whenever possible; use of culturally-specific presentational models, use of relational reinforcers, and active engagement. All the items had a likert-type response scale. Participants reported their degree of agreement (5-point scale ranging from strongly disagree to strongly agree) and importance (3-point scale ranging from not at all important to very important) with each survey item. A new variable, Relevance was formed based on the multiplicative function of importance and presence of a teaching and learning strategy. A set of six demographic questions were included in the survey. A consent form based on NIH and APA ethical standards was distributed prior to survey administration to the volunteers. Results of a Factor Analyses on the data from the PWI and the HBCU, and a ANOVA indicated significant differences on ‘Relevance’ related to specific themes. Results of this study are expected to inform educational practices and improve teaching and learning outcomes.

Keywords: culturally relevant pedagogy, college students, cross-cultural, applied psychology

Procedia PDF Downloads 435
3472 Machine Learning for Rational Decision-Making: Introducing Creativity to Teachers within a School System

Authors: Larry Audet

Abstract:

Creativity is suddenly and fortunately a new educational focus in the United Arab Emirates and around the world. Yet still today many leaders of creativity are not sure how to introduce it to their teachers. It is impossible to simultaneously introduce every aspect of creativity into a work climate and reach any degree of organizational coherence. The number of alternatives to explore is so great; the information teachers need to learn is so vast, that even an approximation to including every concept and theory of creativity into the school organization is hard to conceive. Effective leaders of creativity need evidence-based and practical guidance for introducing and stimulating creativity in others. Machine learning models reveal new findings from KEYS Survey© data about teacher perceptions of stimulants and barriers to their individual and collective creativity. Findings from predictive and causal models provide leaders with a rational for decision-making when introducing creativity into their organization. Leaders should focus on management practices first. Analyses reveal that creative outcomes are more likely to occur when teachers perceive supportive management practices: providing teachers with challenging work that calls for their best efforts; allowing freedom and autonomy in their practice of work; allowing teachers to form creative work-groups; and, recognizing them for their efforts. Once management practices are in place, leaders should focus their efforts on modeling risk-taking, providing optimal amounts of preparation time, and evaluating teachers fairly.

Keywords: creativity, leadership, KEYS survey, teaching, work climate

Procedia PDF Downloads 171
3471 AI-Powered Conversation Tools - Chatbots: Opportunities and Challenges That Present to Academics within Higher Education

Authors: Jinming Du

Abstract:

With the COVID-19 pandemic beginning in 2020, many higher education institutions and education systems are turning to hybrid or fully distance online courses to maintain social distance and provide a safe virtual space for learning and teaching. However, the majority of faculty members were not well prepared for the shift to blended or distance learning. Communication frustrations are prevalent in both hybrid and full-distance courses. A systematic literature review was conducted by a comprehensive analysis of 1688 publications that focused on the application of the adoption of chatbots in education. This study aimed to explore instructors' experiences with chatbots in online and blended undergraduate English courses. Language learners are overwhelmed by the variety of information offered by many online sites. The recently emerged chatbots (e.g.: ChatGPT) are slightly superior in performance as compared to those traditional through previous technologies such as tapes, video recorders, and websites. The field of chatbots has been intensively researched, and new methods have been developed to demonstrate how students can best learn and practice a new language in the target language. However, it is believed that among the many areas where chatbots are applied, while chatbots have been used as effective tools for communicating with business customers, in consulting and targeting areas, and in the medical field, chatbots have not yet been fully explored and implemented in the field of language education. This issue is challenging enough for language teachers; they need to study and conduct research carefully to clarify it. Pedagogical chatbots may alleviate the perception of a lack of communication and feedback from instructors by interacting naturally with students through scaffolding the understanding of those learners, much like educators do. However, educators and instructors lack the proficiency to effectively operate this emerging AI chatbot technology and require comprehensive study or structured training to attain competence. There is a gap between language teachers’ perceptions and recent advances in the application of AI chatbots to language learning. The results of the study found that although the teachers felt that the chatbots did the best job of giving feedback, the teachers needed additional training to be able to give better instructions and to help them assist in teaching. Teachers generally perceive the utilization of chatbots to offer substantial assistance to English language instruction.

Keywords: artificial intelligence in education, chatbots, education and technology, education system, pedagogical chatbot, chatbots and language education

Procedia PDF Downloads 70
3470 The Application of AI in Developing Assistive Technologies for Non-Verbal Individuals with Autism

Authors: Ferah Tesfaye Admasu

Abstract:

Autism Spectrum Disorder (ASD) often presents significant communication challenges, particularly for non-verbal individuals who struggle to express their needs and emotions effectively. Assistive technologies (AT) have emerged as vital tools in enhancing communication abilities for this population. Recent advancements in artificial intelligence (AI) hold the potential to revolutionize the design and functionality of these technologies. This study explores the application of AI in developing intelligent, adaptive, and user-centered assistive technologies for non-verbal individuals with autism. Through a review of current AI-driven tools, including speech-generating devices, predictive text systems, and emotion-recognition software, this research investigates how AI can bridge communication gaps, improve engagement, and support independence. Machine learning algorithms, natural language processing (NLP), and facial recognition technologies are examined as core components in creating more personalized and responsive communication aids. The study also discusses the challenges and ethical considerations involved in deploying AI-based AT, such as data privacy and the risk of over-reliance on technology. Findings suggest that integrating AI into assistive technologies can significantly enhance the quality of life for non-verbal individuals with autism, providing them with greater opportunities for social interaction and participation in daily activities. However, continued research and development are needed to ensure these technologies are accessible, affordable, and culturally sensitive.

Keywords: artificial intelligence, autism spectrum disorder, non-verbal communication, assistive technology, machine learning

Procedia PDF Downloads 28
3469 L1 Poetry and Moral Tales as a Factor Affecting L2 Acquisition in EFL Settings

Authors: Arif Ahmed Mohammed Al-Ahdal

Abstract:

Poetry, tales, and fables have always been a part of the L1 repertoire and one that takes the learners to another amazing and fascinating world of imagination. The storytelling class and the genre of poems are activities greatly enjoyed by all age groups. The very significant idea behind their inclusion in the language curriculum is to sensitize young minds to a wide range of human emotions that are believed to greatly contribute to building their social resilience, emotional stability, empathy towards fellow creatures, and literacy. Quite certainly, the learning objective at this stage is not language acquisition (though it happens as an automatic process) but getting the young learners to be acquainted with an entire spectrum of what may be called the ‘noble’ abilities of the human race. They enrich their very existence, inspiring them to unearth ‘selves’ that help them as adults and enable them to co-exist fruitfully and symbiotically with their fellow human beings. By extension, ‘higher’ training in these literature genres shows the universality of human emotions, sufferings, aspirations, and hopes. The current study is anchored on the Reader-Response-Theory in literature learning, which suggests that the reader reconstructs work and re-enacts the author's creative role. Reiteratingly, literary works provide clues or verbal symbols in a linguistic system, widely accepted by everyone who shares the language, but everyone reads their own life experiences and situations into them. The significance of words depends on the reader, even if they have a typical relationship. In every reading, there is an interaction between the reader and the text. The process of reading is an experience in which the reader tries to comprehend the literary work, which surpasses its full potential since it provides emotional and intellectual reactions that are not anticipated from the document but cannot be affirmed just by the reader as a part of the text. The idea is that the text forms the basis of a unifying experience. A reinterpretation of the literary text may transform it into a guiding principle to respond to actual experiences and personal memories. The impulses delivered to the reader vary according to poetry or texts; nevertheless, the readers differ considerably even with the same material. Previous studies confirm that poetry is a useful tool for learning a language. This present paper works on these hypotheses and proposes to study the impetus given to L2 learning as a factor of exposure to poetry and meaningful stories in L1. The driving force behind the choice of this topic is the first-hand experience that the researcher had while teaching a literary text to a group of BA students who, as a reaction to the text, initially burst into tears and ultimately turned the class into an interactive session. The study also intends to compare the performance of male and female students post intervention using pre and post-tests, apart from undertaking a detailed inquiry via interviews with college learners of English to understand how L1 literature plays a great role in the acquisition of L2.

Keywords: SLA, literary text, poetry, tales, affective factors

Procedia PDF Downloads 83
3468 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning

Authors: Ali Kazemi

Abstract:

The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.

Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis

Procedia PDF Downloads 63
3467 3D Numerical Studies and Design Optimization of a Swallowtail Butterfly with Twin Tail

Authors: Arunkumar Balamurugan, G. Soundharya Lakshmi, V. Thenmozhi, M. Jegannath, V. R. Sanal Kumar

Abstract:

Aerodynamics of insects is of topical interest in aeronautical industries due to its wide applications on various types of Micro Air Vehicles (MAVs). Note that the MAVs are having smaller geometric dimensions operate at significantly lower speeds on the order of 10 m/s and their Reynolds numbers range is approximately 1,50,000 or lower. In this paper, numerical study has been carried out to capture the flow physics of a biological inspired Swallowtail Butterfly with fixed wing having twin tail at a flight speed of 10 m/s. Comprehensive numerical simulations have been carried out on swallow butterfly with twin tail flying at a speed of 10 m/s with uniform upper and lower angles of attack in both lateral and longitudinal position for identifying the best wing orientation with better aerodynamic efficiency. Grid system in the computational domain is selected after a detailed grid refinement exercises. Parametric analytical studies have been carried out with different lateral and longitudinal angles of attack for finding the better aerodynamic efficiency at the same flight speed. The results reveal that lift coefficient significantly increases with marginal changes in the longitudinal angle and vice versa. But in the case of drag coefficient the conventional changes have been noticed, viz., drag increases at high longitudinal angles. We observed that the change of twin tail section has a significant impact on the formation of vortices and aerodynamic efficiency of the MAV’s. We concluded that for every lateral angle there is an exact longitudinal orientation for the existence of an aerodynamically efficient flying condition of any MAV. This numerical study is a pointer towards for the design optimization of Twin tail MAVs with flapping wings.

Keywords: aerodynamics of insects, MAV, swallowtail butterfly, twin tail MAV design

Procedia PDF Downloads 397
3466 Sequential Mixed Methods Study to Examine the Potentiality of Blackboard-Based Collaborative Writing as a Solution Tool for Saudi Undergraduate EFL Students’ Writing Difficulties

Authors: Norah Alosayl

Abstract:

English is considered the most important foreign language in the Kingdom of Saudi Arabia (KSA) because of the usefulness of English as a global language compared to Arabic. As students’ desire to improve their English language skills has grown, English writing has been identified as the most difficult problem for Saudi students in their language learning. Although the English language in Saudi Arabia is taught beginning in the seventh grade, many students have problems at the university level, especially in writing, due to a gap between what is taught in secondary and high schools and university expectations- pupils generally study English at school, based on one book with few exercises in vocabulary and grammar exercises, and there are no specific writing lessons. Moreover, from personal teaching experience at King Saud bin Abdulaziz University, students face real problems with their writing. This paper revolves around the blackboard-based collaborative writing to help the undergraduate Saudi EFL students, in their first year enrolled in two sections of ENGL 101 in the first semester of 2021 at King Saud bin Abdulaziz University, practice the most difficult skill they found in their writing through a small group. Therefore, a sequential mixed methods design will be suited. The first phase of the study aims to highlight the most difficult skill experienced by students from an official writing exam that is evaluated by their teachers through an official rubric used in King Saud bin Abdulaziz University. In the second phase, this study will intend to investigate the benefits of social interaction on the process of learning writing. Students will be provided with five collaborative writing tasks via discussion feature on Blackboard to practice a skill that they found difficult in writing. the tasks will be formed based on social constructivist theory and pedagogic frameworks. The interaction will take place between peers and their teachers. The frequencies of students’ participation and the quality of their interaction will be observed through manual counting, screenshotting. This will help the researcher understand how students actively work on the task through the amount of their participation and will also distinguish the type of interaction (on task, about task, or off-task). Semi-structured interviews will be conducted with students to understand their perceptions about the blackboard-based collaborative writing tasks, and questionnaires will be distributed to identify students’ attitudes with the tasks.

Keywords: writing difficulties, blackboard-based collaborative writing, process of learning writing, interaction, participations

Procedia PDF Downloads 197
3465 Artificial Intelligence in Melanoma Prognosis: A Narrative Review

Authors: Shohreh Ghasemi

Abstract:

Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.

Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine

Procedia PDF Downloads 86
3464 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 393
3463 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 124
3462 The Reasons and the Practical Benefits Behind the Motivation of Businesses to Participate in the Dual Education System (DLS)

Authors: Ainur Bulasheva

Abstract:

During the last decade, the dual learning system (DLS) has been actively introduced in various industries in Kazakhstan, including both vocational, post-secondary, and higher education levels. It is a relatively new practice-oriented approach to training qualified personnel in Kazakhstan, officially introduced in 2012. Dual learning was integrated from the German vocational education and training system, combining practical training with part-time work in production and training in an educational institution. The policy of DLS has increasingly focused on decreasing youth unemployment and the shortage of mid-level professionals by providing incentives for employers to involve in this system. By participating directly in the educational process, the enterprise strives to train its future personnel to meet fast-changing market demands. This study examines the effectiveness of DLS from the perspective of employers to understand the motivations of businesses to participate (invest) in this program. The human capital theory of Backer, which predicts that employers will invest in training their workers (in our case, dual students) when they expect that the return on investment will be greater than the cost - acts as a starting point. Further extensionists of this theory will be considered to understand investing intentions of businesses. By comparing perceptions of DLS employers and non-dual practices, this study determines the efficiency of promoted training approach for enterprises in the Kazakhstan agri-food industry.

Keywords: vocational and technical education, dualeducation, human capital theory, argi-food industry

Procedia PDF Downloads 74
3461 Promotion of the Arabic language in India: MES Mampad College - A Torchbearer

Authors: Junaid C, Sabique MK

Abstract:

Introduction: MES Mamapd College is an autonomous college established in 1964 affiliated with the University of Calicut run by the Muslim Educational Society Kerala. The department of Arabic of the college is having a pivotal role in promoting Arabic language learning, teaching, research, and other allied academic activities. State of Problem: Department of Arabic of the college introduced before the academic committee the culture of international seminars. The department connected the academic community with foreign scholars and introduced industry-academia collaboration programs which are beneficial to the job seekers. These practices and innovations should be documented. Objectives: Create awareness of innovative practices implemented for the promotion of the Arabic language. Infuse confidence in learners in learning of Arabic language. Showcase the distinctive academic programs initiated by the department Methodology: Data will be collected from archives, souvenirs, and reports. Survey methods and interviews with authorities and beneficiaries will be collected for the data analysis. Major results: MES Mampad College introduced before its stakeholders different unique academic practices related to the Arabic language and literature. When the unprecedented pandemic situation pulled back all of the academic community, the department come forward with numerous academic initiatives utilizing the virtual space. Both arenas will be documented. Conclusion: This study will help to make awareness on the promotion of the Arabic language studies and related practices initiated by the department of Arabic MES Mampad College. These practices and innovations can be modeled and replicated.

Keywords: teaching Arabic language, MES mampad college, Arabic webinars, pandemic impacts in literature

Procedia PDF Downloads 90
3460 The Impact of Artificial Intelligence on Digital Construction

Authors: Omil Nady Mahrous Maximous

Abstract:

The construction industry is currently experiencing a shift towards digitisation. This transformation is driven by adopting technologies like Building Information Modelling (BIM), drones, and augmented reality (AR). These advancements are revolutionizing the process of designing, constructing, and operating projects. BIM, for instance, is a new way of communicating and exploiting technology such as software and machinery. It enables the creation of a replica or virtual model of buildings or infrastructure projects. It facilitates simulating construction procedures, identifying issues beforehand, and optimizing designs accordingly. Drones are another tool in this revolution, as they can be utilized for site surveys, inspections, and even deliveries. Moreover, AR technology provides real-time information to workers involved in the project. Implementing these technologies in the construction industry has brought about improvements in efficiency, safety measures, and sustainable practices. BIM helps minimize rework and waste materials, while drones contribute to safety by reducing workers' exposure to areas. Additionally, AR plays a role in worker safety by delivering instructions and guidance during operations. Although the digital transformation within the construction industry is still in its early stages, it holds the potential to reshape project delivery methods entirely. By embracing these technologies, construction companies can boost their profitability while simultaneously reducing their environmental impact and ensuring safer practices.

Keywords: architectural education, construction industry, digital learning environments, immersive learning BIM, digital construction, construction technologies, digital transformation artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction

Procedia PDF Downloads 64
3459 The Effects of Science, Technology, Engineering and Math Problem-Based Learning on Native Hawaiians and Other Underrepresented, Low-Income, Potential First-Generation High School Students

Authors: Nahid Nariman

Abstract:

The prosperity of any nation depends on its ability to use human potential, in particular, to offer an education that builds learners' competencies to become effective workforce participants and true citizens of the world. Ever since the Second World War, the United States has been a dominant player in the world politically, economically, socially, and culturally. The rapid rise of technological advancement and consumer technologies have made it clear that science, technology, engineering, and math (STEM) play a crucial role in today’s world economy. Exploring the top qualities demanded from new hires in the industry—i.e., problem-solving skills, teamwork, dependability, adaptability, technical and communication skills— sheds light on the kind of path that is needed for a successful educational system to effectively support STEM. The focus of 21st century education has been to build student competencies by preparing them to acquire and apply knowledge, to think critically and creatively, to competently use information, be able to work in teams, to demonstrate intellectual and moral values as well as cultural awareness, and to be able to communicate. Many educational reforms pinpoint various 'ideal' pathways toward STEM that educators, policy makers, and business leaders have identified for educating the workforce of tomorrow. This study will explore how problem-based learning (PBL), an instructional strategy developed in the medical field and adopted with many successful results in K-12 through higher education, is the proper approach to stimulate underrepresented high school students' interest in pursuing STEM careers. In the current study, the effect of a problem-based STEM model on students' attitudes and career interests was investigated using qualitative and quantitative methods. The participants were 71 low-income, native Hawaiian high school students who would be first-generation college students. They were attending a summer STEM camp developed as the result of a collaboration between the University of Hawaii and the Upward Bound Program. The project, funded by the National Science Foundation's Innovative Technology Experiences for Students and Teachers (ITEST) program, used PBL as an approach in challenging students to engage in solving hands-on, real-world problems in their communities. Pre-surveys were used before camp and post-surveys on the last day of the program to learn about the implementation of the PBL STEM model. A Career Interest Questionnaire provided a way to investigate students’ career interests. After the summer camp, a representative selection of students participated in focus group interviews to discuss their opinions about the PBL STEM camp. The findings revealed a significantly positive increase in students' attitudes towards STEM disciplines and STEM careers. The students' interview results also revealed that students identified PBL to be an effective form of instruction in their learning and in the development of their 21st-century skills. PBL was acknowledged for making the class more enjoyable and for raising students' interest in STEM careers, while also helping them develop teamwork and communication skills in addition to scientific knowledge. As a result, the integration of PBL and a STEM learning experience was shown to positively affect students’ interest in STEM careers.

Keywords: problem-based learning, science education, STEM, underrepresented students

Procedia PDF Downloads 127
3458 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails

Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali

Abstract:

When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.

Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis

Procedia PDF Downloads 52
3457 Modeling and Simulation of Turbulence Induced in Nozzle Cavitation and Its Effects on Internal Flow in a High Torque Low Speed Diesel Engine

Authors: Ali Javaid, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

To control combustion inside a direct injection diesel engine, fuel atomization is the best tool. Controlling combustion helps in reducing emissions and improves efficiency. Cavitation is one of the most important factors that significantly affect the nature of spray before it injects into combustion chamber. Typical fuel injector nozzles are small and operate at a very high pressure, which limits the study of internal nozzle behavior especially in case of diesel engine. Simulating cavitation in a fuel injector will help in understanding the phenomenon and will assist in further development. There is a parametric variation between high speed and high torque low speed diesel engines. The objective of this study is to simulate internal spray characteristics for a low speed high torque diesel engine. In-nozzle cavitation has strong effects on the parameters e.g. mass flow rate, fuel velocity, and momentum flux of fuel that is to be injected into the combustion chamber. The external spray dynamics and subsequently the air – fuel mixing depends on a lot of the parameters of fuel injecting the nozzle. The approach used to model turbulence induced in – nozzle cavitation for high-torque low-speed diesel engine, is homogeneous equilibrium model. The governing equations were modeled using Matlab. Complete Model in question was extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver and implemented in CFD (Computational Fluid Dynamics). Results thus obtained will be analyzed for better evaporation in the near-nozzle region. The proposed analyses will further help in better engine efficiency, low emission, and improved fuel economy.

Keywords: cavitation, HEM model, nozzle flow, open foam, turbulence

Procedia PDF Downloads 293
3456 The Effective Method for Postering Thinking Dispositions of Learners

Authors: H. Jalahi, A. Yazdanpanah Nozari

Abstract:

Background and Purpose: Assessment of learners’ performance is an important factors in teaching-learning process. When a factor is sensitive and has high influence on life, their assessment should be done precisely. Thinking dispositions are very important factors in medical education because of its specific condition. In this study a model is designed for fostering thinking dispositions of learners in which authentic assessment is an important element. Materials and Methods: Objective based research is developmental, and such a model was not designed for curricula. Data collection and comparing approaches about assessment and analyzing current assessments offered applied proposals. Results: Based on research findings, the current assessments are response-based, that is students instead of product of response, only offers the specific response which the teachers expects; but authentic assessment is a form of assessment in which students are asked to perform real-word tasks that demonstrate meaningful application of essential knowledge and skills. Conclusion: Because of the difficulties and unexpected problems in life and individuals needs to lifelong learning and conditions in medical course that require decision making in specific times, we must pay attention to reach thinking dispositions and it should be included in curriculum. Authentic assessment as an important aspect of curriculum can help fostering thinking dispositions of learners. Using this kind of assessments which focus on application of information and skills to solve real-word tasks have more important role in medical courses.

Keywords: assessment, authentic, medical courses, developmental

Procedia PDF Downloads 366
3455 The Impact of Professional Development on Teachers’ Instructional Practice

Authors: Karen Koellner, Nanette Seago, Jennifer Jacobs, Helen Garnier

Abstract:

Although studies of teacher professional development (PD) are prevalent, surprisingly most have only produced incremental shifts in teachers’ learning and their impact on students. There is a critical need to understand what teachers take up and use in their classroom practice after attending PD and why we often do not see greater changes in learning and practice. This paper is based on a mixed methods efficacy study of the Learning and Teaching Geometry (LTG) video-based mathematics professional development materials. The extent to which the materials produce a beneficial impact on teachers’ mathematics knowledge, classroom practices, and their students’ knowledge in the domain of geometry through a group-randomized experimental design are considered. In this study, we examine a small group of teachers to better understand their interpretations of the workshops and their classroom uptake. The participants included 103 secondary mathematics teachers serving grades 6-12 from two states in different regions. Randomization was conducted at the school level, with 23 schools and 49 teachers assigned to the treatment group and 18 schools and 54 teachers assigned to the comparison group. The case study examination included twelve treatment teachers. PD workshops for treatment teachers began in Summer 2016. Nine full days of professional development were offered to teachers, beginning with the one-week institute (Summer 2016) and four days of PD throughout the academic year. The same facilitator-led all of the workshops, after completing a facilitator preparation process that included a multi-faceted assessment of fidelity. The overall impact of the LTG PD program was assessed from multiple sources: two teacher content assessments, two PD embedded assessments, pre-post-post videotaped classroom observations, and student assessments. Additional data was collected from the case study teachers including additional videotaped classroom observations and interviews. Repeated measures ANOVA analyses were used to detect patterns of change in the treatment teachers’ content knowledge before and after completion of the LTG PD, relative to the comparison group. No significant effects were found across the two groups of teachers on the two teacher content assessments. Teachers were rated on the quality of their mathematics instruction captured in videotaped classroom observations using the Math in Common Observation Protocol. On average, teachers who attended the LTG PD intervention improved their ability to engage students in mathematical reasoning and to provide accurate, coherent, and well-justified mathematical content. In addition, the LTG PD intervention and instruction that engaged students in mathematical practices both positively and significantly predicted greater student knowledge gains. Teacher knowledge was not a significant predictor. Twelve treatment teachers were self-selected to serve as case study teachers to provide additional videotapes in which they felt they were using something from the PD they learned and experienced. Project staff analyzed the videos, compared them to previous videos and interviewed the teachers regarding their uptake of the PD related to content knowledge, pedagogical knowledge and resources used.

Keywords: teacher learning, professional development, pedagogical content knowledge, geometry

Procedia PDF Downloads 172
3454 Attitude-Behavior Consistency: A Descriptive Study in the Context of Climate Change and Acceptance of Psychological Findings by the Public

Authors: Nita Mitra, Pranab Chanda

Abstract:

In this paper, the issue of attitude-behavior consistency has been addressed in the context of climate change. Scientists (about 98 percent) opine that human behavior has a significant role in climate change. Such climate changes are harmful for human life. Thus, it is natural to conclude that only change of human behavior can avoid harmful consequences. Government and Non-Government Organizations are taking steps to bring in the desired changes in behavior. However, it seems that although the efforts are achieving changes in the attitudes to some degree, those steps are failing to materialize the corresponding behavioral changes. This has been a great concern for environmentalists. Psychologists have noticed the problem as a particular case of the general psychological problem of making attitude and behavior consistent with each other. The present study is in continuation of a previous work of the same author based upon descriptive research on the status of attitude and behavior of the people of a foot-hill region of the Himalayas in India regarding climate change. The observations confirm the mismatch of attitude and behavior of the people of the region with respect to climate change. While doing so an attitude-behavior mismatch has been noticed with respect to the acceptance of psychological findings by the public. People have been found to be interested in Psychology as an important subject, but they are reluctant to take the observations of psychologists seriously. A comparative study in this regard has been made with similar studies done elsewhere. Finally, an attempt has been made to perceive observations in the framework of observational learning due to Bandura's and behavior change due to Lewin.

Keywords: acceptance of psychological variables, attitude-behavior consistency, behavior change, climate change, observational learning

Procedia PDF Downloads 161
3453 The Practice and Research of Computer-Aided Language Learning in China

Authors: Huang Yajing

Abstract:

Context: Computer-aided language learning (CALL) in China has undergone significant development over the past few decades, with distinct stages marking its evolution. This paper aims to provide a comprehensive review of the practice and research in this field in China, tracing its journey from the early stages of audio-visual education to the current multimedia network integration stage. Research Aim: The study aims to analyze the historical progression of CALL in China, identify key developments in the field, and provide recommendations for enhancing CALL practices in the future. Methodology: The research employs document analysis and literature review to synthesize existing knowledge on CALL in China, drawing on a range of sources to construct a detailed overview of the evolution of CALL practices and research in the country. Findings: The review highlights the significant advancements in CALL in China, showcasing the transition from traditional audio-visual educational approaches to the current integrated multimedia network stage. The study identifies key milestones, technological advancements, and theoretical influences that have shaped CALL practices in China. Theoretical Importance: The evolution of CALL in China reflects not only technological progress but also shifts in educational paradigms and theories. The study underscores the significance of cognitive psychology as a theoretical underpinning for CALL practices, emphasizing the learner's active role in the learning process. Data Collection and Analysis Procedures: Data collection involved extensive review and analysis of documents and literature related to CALL in China. The analysis was carried out systematically to identify trends, developments, and challenges in the field. Questions Addressed: The study addresses the historical development of CALL in China, the impact of technological advancements on teaching practices, the role of cognitive psychology in shaping CALL methodologies, and the future outlook for CALL in the country. Conclusion: The review provides a comprehensive overview of the evolution of CALL in China, highlighting key stages of development and emerging trends. The study concludes by offering recommendations to further enhance CALL practices in the Chinese context.

Keywords: English education, educational technology, computer-aided language teaching, applied linguistics

Procedia PDF Downloads 60
3452 Co-Creational Model for Blended Learning in a Flipped Classroom Environment Focusing on the Combination of Coding and Drone-Building

Authors: A. Schuchter, M. Promegger

Abstract:

The outbreak of the COVID-19 pandemic has shown us that online education is so much more than just a cool feature for teachers – it is an essential part of modern teaching. In online math teaching, it is common to use tools to share screens, compute and calculate mathematical examples, while the students can watch the process. On the other hand, flipped classroom models are on the rise, with their focus on how students can gather knowledge by watching videos and on the teacher’s use of technological tools for information transfer. This paper proposes a co-educational teaching approach for coding and engineering subjects with the help of drone-building to spark interest in technology and create a platform for knowledge transfer. The project combines aspects from mathematics (matrices, vectors, shaders, trigonometry), physics (force, pressure and rotation) and coding (computational thinking, block-based programming, JavaScript and Python) and makes use of collaborative-shared 3D Modeling with clara.io, where students create mathematics knowhow. The instructor follows a problem-based learning approach and encourages their students to find solutions in their own time and in their own way, which will help them develop new skills intuitively and boost logically structured thinking. The collaborative aspect of working in groups will help the students develop communication skills as well as structural and computational thinking. Students are not just listeners as in traditional classroom settings, but play an active part in creating content together by compiling a Handbook of Knowledge (called “open book”) with examples and solutions. Before students start calculating, they have to write down all their ideas and working steps in full sentences so other students can easily follow their train of thought. Therefore, students will learn to formulate goals, solve problems, and create a ready-to use product with the help of “reverse engineering”, cross-referencing and creative thinking. The work on drones gives the students the opportunity to create a real-life application with a practical purpose, while going through all stages of product development.

Keywords: flipped classroom, co-creational education, coding, making, drones, co-education, ARCS-model, problem-based learning

Procedia PDF Downloads 125
3451 Islamic Education System: Implementation of Curriculum Kuttab Al-Fatih Semarang

Authors: Basyir Yaman, Fades Br. Gultom

Abstract:

The picture and pattern of Islamic education in the Prophet's period in Mecca and Medina is the history of the past that we need to bring back. The Basic Education Institute called Kuttab. Kuttab or Maktab comes from the word kataba which means to write. The popular Kuttab in the Prophet’s period aims to resolve the illiteracy in the Arab community. In Indonesia, this Institution has 25 branches; one of them is located in Semarang (i.e. Kuttab Al-Fatih). Kuttab Al-Fatih as a non-formal institution of Islamic education is reserved for children aged 5-12 years. The independently designed curriculum is a distinctive feature that distinguishes between Kuttab Al-Fatih curriculum and the formal institutional curriculum in Indonesia. The curriculum includes the faith and the Qur’an. Kuttab Al-Fatih has been licensed as a Community Activity Learning Center under the direct supervision and guidance of the National Education Department. Here, we focus to describe the implementation of curriculum Kuttab Al-Fatih Semarang (i.e. faith and al-Qur’an). After that, we determine the relevance between the implementation of the Kuttab Al-Fatih education system with the formal education system in Indonesia. This research uses literature review and field research qualitative methods. We obtained the data from the head of Kuttab Al-Fatih Semarang, vice curriculum, faith coordinator, al-Qur’an coordinator, as well as the guardians of learners and the learners. The result of this research is the relevance of education system in Kuttab Al-Fatih Semarang about education system in Indonesia. Kuttab Al-Fatih Semarang emphasizes character building through a curriculum designed in such a way and combines thematic learning models in modules.

Keywords: Islamic education system, implementation of curriculum, Kuttab Al-Fatih Semarang, formal education system, Indonesia

Procedia PDF Downloads 337