Search results for: Doyle-Fuller-Newman battery model
12774 Mathematical Modeling and Analysis of COVID-19 Pandemic
Authors: Thomas Wetere
Abstract:
Background: The coronavirus disease 2019 (COVID-19) pandemic (COVID-19) virus infection is a severe infectious disease with the highly transmissible variant, which become the global public health treat now. It has taken the life of more than 4 million people so far. What makes the disease the worst of all is no specific effective treatment available, its dynamics is not much researched and understood. Methodology: To end the global COVID-19 pandemic, implementation of multiple population-wide strategies, including vaccination, environmental factors, Government action, testing, and contact tracing, is required. In this article, a new mathematical model incorporating both temperature and government action to study the dynamics of the COVID-19 pandemic has been developed and comprehensively analysed. The model considers eight stages of infection: susceptible (S), infected Asymptomatic and Undetected(IAU ), infected Asymptomatic and detected(IAD), infected symptomatic and Undetected(ISU ), infected Symptomatic and detected(ISD), Hospitalized or threatened(H), Recovered(R) and Died(D). Results: The existence as well as non-negativity of the solution to the model is also verified, and the basic reproduction number is calculated. Besides, stability conditions are also checked, and finally, simulation results are compared with real data. The results demonstrates that effective government action will need to be combined with vaccination to end the ongoing COVID-19 pandemic. Conclusion: Vaccination and Government action are highly the crucial measures to control the COVID-19 pandemic. Besides, as the cost of vaccination might be high, we recommend an optimal control to reduce the cost and number of infected individuals. Moreover, in order to prevent COVID-19 pandemic, through the analysis of the model, the government must strictly manage the policy on COVID-19 and carry it out. This, in turn, helps for health campaigning and raising health literacy which plays a role to control the quick spread of the disease. We finally strongly believe that our study will play its own role in the current effort of controlling the pandemic.Keywords: modeling, COVID-19, MCMC, stability
Procedia PDF Downloads 11212773 LaPEA: Language for Preprocessing of Edge Applications in Smart Factory
Authors: Masaki Sakai, Tsuyoshi Nakajima, Kazuya Takahashi
Abstract:
In order to improve the productivity of a factory, it is often the case to create an inference model by collecting and analyzing operational data off-line and then to develop an edge application (EAP) that evaluates the quality of the products or diagnoses machine faults in real-time. To accelerate this development cycle, an edge application framework for the smart factory is proposed, which enables to create and modify EAPs based on prepared inference models. In the framework, the preprocessing component is the key part to make it work. This paper proposes a language for preprocessing of edge applications, called LaPEA, which can flexibly process several sensor data from machines into explanatory variables for an inference model, and proves that it meets the requirements for the preprocessing.Keywords: edge application framework, edgecross, preprocessing language, smart factory
Procedia PDF Downloads 14612772 Computation and Validation of the Stress Distribution around a Circular Hole in a Slab Undergoing Plastic Deformation
Authors: Sherif D. El Wakil, John Rice
Abstract:
The aim of the current work was to employ the finite element method to model a slab, with a small hole across its width, undergoing plastic plane strain deformation. The computational model had, however, to be validated by comparing its results with those obtained experimentally. Since they were in good agreement, the finite element method can therefore be considered a reliable tool that can help gain better understanding of the mechanism of ductile failure in structural members having stress raisers. The finite element software used was ANSYS, and the PLANE183 element was utilized. It is a higher order 2-D, 8-node or 6-node element with quadratic displacement behavior. A bilinear stress-strain relationship was used to define the material properties, with constants similar to those of the material used in the experimental study. The model was run for several tensile loads in order to observe the progression of the plastic deformation region, and the stress concentration factor was determined in each case. The experimental study involved employing the visioplasticity technique, where a circular mesh (each circle was 0.5 mm in diameter, with 0.05 mm line thickness) was initially printed on the side of an aluminum slab having a small hole across its width. Tensile loading was then applied to produce a small increment of plastic deformation. Circles in the plastic region became ellipses, where the directions of the principal strains and stresses coincided with the major and minor axes of the ellipses. Next, we were able to determine the directions of the maximum and minimum shear stresses at the center of each ellipse, and the slip-line field was then constructed. We were then able to determine the stress at any point in the plastic deformation zone, and hence the stress concentration factor. The experimental results were found to be in good agreement with the analytical ones.Keywords: finite element method to model a slab, slab undergoing plastic deformation, stress distribution around a circular hole, visioplasticity
Procedia PDF Downloads 31912771 Proposing of an Adaptable Land Readjustment Model for Developing of the Informal Settlements in Kabul City
Authors: Habibi Said Mustafa, Hiroko Ono
Abstract:
Since 2006, Afghanistan is dealing with one of the most dramatic trend of urban movement in its history, cities and towns are expanding in size and number. Kabul is the capital of Afghanistan and as well as the fast-growing city in the Asia. The influx of the returnees from neighbor countries and other provinces of Afghanistan caused high rate of artificial growth which slums increased. As an unwanted consequence of this growth, today informal settlements have covered a vast portion of the city. Land Readjustment (LR) has proved to be an important tool for developing informal settlements and reorganizing urban areas but its implementation always varies from country to country and region to region within the countries. Consequently, to successfully develop the informal settlements in Kabul, we need to define an Afghan model of LR specifically for Afghanistan which needs to incorporate all those factors related to the socio-economic condition of the country. For this purpose, a part of the old city of Kabul has selected as a study area which is located near the Central Business District (CBD). After the further analysis and incorporating all needed factors, the result shows a positive potential for the implementation of an adaptable Land Readjustment model for Kabul city which is more sustainable and socio-economically friendly. It will enhance quality of life and provide better urban services for the residents. Moreover, it will set a vision and criteria by which sustainable developments shall proceed in other similar informal settlements of Kabul.Keywords: adaptation, informal settlements, Kabul, land readjustment, preservation
Procedia PDF Downloads 20112770 Physical Model Testing of Storm-Driven Wave Impact Loads and Scour at a Beach Seawall
Authors: Sylvain Perrin, Thomas Saillour
Abstract:
The Grande-Motte port and seafront development project on the French Mediterranean coastline entailed evaluating wave impact loads (pressures and forces) on the new beach seawall and comparing the resulting scour potential at the base of the existing and new seawall. A physical model was built at ARTELIA’s hydraulics laboratory in Grenoble (France) to provide insight into the evolution of scouring overtime at the front of the wall, quasi-static and impulsive wave force intensity and distribution on the wall, and water and sand overtopping discharges over the wall. The beach was constituted of fine sand and approximately 50 m wide above mean sea level (MSL). Seabed slopes were in the range of 0.5% offshore to 1.5% closer to the beach. A smooth concrete structure will replace the existing concrete seawall with an elevated curved crown wall. Prior the start of breaking (at -7 m MSL contour), storm-driven maximum spectral significant wave heights of 2.8 m and 3.2 m were estimated for the benchmark historical storm event dated of 1997 and the 50-year return period storms respectively, resulting in 1 m high waves at the beach. For the wave load assessment, a tensor scale measured wave forces and moments and five piezo / piezo-resistive pressure sensors were placed on the wall. Light-weight sediment physical model and pressure and force measurements were performed with scale 1:18. The polyvinyl chloride light-weight particles used to model the prototype silty sand had a density of approximately 1 400 kg/m3 and a median diameter (d50) of 0.3 mm. Quantitative assessments of the seabed evolution were made using a measuring rod and also a laser scan survey. Testing demonstrated the occurrence of numerous impulsive wave impacts on the reflector (22%), induced not by direct wave breaking but mostly by wave run-up slamming on the top curved part of the wall. Wave forces of up to 264 kilonewtons and impulsive pressure spikes of up to 127 kilonewtons were measured. Maximum scour of -0.9 m was measured for the new seawall versus -0.6 m for the existing seawall, which is imputable to increased wave reflection (coefficient was 25.7 - 30.4% vs 23.4 - 28.6%). This paper presents a methodology for the setup and operation of a physical model in order to assess the hydrodynamic and morphodynamic processes at a beach seawall during storms events. It discusses the pros and cons of such methodology versus others, notably regarding structures peculiarities and model effects.Keywords: beach, impacts, scour, seawall, waves
Procedia PDF Downloads 15312769 Factors Related to Employee Adherence to Rules in Kuwait Business Organizations
Authors: Ali Muhammad
Abstract:
The purpose of this study is to develop a theoretical framework which demonstrates the effect of four personal factors on employees rule following behavior in Kuwaiti business organizations. The model suggested in this study includes organizational citizenship behavior, affective organizational commitment, organizational trust, and procedural justice as possible predictors of rule following behavior. The study also attempts to compare the effects of the suggested factors on employees rule following behavior. The new model will, hopefully, extend previous research by adding new variables to the models used to explain employees rule following behavior. A discussion of issues related to rule-following behavior is presented, as well as recommendations for future research.Keywords: employee adherence to rules, organizational justice, organizational commitment, organizational citizenship behavior
Procedia PDF Downloads 45612768 Detection of Flood Prone Areas Using Multi Criteria Evaluation, Geographical Information Systems and Fuzzy Logic. The Ardas Basin Case
Authors: Vasileiou Apostolos, Theodosiou Chrysa, Tsitroulis Ioannis, Maris Fotios
Abstract:
The severity of extreme phenomena is due to their ability to cause severe damage in a small amount of time. It has been observed that floods affect the greatest number of people and induce the biggest damage when compared to the total of annual natural disasters. The detection of potential flood-prone areas constitutes one of the fundamental components of the European Natural Disaster Management Policy, directly connected to the European Directive 2007/60. The aim of the present paper is to develop a new methodology that combines geographical information, fuzzy logic and multi-criteria evaluation methods so that the most vulnerable areas are defined. Therefore, ten factors related to geophysical, morphological, climatological/meteorological and hydrological characteristics of the basin were selected. Afterwards, two models were created to detect the areas pronest to flooding. The first model defined the gravitas of each factor using Analytical Hierarchy Process (AHP) and the final map of possible flood spots were created using GIS and Boolean Algebra. The second model made use of the fuzzy logic and GIS combination and a respective map was created. The application area of the aforementioned methodologies was in Ardas basin due to the frequent and important floods that have taken place these last years. Then, the results were compared to the already observed floods. The result analysis shows that both models can detect with great precision possible flood spots. As the fuzzy logic model is less time-consuming, it is considered the ideal model to apply to other areas. The said results are capable of contributing to the delineation of high risk areas and to the creation of successful management plans dealing with floods.Keywords: analytical hierarchy process, flood prone areas, fuzzy logic, geographic information system
Procedia PDF Downloads 37912767 A Game-Theory-Based Price-Optimization Algorithm for the Simulation of Markets Using Agent-Based Modelling
Authors: Juan Manuel Sanchez-Cartas, Gonzalo Leon
Abstract:
A price competition algorithm for ABMs based on game theory principles is proposed to deal with the simulation of theoretical market models. The algorithm is applied to the classical Hotelling’s model and to a two-sided market model to show it leads to the optimal behavior predicted by theoretical models. However, when theoretical models fail to predict the equilibrium, the algorithm is capable of reaching a feasible outcome. Results highlight that the algorithm can be implemented in other simulation models to guarantee rational users and endogenous optimal behaviors. Also, it can be applied as a tool of verification given that is theoretically based.Keywords: agent-based models, algorithmic game theory, multi-sided markets, price optimization
Procedia PDF Downloads 45512766 Minimizing Unscheduled Maintenance from an Aircraft and Rolling Stock Maintenance Perspective: Preventive Maintenance Model
Authors: Adel A. Ghobbar, Varun Raman
Abstract:
The Corrective maintenance of components and systems is a problem plaguing almost every industry in the world today. Train operators’ and the maintenance repair and overhaul subsidiary of the Dutch railway company is also facing this problem. A considerable portion of the maintenance activities carried out by the company are unscheduled. This, in turn, severely stresses and stretches the workforce and resources available. One possible solution is to have a robust preventive maintenance plan. The other possible solution is to plan maintenance based on real-time data obtained from sensor-based ‘Health and Usage Monitoring Systems.’ The former has been investigated in this paper. The preventive maintenance model developed for train operator will subsequently be extended, to tackle the unscheduled maintenance problem also affecting the aerospace industry. The extension of the model to the aerospace sector will be dealt with in the second part of the research, and it would, in turn, validate the soundness of the model developed. Thus, there are distinct areas that will be addressed in this paper, including the mathematical modelling of preventive maintenance and optimization based on cost and system availability. The results of this research will help an organization to choose the right maintenance strategy, allowing it to save considerable sums of money as opposed to overspending under the guise of maintaining high asset availability. The concept of delay time modelling was used to address the practical problem of unscheduled maintenance in this paper. The delay time modelling can be used to help with support planning for a given asset. The model was run using MATLAB, and the results are shown that the ideal inspection intervals computed using the extended from a minimal cost perspective were 29 days, and from a minimum downtime, perspective was 14 days. Risk matrix integration was constructed to represent the risk in terms of the probability of a fault leading to breakdown maintenance and its consequences in terms of maintenance cost. Thus, the choice of an optimal inspection interval of 29 days, resulted in a cost of approximately 50 Euros and the corresponding value of b(T) was 0.011. These values ensure that the risk associated with component X being maintained at an inspection interval of 29 days is more than acceptable. Thus, a switch in maintenance frequency from 90 days to 29 days would be optimal from the point of view of cost, downtime and risk.Keywords: delay time modelling, unscheduled maintenance, reliability, maintainability, availability
Procedia PDF Downloads 13212765 Economic Development Impacts of Connected and Automated Vehicles (CAV)
Authors: Rimon Rafiah
Abstract:
This paper will present a combination of two seemingly unrelated models, which are the one for estimating economic development impacts as a result of transportation investment and the other for increasing CAV penetration in order to reduce congestion. Measuring economic development impacts resulting from transportation investments is becoming more recognized around the world. Examples include the UK’s Wider Economic Benefits (WEB) model, Economic Impact Assessments in the USA, various input-output models, and additional models around the world. The economic impact model is based on WEB and is based on the following premise: investments in transportation will reduce the cost of personal travel, enabling firms to be more competitive, creating additional throughput (the same road allows more people to travel), and reducing the cost of travel of workers to a new workplace. This reduction in travel costs was estimated in out-of-pocket terms in a given localized area and was then translated into additional employment based on regional labor supply elasticity. This additional employment was conservatively assumed to be at minimum wage levels, translated into GDP terms, and from there into direct taxation (i.e., an increase in tax taken by the government). The CAV model is based on economic principles such as CAV usage, supply, and demand. Usage of CAVs can increase capacity using a variety of means – increased automation (known as Level I thru Level IV) and also by increased penetration and usage, which has been predicted to go up to 50% by 2030 according to several forecasts, with possible full conversion by 2045-2050. Several countries have passed policies and/or legislation on sales of gasoline-powered vehicles (none) starting in 2030 and later. Supply was measured via increased capacity on given infrastructure as a function of both CAV penetration and implemented technologies. The CAV model, as implemented in the USA, has shown significant savings in travel time and also in vehicle operating costs, which can be translated into economic development impacts in terms of job creation, GDP growth and salaries as well. The models have policy implications as well and can be adapted for use in Japan as well.Keywords: CAV, economic development, WEB, transport economics
Procedia PDF Downloads 7412764 Modeling and System Identification of a Variable Excited Linear Direct Drive
Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke
Abstract:
Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux
Procedia PDF Downloads 37012763 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 5812762 Arithmetic Operations in Deterministic P Systems Based on the Weak Rule Priority
Authors: Chinedu Peter, Dashrath Singh
Abstract:
Membrane computing is a computability model which abstracts its structures and functions from the biological cell. The main ingredient of membrane computing is the notion of a membrane structure, which consists of several cell-like membranes recurrently placed inside a unique skin membrane. The emergence of several variants of membrane computing gives rise to the notion of a P system. The paper presents a variant of P systems for arithmetic operations on non-negative integers based on the weak priorities for rule application. Consequently, we obtain deterministic P systems. Two membranes suffice. There are at most four objects for multiplication and five objects for division throughout the computation processes. The model is simple and has a potential for possible extension to non-negative integers and real numbers in general.Keywords: P system, binary operation, determinism, weak rule priority
Procedia PDF Downloads 44512761 Reallocation of Bed Capacity in a Hospital Combining Discrete Event Simulation and Integer Linear Programming
Authors: Muhammed Ordu, Eren Demir, Chris Tofallis
Abstract:
The number of inpatient admissions in the UK has been significantly increasing over the past decade. These increases cause bed occupancy rates to exceed the target level (85%) set by the Department of Health in England. Therefore, hospital service managers are struggling to better manage key resource such as beds. On the other hand, this severe demand pressure might lead to confusion in wards. For example, patients can be admitted to the ward of another inpatient specialty due to lack of resources (i.e., bed). This study aims to develop a simulation-optimization model to reallocate the available number of beds in a mid-sized hospital in the UK. A hospital simulation model was developed to capture the stochastic behaviours of the hospital by taking into account the accident and emergency department, all outpatient and inpatient services, and the interactions between each other. A couple of outputs of the simulation model (e.g., average length of stay and revenue) were generated as inputs to be used in the optimization model. An integer linear programming was developed under a number of constraints (financial, demand, target level of bed occupancy rate and staffing level) with the aims of maximizing number of admitted patients. In addition, a sensitivity analysis was carried out by taking into account unexpected increases on inpatient demand over the next 12 months. As a result, the major findings of the approach proposed in this study optimally reallocate the available number of beds for each inpatient speciality and reveal that 74 beds are idle. In addition, the findings of the study indicate that the hospital wards will be able to cope with 14% demand increase at most in the projected year. In conclusion, this paper sheds a new light on how best to reallocate beds in order to cope with current and future demand for healthcare services.Keywords: bed occupancy rate, bed reallocation, discrete event simulation, inpatient admissions, integer linear programming, projected usage
Procedia PDF Downloads 14412760 Effectiveness of the Lacey Assessment of Preterm Infants to Predict Neuromotor Outcomes of Premature Babies at 12 Months Corrected Age
Authors: Thanooja Naushad, Meena Natarajan, Tushar Vasant Kulkarni
Abstract:
Background: The Lacey Assessment of Preterm Infants (LAPI) is used in clinical practice to identify premature babies at risk of neuromotor impairments, especially cerebral palsy. This study attempted to find the validity of the Lacey assessment of preterm infants to predict neuromotor outcomes of premature babies at 12 months corrected age and to compare its predictive ability with the brain ultrasound. Methods: This prospective cohort study included 89 preterm infants (45 females and 44 males) born below 35 weeks gestation who were admitted to the neonatal intensive care unit of a government hospital in Dubai. Initial assessment was done using the Lacey assessment after the babies reached 33 weeks postmenstrual age. Follow up assessment on neuromotor outcomes was done at 12 months (± 1 week) corrected age using two standardized outcome measures, i.e., infant neurological international battery and Alberta infant motor scale. Brain ultrasound data were collected retrospectively. Data were statistically analyzed, and the diagnostic accuracy of the Lacey assessment of preterm infants (LAPI) was calculated -when used alone and in combination with the brain ultrasound. Results: On comparison with brain ultrasound, the Lacey assessment showed superior specificity (96% vs. 77%), higher positive predictive value (57% vs. 22%), and higher positive likelihood ratio (18 vs. 3) to predict neuromotor outcomes at one year of age. The sensitivity of Lacey assessment was lower than brain ultrasound (66% vs. 83%), whereas specificity was similar (97% vs. 98%). A combination of Lacey assessment and brain ultrasound results showed higher sensitivity (80%), positive (66%), and negative (98%) predictive values, positive likelihood ratio (24), and test accuracy (95%) than Lacey assessment alone in predicting neurological outcomes. The negative predictive value of the Lacey assessment was similar to that of its combination with brain ultrasound (96%). Conclusion: Results of this study suggest that the Lacey assessment of preterm infants can be used as a supplementary assessment tool for premature babies in the neonatal intensive care unit. Due to its high specificity, Lacey assessment can be used to identify those babies at low risk of abnormal neuromotor outcomes at a later age. When used along with the findings of the brain ultrasound, Lacey assessment has better sensitivity to identify preterm babies at particular risk. These findings have applications in identifying premature babies who may benefit from early intervention services.Keywords: brain ultrasound, lacey assessment of preterm infants, neuromotor outcomes, preterm
Procedia PDF Downloads 13812759 Improved Imaging and Tracking Algorithm for Maneuvering Extended UAVs Using High-Resolution ISAR Radar System
Authors: Mohamed Barbary, Mohamed H. Abd El-Azeem
Abstract:
Maneuvering extended object tracking (M-EOT) using high-resolution inverse synthetic aperture radar (ISAR) observations has been gaining momentum recently. This work presents a new robust implementation of the multiple models (MM) multi-Bernoulli (MB) filter for M-EOT, where the M-EOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact.Keywords: maneuvering extended objects, ISAR, skewed normal distribution, sub-RMM, MM-MB-TBD filter
Procedia PDF Downloads 7512758 Towards a Resources Provisioning for Dynamic Workflows in the Cloud
Authors: Fairouz Fakhfakh, Hatem Hadj Kacem, Ahmed Hadj Kacem
Abstract:
Cloud computing offers a new model of service provisioning for workflow applications, thanks to its elasticity and its paying model. However, it presents various challenges that need to be addressed in order to be efficiently utilized. The resources provisioning problem for workflow applications has been widely studied. Nevertheless, the existing works did not consider the change in workflow instances while they are being executed. This functionality has become a major requirement to deal with unusual situations and evolution. This paper presents a first step towards the resources provisioning for a dynamic workflow. In fact, we propose a provisioning algorithm which minimizes the overall workflow execution cost, while meeting a deadline constraint. Then, we extend it to support the dynamic adding of tasks. Experimental results show that our proposed heuristic demonstrates a significant reduction in resources cost by using a consolidation process.Keywords: cloud computing, resources provisioning, dynamic workflow, workflow applications
Procedia PDF Downloads 29512757 Nearly Zero Energy Building: Analysis on How End-Users Affect Energy Savings Targets
Authors: Margarida Plana
Abstract:
One of the most important energy challenge of the European policies is the transition to a Net Zero Energy Building (NZEB) model. A NZEB is a new concept of building that has the aim of reducing both the energy consumption and the carbon emissions to nearly zero of the course of a year. To achieve this nearly zero consumption, apart from being buildings with high efficiency levels, the energy consumed by the building has to be produced on-site. This paper is focused on presenting the results of the analysis developed on basis of real projects’ data in order to quantify the impact of end-users behavior. The analysis is focused on how the behavior of building’s occupants can vary the achievement of the energy savings targets and how they can be limited. The results obtained show that on this kind of project, with very high energy performance, is required to limit the end-users interaction with the system operation to be able to reach the targets fixed.Keywords: end-users impacts, energy efficiency, energy savings, NZEB model
Procedia PDF Downloads 37212756 Digital Structural Monitoring Tools @ADaPT for Cracks Initiation and Growth due to Mechanical Damage Mechanism
Authors: Faizul Azly Abd Dzubir, Muhammad F. Othman
Abstract:
Conventional structural health monitoring approach for mechanical equipment uses inspection data from Non-Destructive Testing (NDT) during plant shut down window and fitness for service evaluation to estimate the integrity of the equipment that is prone to crack damage. Yet, this forecast is fraught with uncertainty because it is often based on assumptions of future operational parameters, and the prediction is not continuous or online. Advanced Diagnostic and Prognostic Technology (ADaPT) uses Acoustic Emission (AE) technology and a stochastic prognostic model to provide real-time monitoring and prediction of mechanical defects or cracks. The forecast can help the plant authority handle their cracked equipment before it ruptures, causing an unscheduled shutdown of the facility. The ADaPT employs process historical data trending, finite element analysis, fitness for service, and probabilistic statistical analysis to develop a prediction model for crack initiation and growth due to mechanical damage. The prediction model is combined with live equipment operating data for real-time prediction of the remaining life span owing to fracture. ADaPT was devised at a hot combined feed exchanger (HCFE) that had suffered creep crack damage. The ADaPT tool predicts the initiation of a crack at the top weldment area by April 2019. During the shutdown window in April 2019, a crack was discovered and repaired. Furthermore, ADaPT successfully advised the plant owner to run at full capacity and improve output by up to 7% by April 2019. ADaPT was also used on a coke drum that had extensive fatigue cracking. The initial cracks are declared safe with ADaPT, with remaining crack lifetimes extended another five (5) months, just in time for another planned facility downtime to execute repair. The prediction model, when combined with plant information data, allows plant operators to continuously monitor crack propagation caused by mechanical damage for improved maintenance planning and to avoid costly shutdowns to repair immediately.Keywords: mechanical damage, cracks, continuous monitoring tool, remaining life, acoustic emission, prognostic model
Procedia PDF Downloads 7612755 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis
Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio
Abstract:
Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction
Procedia PDF Downloads 30912754 Trusted Neural Network: Reversibility in Neural Networks for Network Integrity Verification
Authors: Malgorzata Schwab, Ashis Kumer Biswas
Abstract:
In this concept paper, we explore the topic of Reversibility in Neural Networks leveraged for Network Integrity Verification and crafted the term ''Trusted Neural Network'' (TNN), paired with the API abstraction around it, to embrace the idea formally. This newly proposed high-level generalizable TNN model builds upon the Invertible Neural Network architecture, trained simultaneously in both forward and reverse directions. This allows for the original system inputs to be compared with the ones reconstructed from the outputs in the reversed flow to assess the integrity of the end-to-end inference flow. The outcome of that assessment is captured as an Integrity Score. Concrete implementation reflecting the needs of specific problem domains can be derived from this general approach and is demonstrated in the experiments. The model aspires to become a useful practice in drafting high-level systems architectures which incorporate AI capabilities.Keywords: trusted, neural, invertible, API
Procedia PDF Downloads 14612753 Thermodynamic Analyses of Information Dissipation along the Passive Dendritic Trees and Active Action Potential
Authors: Bahar Hazal Yalçınkaya, Bayram Yılmaz, Mustafa Özilgen
Abstract:
Brain information transmission in the neuronal network occurs in the form of electrical signals. Neural work transmits information between the neurons or neurons and target cells by moving charged particles in a voltage field; a fraction of the energy utilized in this process is dissipated via entropy generation. Exergy loss and entropy generation models demonstrate the inefficiencies of the communication along the dendritic trees. In this study, neurons of 4 different animals were analyzed with one dimensional cable model with N=6 identical dendritic trees and M=3 order of symmetrical branching. Each branch symmetrically bifurcates in accordance with the 3/2 power law in an infinitely long cylinder with the usual core conductor assumptions, where membrane potential is conserved in the core conductor at all branching points. In the model, exergy loss and entropy generation rates are calculated for each branch of equivalent cylinders of electrotonic length (L) ranging from 0.1 to 1.5 for four different dendritic branches, input branch (BI), and sister branch (BS) and two cousin branches (BC-1 & BC-2). Thermodynamic analysis with the data coming from two different cat motoneuron studies show that in both experiments nearly the same amount of exergy is lost while generating nearly the same amount of entropy. Guinea pig vagal motoneuron loses twofold more exergy compared to the cat models and the squid exergy loss and entropy generation were nearly tenfold compared to the guinea pig vagal motoneuron model. Thermodynamic analysis show that the dissipated energy in the dendritic tress is directly proportional with the electrotonic length, exergy loss and entropy generation. Entropy generation and exergy loss show variability not only between the vertebrate and invertebrates but also within the same class. Concurrently, single action potential Na+ ion load, metabolic energy utilization and its thermodynamic aspect contributed for squid giant axon and mammalian motoneuron model. Energy demand is supplied to the neurons in the form of Adenosine triphosphate (ATP). Exergy destruction and entropy generation upon ATP hydrolysis are calculated. ATP utilization, exergy destruction and entropy generation showed differences in each model depending on the variations in the ion transport along the channels.Keywords: ATP utilization, entropy generation, exergy loss, neuronal information transmittance
Procedia PDF Downloads 39312752 Improvement in Blast Furnace Performance Using Softening - Melting Zone Profile Prediction Model at G Blast Furnace, Tata Steel Jamshedpur
Authors: Shoumodip Roy, Ankit Singhania, K. R. K. Rao, Ravi Shankar, M. K. Agarwal, R. V. Ramna, Uttam Singh
Abstract:
The productivity of a blast furnace and the quality of the hot metal produced are significantly dependent on the smoothness and stability of furnace operation. The permeability of the furnace bed, as well as the gas flow pattern, influences the steady control of process parameters. The softening – melting zone that is formed inside the furnace contributes largely in distribution of the gas flow and the bed permeability. A better shape of softening-melting zone enhances the performance of blast furnace, thereby reducing the fuel rates and improving furnace life. Therefore, predictive model of the softening- melting zone profile can be utilized to control and improve the furnace operation. The shape of softening-melting zone depends upon the physical and chemical properties of the agglomerates and iron ore charged in the furnace. The variations in the agglomerate proportion in the burden at G Blast furnace disturbed the furnace stability. During such circumstances, it was analyzed that a w-shape softening-melting zone profile was formed inside the furnace. The formation of w-shape zone resulted in poor bed permeability and non-uniform gas flow. There was a significant increase in the heat loss at the lower zone of the furnace. The fuel demand increased, and the huge production loss was incurred. Therefore, visibility of softening-melting zone profile was necessary in order to pro-actively optimize the process parameters and thereby to operate the furnace smoothly. Using stave temperatures, a model was developed that predicted the shape of the softening-melting zone inside the furnace. It was observed that furnace operated smoothly during inverse V-shape of the zone and vice-versa during w-shape. This model helped to control the heat loss, optimize the burden distribution and lower the fuel rate at G Blast Furnace, TSL Jamshedpur. As a result of furnace stabilization productivity increased by 10% and fuel rate reduced by 80 kg/thm. Details of the process have been discussed in this paper.Keywords: agglomerate, blast furnace, permeability, softening-melting
Procedia PDF Downloads 25212751 A Study of Variables Affecting on a Quality Assessment of Mathematics Subject in Thailand by Using Value Added Analysis on TIMSS 2011
Authors: Ruangdech Sirikit
Abstract:
The purposes of this research were to study the variables affecting the quality assessment of mathematics subject in Thailand by using value-added analysis on TIMSS 2011. The data used in this research is the secondary data from the 2011 Trends in International Mathematics and Science Study (TIMSS), collected from 6,124 students in 172 schools from Thailand, studying only mathematics subjects. The data were based on 14 assessment tests of knowledge in mathematics. There were 3 steps of data analysis: 1) To analyze descriptive statistics 2) To estimate competency of students from the assessment of their mathematics proficiency by using MULTILOG program; 3) analyze value added in the model of quality assessment using Value-Added Model with Hierarchical Linear Modeling (HLM) and 2 levels of analysis. The research results were as follows: 1. Student level variables that had significant effects on the competency of students at .01 levels were Parental care, Resources at home, Enjoyment of learning mathematics and Extrinsic motivation in learning mathematics. Variable that had significant effects on the competency of students at .05 levels were Education of parents and self-confident in learning mathematics. 2. School level variable that had significant effects on competency of students at .01 levels was Extra large school. Variable that had significant effects on competency of students at .05 levels was medium school.Keywords: quality assessment, value-added model, TIMSS, mathematics, Thailand
Procedia PDF Downloads 28312750 Efficiency-Based Model for Solar Urban Planning
Authors: M. F. Amado, A. Amado, F. Poggi, J. Correia de Freitas
Abstract:
Today it is widely understood that global energy consumption patterns are directly related to the ongoing urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals. In this paper, a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities, economic development, and the local and global environment while safeguarding fairness in the energy sector.Keywords: solar urban planning, solar smart city, urban development, energy efficiency
Procedia PDF Downloads 32812749 The Changing Landscape of Fire Safety in Covered Car Parks with the Arrival of Electric Vehicles
Authors: Matt Stallwood, Michael Spearpoint
Abstract:
In 2020, the UK government announced that sales of new petrol and diesel cars would end in 2030, and battery-powered cars made up 1 in 8 new cars sold in 2021 – more than the total from the previous five years. The guidance across the UK for the fire safety design of covered car parks is changing in response to the projected rapid growth in electric vehicle (EV) use. This paper discusses the current knowledge on the fire safety concerns posed by EVs, in particular those powered by lithium-ion batteries, when considering the likelihood of vehicle ignition, fire severity and spread of fire to other vehicles. The paper builds on previous work that has investigated the frequency of fires starting in cars powered by internal combustion engines (ICE), the hazard posed by such fires in covered car parks and the potential for neighboring vehicles to become involved in an incident. Historical data has been used to determine the ignition frequency of ICE car fires, whereas such data is scarce when it comes to EV fires. Should a fire occur, then the fire development has conventionally been assessed to match a ‘medium’ growth rate and to have a 95th percentile peak heat release of 9 MW. The paper examines recent literature in which researchers have measured the burning characteristics of EVs to assess whether these values need to be changed. These findings are used to assess the risk posed by EVs when compared to ICE vehicles. The paper examines what new design guidance is being issued by various organizations across the UK, such as fire and rescue services, insurers, local government bodies and regulators and discusses the impact these are having on the arrangement of parking bays, particularly in residential and mixed-use buildings. For example, the paper illustrates how updated guidance published by the Fire Protection Association (FPA) on the installation of sprinkler systems has increased the hazard classification of parking buildings that can have a considerable impact on the feasibility of a building to meet all its design intents when specifying water supply tanks. Another guidance on the provision of smoke ventilation systems and structural fire resistance is also presented. The paper points to where further research is needed on the fire safety risks posed by EVs in covered car parks. This will ensure that any guidance is commensurate with the need to provide an adequate level of life and property safety in the built environment.Keywords: covered car parks, electric vehicles, fire safety, risk
Procedia PDF Downloads 7312748 Mathematics Model Approaching: Parameter Estimation of Transmission Dynamics of HIV and AIDS in Indonesia
Authors: Endrik Mifta Shaiful, Firman Riyudha
Abstract:
Acquired Immunodeficiency Syndrome (AIDS) is one of the world's deadliest diseases caused by the Human Immunodeficiency Virus (HIV) that infects white blood cells and cause a decline in the immune system. AIDS quickly became a world epidemic disease that affects almost all countries. Therefore, mathematical modeling approach to the spread of HIV and AIDS is needed to anticipate the spread of HIV and AIDS which are widespread. The purpose of this study is to determine the parameter estimation on mathematical models of HIV transmission and AIDS using cumulative data of people with HIV and AIDS each year in Indonesia. In this model, there are parameters of r ∈ [0,1) which is the effectiveness of the treatment in patients with HIV. If the value of r is close to 1, the number of people with HIV and AIDS will decline toward zero. The estimation results indicate when the value of r is close to unity, there will be a significant decline in HIV patients, whereas in AIDS patients constantly decreases towards zero.Keywords: HIV, AIDS, parameter estimation, mathematical models
Procedia PDF Downloads 24912747 Generic Data Warehousing for Consumer Electronics Retail Industry
Authors: S. Habte, K. Ouazzane, P. Patel, S. Patel
Abstract:
The dynamic and highly competitive nature of the consumer electronics retail industry means that businesses in this industry are experiencing different decision making challenges in relation to pricing, inventory control, consumer satisfaction and product offerings. To overcome the challenges facing retailers and create opportunities, we propose a generic data warehousing solution which can be applied to a wide range of consumer electronics retailers with a minimum configuration. The solution includes a dimensional data model, a template SQL script, a high level architectural descriptions, ETL tool developed using C#, a set of APIs, and data access tools. It has been successfully applied by ASK Outlets Ltd UK resulting in improved productivity and enhanced sales growth.Keywords: consumer electronics, data warehousing, dimensional data model, generic, retail industry
Procedia PDF Downloads 41112746 Comparison of Prognostic Models in Different Scenarios of Shoreline Position on Ponta Negra Beach in Northeastern Brazil
Authors: Débora V. Busman, Venerando E. Amaro, Mattheus da C. Prudêncio
Abstract:
Prognostic studies of the shoreline are of utmost importance for Ponta Negra Beach, located in Natal, Northeastern Brazil, where the infrastructure recently built along the shoreline is severely affected by flooding and erosion. This study compares shoreline predictions using three linear regression methods (LMS, LRR and WLR) and tries to discern the best method for different shoreline position scenarios. The methods have shown erosion on the beach in each of the scenarios tested, even in less intense dynamic conditions. The WLA_A with confidence interval of 95% was the well-adjusted model and calculated a retreat of -1.25 m/yr to -2.0 m/yr in hot spot areas. The change of the shoreline on Ponta Negra Beach can be measured as a negative exponential curve. Analysis of these methods has shown a correlation with the morphodynamic stage of the beach.Keywords: coastal erosion, prognostic model, DSAS, environmental safety
Procedia PDF Downloads 33512745 Bioclimatic Niches of Endangered Garcinia indica Species on the Western Ghats: Predicting Habitat Suitability under Current and Future Climate
Authors: Malay K. Pramanik
Abstract:
In recent years, climate change has become a major threat and has been widely documented in the geographic distribution of many plant species. However, the impacts of climate change on the distribution of ecologically vulnerable medicinal species remain largely unknown. The identification of a suitable habitat for a species under climate change scenario is a significant step towards the mitigation of biodiversity decline. The study, therefore, aims to predict the impact of current, and future climatic scenarios on the distribution of the threatened Garcinia indica across the northern Western Ghats using Maximum Entropy (MaxEnt) modelling. The future projections were made for the year 2050 and 2070 with all Representative Concentration Pathways (RCPs) scenario (2.6, 4.5, 6.0, and 8.5) using 56 species occurrence data, and 19 bioclimatic predictors from the BCC-CSM1.1 model of the Intergovernmental Panel for Climate Change’s (IPCC) 5th assessment. The bioclimatic variables were minimised to a smaller number of variables after a multicollinearity test, and their contributions were assessed using jackknife test. The AUC value of 0.956 ± 0.023 indicates that the model performs with excellent accuracy. The study identified that temperature seasonality (39.5 ± 3.1%), isothermality (19.2 ± 1.6%), and annual precipitation (12.7 ± 1.7%) would be the major influencing variables in the current and future distribution. The model predicted 10.5% (19318.7 sq. km) of the study area as moderately to very highly suitable, while 82.60% (151904 sq. km) of the study area was identified as ‘unsuitable’ or ‘very low suitable’. Our predictions of climate change impact on habitat suitability suggest that there will be a drastic reduction in the suitability by 5.29% and 5.69% under RCP 8.5 for 2050 and 2070, respectively. Finally, the results signify that the model might be an effective tool for biodiversity protection, ecosystem management, and species re-habitation planning under future climate change scenarios.Keywords: Garcinia Indica, maximum entropy modelling, climate change, MaxEnt, Western Ghats, medicinal plants
Procedia PDF Downloads 157