Search results for: quality properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17439

Search results for: quality properties

12969 Effect of Hybrid Fibers on Mechanical Properties in Autoclaved Aerated Concrete

Authors: B. Vijay Antony Raj, Umarani Gunasekaran, R. Thiru Kumara Raja Vallaban

Abstract:

Fibrous autoclaved aerated concrete (FAAC) is concrete containing fibrous material in it which helps to increase its structural integrity when compared to that of convention autoclaved aerated concrete (CAAC). These short discrete fibers are uniformly distributed and randomly oriented, which enhances the bond strength within the aerated concrete matrix. Conventional red-clay bricks create larger impact to the environment due to red soil depletion and it also consumes large amount to time for construction. Whereas, AAC are larger in size, lighter in weight and it is environmentally friendly in nature and hence it is a viable replacement for red-clay bricks. Internal micro cracks and corner cracks are the only disadvantages of conventional autoclaved aerated concrete, to resolve this particular issue it is preferable to make use of fibers in it.These fibers are bonded together within the matrix and they induce the aerated concrete to withstand considerable stresses, especially during the post cracking stage. Hence, FAAC has the capability of enhancing the mechanical properties and energy absorption capacity of CAAC. In this research work, individual fibers like glass, nylon, polyester and polypropylene are used they generally reduce the brittle fracture of AAC.To study the fibre’s surface topography and composition, SEM analysis is performed and then to determine the composition of a specimen as a whole as well as the composition of individual components EDAX mapping is carried out and then an experimental approach was performed to determine the effect of hybrid (multiple) fibres at various dosage (0.5%, 1%, 1.5%) and curing temperature of 180-2000 C is maintained to determine the mechanical properties of autoclaved aerated concrete. As an analytical part, the outcome experimental results is compared with fuzzy logic using MATLAB.

Keywords: fiberous AAC, crack control, energy absorption, mechanical properies, SEM, EDAX, MATLAB

Procedia PDF Downloads 257
12968 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.

Keywords: multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes

Procedia PDF Downloads 359
12967 Nanocharacterization of PIII Treated 7075 Aluminum Alloy

Authors: Bruno Bacci Fernandes, Stephan Mändl, Ataíde Ribeiro da Silva Junior, José Osvaldo Rossi, Mário Ueda

Abstract:

Nitrogen implantation in aluminum and its alloys is acquainted for the difficulties in obtaining modified layers deeper than 200 nm. The present work addresses a new method to overcome such a problem; although, the coating with nitrogen and oxygen obtained by plasma immersion ion implantation (PIII) into a 7075 aluminum alloy surface was too shallow. This alloy is commonly used for structural parts in aerospace applications. Such a layer was characterized by secondary ion mass spectroscopy, electron microscopy, and nanoindentation experiments reciprocating wear tests. From the results, one can assume that the wear of this aluminum alloy starts presenting severe abrasive wear followed by an additional adhesive mechanism. PIII produced a slight difference, as shown in all characterizations carried out in this work. The results shown here can be used as the scientific basis for further nitrogen PIII experiments in aluminum alloys which have the goal to produce thicker modified layers or to improve their surface properties.

Keywords: aluminum alloys, plasma immersion ion implantation, tribological properties, hardness, nanofatigue

Procedia PDF Downloads 325
12966 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: high performance concrete, special concrete, structural design, structural lightweight concrete

Procedia PDF Downloads 296
12965 Assessment of Socio-Economic and Water Related Topics at Community Level in Yatta Town, Palestine

Authors: Nibal Al-Batsh, Issam A. Al-Khatib, Subha Ghannam

Abstract:

Yatta is a town in the Governorate of Hebron, located 9 km south of Hebron City in the West Bank. The town houses over 100,000 people, 49% of which are females; a population that doubles every 15 years. Yatta has been connected to a water network since 1974 serving nearly 85% of the households. The water network is old and inadequate to meet the needs of the population. The water supply made available to the area is also very limited, estimated to be around 20 l/c/d. Residents are thus forced to rely on water vendors which supply water with a lower quality compared to municipal water while being 400% more expensive. As a cheaper and more reliable alternative, rainwater harvesting is a common practice in the area, with the majority of the households owning at least one cistern. Rainwater harvesting is of great socioeconomic importance in areas where water sources are scarce or polluted. In this research, the quality of harvested rainwater used for drinking and domestic purposes in the Yatta area was assessed throughout a year. A total of 100 samples, were collected from (cisterns) with an average capacity of 69 m3, which are adjacent to cement-roof catchment areas with an average area of 145 m2. Samples were analyzed for a number of parameters including: pH, alkalinity, hardness, turbidity, Total Dissolved Solids (TDS), NO3, NH4, chloride and salinity. Biological and microbiological contents such as Total Coliforms (TCC) and Fecal Coliforms (FC) bacteria were also tested. Results showed that most of the rainwater samples were within WHO and EPA guidelines set for chemical parameters. The research also addressed the impact of different socioeconomic attributes on rainwater harvesting through questionnaire that was pre-tested before the actual statically sample is collected.

Keywords: rainwater, harvesting, water quality, socio-economic aspects

Procedia PDF Downloads 239
12964 Psychological Aspects of Quality of Life in Patients with Primary and Metastatic Bone Tumors

Authors: O. Yu Shchelkova, E. B. Usmanova

Abstract:

Introduction: Last decades scientific research of quality of life (QoL) is developing fast worldwide. QoL concept pays attention to emotional experience of disease in patients, particularly to personal sense of possibility to satisfy actual needs and possibility of full social functioning in spite of disease limitations. QoL in oncological patients is studied intensively. Nevertheless, the issue of QoL in patients with bone tumors focused on psychological factors of QoL and relation to disease impact on QoL is not discussed. The aim of the study was to reveal the basic aspects and personality factors of QoL in patients with bone tumor. Results: Study participants were 139 patients with bone tumors. The diagnoses were osteosarcoma (n=42), giant cell tumor (n=32), chondrosarcoma (n=32), Ewing sarcoma (n=10) and bone metastases (n=23). The study revealed that patients with bone metastases assess their health significantly worse than other patients. Besides patients with osteosarcoma evaluate their general health higher than patients with giant cell tumors. Social functioning in patients with chondrosarcoma is higher than in patients with bone metastases and patients with giant cell tumor. Patients with chondrosarcoma have higher physical functioning and less restricted in daily activities than patients with bone metastases. Patients with bone metastases characterize their pain as more widespread than patients with primary bone tumors and have more functional restrictions due to bone incision. Moreover, the study revealed personality significant influence on QoL related to bone tumors. Such characteristics in structure of personality as high degree of self-consciousness, personal resources, cooperation and disposition to positive reappraisal in difficult situation correspond to higher QoL. Otherwise low personal resources and slight problem solving behaviour, low degree of self-consciousness and high social dependence correspond to decrease of QoL in patients with bone tumors. Conclusion: Patients with bone metastasis have lower QoL compared to patients with primary bone tumors. Patients with giant cell tumor have the worth quality of life among patients with primary bone tumors. Furthermore, the results revealed differences in QoL parameters associated with personality characteristics in patients with bone tumors. Such psychological factors as future goals, interest in life and emotional saturation, besides high degree of personal resources and cooperation influence on increasing QoL in patients with bone tumors.

Keywords: quality of life, psychological factors, bone tumor, personality

Procedia PDF Downloads 128
12963 Jump-Like Deformation of Ultrafinegrained AZ31 at Temperature 4,2 - 0,5 K

Authors: Pavel Zabrodin

Abstract:

The drawback of magnesium alloys is poor plasticity, which complicates the forming. Effective way of improving the properties of the cast magnesium alloy AZ31 (3 wt. % Al, 0.8 wt. % Zn, 0.2 wt. % Mn)) is to combine hot extrusion at 350°C and equal-channel angular pressing (ECAP) at 180°C. Because of reduced grain sizes, changes in the nature of the grain boundaries, and enhancement of a texture that favors basal dislocation glide, after this kind of processing, increase yield stress and ductility. For study of the effect of microstructure on the mechanisms for plastic deformation, there is some interest in investigating the mechanical properties of the ultrafinegrained (UFG) Mg alloy at low temperatures, before and after annealing. It found that the amplitude and statistics at the low-temperature jump-like deformation the Mg alloy of dependent on microstructure. Reduction of the average density of dislocations and grain growth during annealing causing a reduction in the amplitude of the jump-like deformation and changes in the distribution of surges in amplitude. It found that the amplitude and statistics at the low-temperature jump-like deformation UFG alloy dependent on temperature of deformation. Plastic deformation of UFG alloy at a temperature of 10 K occurs uniformly - peculiarities is not observed. Increasing of the temperature of deformation from 4,2 to 0,5 K is causing a reduction in the amplitude and increasing the frequency of the jump-like deformation.

Keywords: jump-like deformation, low temperature, plasticity, magnesium alloy

Procedia PDF Downloads 444
12962 Study of the Biochemical Properties of the Protease Coagulant Milk Extracted from Sunflower Cake: Manufacturing Test of Cheeses Uncooked Dough Press and Analysis of Sensory Properties

Authors: Kahlouche Amal, Touzene F. Zohra, Betatache Fatihaet Nouani Abdelouahab

Abstract:

The development of the world production of the cheese these last decades, as well as agents' greater request cheap coagulants, accentuated the search for new surrogates of the rennet. What about the interest to explore the vegetable biodiversity, the source well cheap of many naturals metabolites that the scientists today praise it (thistle, latex of fig tree, Cardoon, seeds of melon). Indeed, a big interest is concerned the search for surrogates of vegetable origin. The objective of the study is to show the possibility of extracting a protease coagulant the milk from the cake of Sunflower, available raw material and the potential source of surrogates of rennet. so, the determination of the proteolytic activity of raw extracts, the purification, the elimination of the pigments of tint of the enzymatic preparations, a better knowledge of the coagulative properties through study of the effect of certain factors (temperature, pH, concentration in CaCl2) are so many factors which contribute to value milk particularly those produced by the small ruminants of the Algerian dairy exploitations. Otherwise, extracts coagulants of vegetable origin allowed today to value traditional, in addition, although the extract coagulants of vegetable origin made it possible today to develop traditional cheeses whose Iberian peninsula is the promoter, but the test of 'pressed paste not cooked' cheese manufacturing led to the semi-scale pilot; and that, by using the enzymatic extract of sunflower (Helianthus annus) which gave satisfactory results as well to the level of outputs as on the sensory level,which, statistically,did not give any significant difference between studied cheeses. These results confirm the possibility of use of this coagulase as a substitute of rennet commercial on an industrial scale.

Keywords: characterization, cheese, Rennet, sunflower

Procedia PDF Downloads 336
12961 Exploring the Potential of Modular Housing Designs for the Emergency Housing Need in Türkiye after the February Earthquake in 2023

Authors: Hailemikael Negussie, Sebla Arın Ensarioğlu

Abstract:

In February 2023 Southeastern Türkiye and Northwestern Syria were hit by two consecutive earthquakes with high magnitude leaving thousands dead and thousands more homeless. The housing crisis in the affected areas has resulted in the need for a fast and qualified solution. There are a number of solutions, one of which is the use of modular designs to rebuild the cities that have been affected. Modular designs are prefabricated building components that can be quickly and efficiently assembled on-site, making them ideal to build structures with faster speed and higher quality. These structures are flexible, adaptable, and can be customized to meet the specific needs of the inhabitants, in addition to being more energy-efficient and sustainable. The prefabricated nature also assures that the quality of the products can be easily controlled. The reason for the collapse of most of the buildings during the earthquakes was found out to be the lack of quality during the construction stage. Using modular designs allows a higher control over the quality of the construction materials being used. The use of modular designs for a project of this scale presents some challenges, including the high upfront cost to design and manufacture components. However, if implemented correctly, modular designs can offer an effective and efficient solution to the urgent housing needs. The aim of this paper is to explore the potential of modular housing for mid- and long-term earthquake-resistant housing needs in the affected disaster zones after the earthquakes of February 2023. In the scope of this paper the adaptability of modular, prefabricated housing designs for the post-disaster environment, the advantages and disadvantages of this system will be examined. Elements such as; the current conditions of the region where the destruction happened, climatic data, topographic factors will be examined. Additionally, the paper will examine; examples of similar local and international modular post-earthquake housing projects. The region is projected to enter a rapid reconstruction phase in the following periods. Therefore, this paper will present a proposal for a system that can be used to produce safe and healthy urbanization policies without causing new aggrievements while meeting the housing needs of the people in the affected regions.

Keywords: post-disaster housing, earthquake-resistant design, modular design, housing, Türkiye

Procedia PDF Downloads 75
12960 Long-Term Conservation Tillage Impact on Soil Properties and Crop Productivity

Authors: Danute Karcauskiene, Dalia Ambrazaitiene, Regina Skuodiene, Monika Vilkiene, Regina Repsiene, Ieva Jokubauskaite

Abstract:

The main ambition for nowadays agriculture is to get the economically effective yield and to secure the soil ecological sustainability. According to the effect on the main soil quality indexes, tillage systems may be separated into two types, conventional and conservation tillage. The goal of this study was to determine the impact of conservation and conventional primary soil tillage methods and soil fertility improvement measures on soil properties and crop productivity. Methods: The soil of the experimental site is Dystric Glossic Retisol (WRB 2014) with texture of sandy loam. The trial was established in 2003 in the experimental field of crop rotation of Vėžaičiai Branch of Lithuanian Research Centre for Agriculture and Forestry. Trial factors and treatments: factor A- primary soil tillage in (autumn): deep ploughing (20-25cm), shallow ploughing (10-12cm), shallow ploughless tillage (8-10cm); factor B – soil fertility improvement measures: plant residues, plant residues + straw, green manure 1st cut + straw, farmyard manure 40tha-1 + straw. The four - course crop rotation consisted of red clover, winter wheat, spring rape and spring barley with undersown. Results: The tillage had no statistically significant effect on topsoil (0-10 cm) pHKCl level, it was 5.5 - 5.7. During all experiment period, the highest soil pHKCl level (5.65) was in the shallow ploughless tillage. The organic fertilizers particularly the biomass of grass and farmyard manure had tendency to increase the soil pHKCl. The content of plant - available phosphorus and potassium significantly increase in the shallow ploughing compared with others tillage systems. The farmyard manure increases those elements in whole arable layer. The dissolved organic carbon concentration was significantly higher in the 0 - 10 cm soil layer in the shallow ploughless tillage compared with deep ploughing. After the incorporation of clover biomass and farmyard manure the concentration of dissolved organic carbon increased in the top soil layer. During all experiment period the largest amount of water stable aggregates was determined in the soil where the shallow ploughless tillage was applied. It was by 12% higher compared with deep ploughing. During all experiment time, the soil moisture was higher in the shallow ploughing and shallow ploughless tillage (9-27%) compared to deep ploughing. The lowest emission of CO2 was determined in the deep ploughing soil. The highest rate of CO2 emission was in shallow ploughless tillage. The addition of organic fertilisers had a tendency to increase the CO2 emission, but there was no statistically significant effect between the different types of organic fertilisers. The crop yield was larger in the deep ploughing soil compared to the shallow and shallow ploughless tillage.

Keywords: reduced tillage, soil structure, soil pH, biological activity, crop productivity

Procedia PDF Downloads 251
12959 Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs

Authors: Mustahsan Mir, Ahmed Hassanin, Mohammed A. Al-Saleh

Abstract:

The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.

Keywords: block layout problem, building-block layout design, CAD, optimization, search techniques

Procedia PDF Downloads 371
12958 Double Magnetic Phase Transition in the Intermetallic Compound Gd₂AgSi₃

Authors: Redrisse Djoumessi Fobasso, Baidyanath Sahu, Andre M. Strydom

Abstract:

The R₂TX₃ (R = rare-earth, T = transition, and X = s and p block element) series of compounds are interesting owing to their fascinating structural and magnetic properties. In this present work, we have studied the magnetic and physical properties of the new Gd₂AgSi₃ polycrystalline compound. The sample was synthesized by the arc-melting method and confirmed to crystallize in the tetragonal α-ThSi₂-type crystal structure with space group I4/amd. Dc– and ac–magnetic susceptibility, specific heat, electrical resistivity, and magnetoresistance measurements were performed on the new compound. The structure provides a unique position in the unit cell for the magnetic trivalent Gd ion. Two magnetic phase transitions were consistently found in dc- and ac-magnetic susceptibility, heat capacity, and electrical resistivity at temperatures Tₙ₁ = 11 K and Tₙ₂ = 20 K, which is an indication of the complex magnetic behavior in this compound. The compound is found to be metamagnetic over a range of temperatures below and above Tₙ₁. From field-dependent electrical resistivity, it is confirmed that the compound shows unusual negative magnetoresistance in the antiferromagnetically ordered region. These results contribute to a better understanding of this class of materials.

Keywords: complex magnetic behavior, metamagnetic, negative magnetoresistance, two magnetic phase transitions

Procedia PDF Downloads 111
12957 Preparation of Alumina (Al2O3) Particles and MMCS of (Al-7% Si– 0.45% Mg) Alloy Using Vortex Method

Authors: Abdulmagid A. Khattabi

Abstract:

The aim of this research is to study the manner of alumina (Al2O3) particles dispersion with (2-10) mm size in (Al-7%Si-0.45% Mg) base of alloy melt employing of classical casting method. The mechanism of particles diffusions by melt turning and stirring that makes vortexes help the particles entrance in the matrix of base alloy also has been studied. The samples of metallic composites (MMCs) with dispersed particles percentages (4% - 6% - 8% - 10% - 15% and 20%) are prepared. The effect of the particles dispersion on the mechanical properties of produced samples were carried out by tension & hardness tests. It is found that the ultimate tensile strength of the produced composites can be increased by increasing the percentages of alumina particles in the matrix of the base alloy. It becomes (232 Mpa) at (20%) of added particles. The results showed that the average hardness of prepared samples increasing with increases the alumina content. Microstructure study of prepared samples was carried out. The results showed particles location and distribution of it in the matrix of base alloy. The dissolution of Alumina particles into liquid base alloy was clear in some cases.

Keywords: base alloy, matrix, hardness, thermal properties, base metal MMCs

Procedia PDF Downloads 341
12956 Re-Engineering of Traditional Indian Wadi into Ready-to-Use High Protein Quality and Fibre Rich Chunk

Authors: Radhika Jain, Sangeeta Goomer

Abstract:

In the present study an attempt has been made to re-engineer traditional wadi into wholesome ready-to-use cereal-pulse-based chunks rich in protein quality and fibre content. Chunks were made using extrusion-dehydration combination. Two formulations i.e., whole green gram dhal with instant oats and washed green gram dhal with whole oats were formulated. These chunks are versatile in nature as they can be easily incorporated in day-to-day home-made preparations such as pulao, potato curry and kadhi. Cereal-pulse ratio was calculated using NDpCal%. Limiting amino acids such as lysine, tryptophan, methionine, cysteine and threonine were calculated for maximum amino acid profile in cereal-pulse combination. Time-temperature combination for extrusion at 130oC and dehydration at 65oC for 7 hours and 15 minutes were standardized to obtain maximum protein and fibre content. Proximate analysis such as moisture, fat and ash content were analyzed. Protein content of formulation was 62.10% and 68.50% respectively. Fibre content of formulations was 2.99% and 2.45%, respectively. Using a 5-point hedonic scale, consumer preference trials of 102 consumers were conducted and analyzed. Evaluation of chunks prepared in potato curry, kadi and pulao showed preferences for colour 82%, 87%, 86%, texture and consistency 80%, 81%, 88%, flavour and aroma 74%, 82%, 86%, after taste 70%, 75%, 86% and overall acceptability 77%, 75%, 88% respectively. High temperature inactivates antinutritional compounds such as trypsin inhibitors, lectins, saponins etc. Hence, availability of protein content was increased. Developed products were palatable and easy to prepare.

Keywords: extrusion, NDpCal%, protein quality, wadi

Procedia PDF Downloads 213
12955 Anion Exchange Nanocomposite Membrane Doped with ZnO-Nanoparticles for Direct Methanol Alkaline Fuel Cell

Authors: Phumlani Msomi, Patrick Nonjola, Patrick Ndungu, James Ramontja

Abstract:

A series of quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/ polysulfone (QPPO/PSF) blend anion exchange membrane (AEM) were successfully fabricated and characterized for methanol alkaline fuel cell application. Zinc Oxide (ZnO) nanoparticles were introduced in the polymer matrix to enhance the intrinsic properties of the AEM. To confirm successful fabrication, FT-IR spectroscopy and nuclear magnetic resonance (¹H NMR and HMBC ¹⁵N NMR) were used. The membrane properties were enhanced by the addition of ZnO nanoparticles. The addition of ZnO nanoparticles resulted to a higher ion exchange capacity (IEC) of 3.72 mmol.g⁻¹and a 30-fold ion conductivity (IC) increase of the nanocomposite due to no (zero (0)) methanol permeability at 30 °C and increased water uptake. The QPPO/PSF/2% ZnO composite retained over 80 % of its initial IC when evaluated for alkaline stability at room temperature. The maximum power output reached for the membrane electrode assembly (MEA) constructed with QPPO/PSF/2%ZnO is 69 mW.cm⁻², which is about three times more than the parent QPPO membrane. The above results indicate that QPPO/PSF-ZnO is a good candidate as an anion exchange membrane for fuel cell application.

Keywords: anion exchange membrane, fuel cell, zinc oxide, nanocomposite

Procedia PDF Downloads 257
12954 The Factors Affecting Customers’ Trust on Electronic Commerce Website of Retail Business in Bangkok

Authors: Supattra Kanchanopast

Abstract:

The purpose of this research was to identify factors that influenced the trust of e-commerce within retail businesses. In order to achieve the objectives of this research, the researcher collected data from random e-commerce users in Bangkok. The data was comprised of the results of 382 questionnaires. The data was analyzed by using descriptive statistics, which included frequency, percentages, and the standard deviation of pertinent factors. Multiple regression analysis was also used. The findings of this research revealed that the majority of the respondents were female, 25-40 years old, and graduated a bachelor degree. The respondents mostly worked in private sectors and had monthly income between 15,000-25,000 baht. The findings also indicate that information quality factors, website design factors, service quality factor, security factor and advertising factors as significant factors effecting customer trust of e-commerce in online retail. The hypotheses testing revealed that these factors in e-commerce had an effect on customer’s trust in the same direction with high level.

Keywords: e-commerce, online retail, Retail business, trust, website

Procedia PDF Downloads 181
12953 The Role of Initiator in the Synthesis of Poly(Methyl Methacrylate)-Layered Silicate Nanocomposites through Bulk Polymerization

Authors: Tsung-Yen Tsai, Naveen Bunekar, Ming Hsuan Chang, Wen-Kuang Wang, Satoshi Onda

Abstract:

The structure-property relationship and initiator effect on bulk polymerized poly(methyl methacrylate) (PMMA)–oragnomodified layered silicate nanocomposites was investigated. In this study, we used 2, 2'-azobis (4-methoxy-2,4-dimethyl valeronitrile and benzoyl peroxide initiators for bulk polymerization. The bulk polymerized nanocomposites’ morphology was investigated by X-ray diffraction and transmission electron microscopy. The type of initiator strongly influences the physiochemical properties of the polymer nanocomposite. The thermal degradation of PMMA in the presence of nanofiller was studied. 5 wt% weight loss temperature (T5d) increased as compared to pure PMMA. The peak degradation temperature increased for the nanocomposites. Differential scanning calorimetry and dynamic mechanical analysis were performed to investigate the glass transition temperature and the nature of the constrained region as the reinforcement mechanism respectively. Furthermore, the optical properties such as UV-Vis and Total Luminous Transmission of nanocomposites are examined.

Keywords: initiator, bulk polymerization, layered silicates, methyl methacrylate

Procedia PDF Downloads 276
12952 Relationship between Functional Properties and Supramolecular Structure of the Poly(Trimethylene 2,5-Furanoate) Based Multiblock Copolymers with Aliphatic Polyethers or Aliphatic Polyesters

Authors: S. Paszkiewicz, A. Zubkiewicz, A. Szymczyk, D. Pawlikowska, I. Irska, E. Piesowicz, A. Linares, T. A. Ezquerra

Abstract:

Over the last century, the world has become increasingly dependent on oil as its main source of chemicals and energy. Driven largely by the strong economic growth of India and China, demand for oil is expected to increase significantly in the coming years. This growth in demand, combined with diminishing reserves, will require the development of new, sustainable sources for fuels and bulk chemicals. Biomass is an attractive alternative feedstock, as it is widely available carbon source apart from oil and coal. Nowadays, academic and industrial research in the field of polymer materials is strongly oriented towards bio-based alternatives to petroleum-derived plastics with enhanced properties for advanced applications. In this context, 2,5-furandicarboxylic acid (FDCA), a biomass-based chemical product derived from lignocellulose, is one of the most high-potential biobased building blocks for polymers and the first candidate to replace the petro-derived terephthalic acid. FDCA has been identified as one of the top 12 chemicals in the future, which may be used as a platform chemical for the synthesis of biomass-based polyester. The aim of this study is to synthesize and characterize the multiblock copolymers containing rigid segments of poly(trimethylene 2,5-furanoate) (PTF) and soft segments of poly(tetramethylene oxide) (PTMO) with excellent elastic properties or aliphatic polyesters of polycaprolactone (PCL). Two series of PTF based copolymers, i.e., PTF-block-PTMO-T and PTF-block-PCL-T, with different content of flexible segments were synthesized by means of a two-step melt polycondensation process and characterized by various methods. The rigid segments of PTF, as well as the flexible PTMO/or PCL ones, were randomly distributed along the chain. On the basis of 1H NMR, SAXS and WAXS, DSC an DMTA results, one can conclude that both phases were thermodynamically immiscible and the values of phase transition temperatures varied with the composition of the copolymer. The copolymers containing 25, 35 and 45wt.% of flexible segments (PTMO) exhibited elastomeric property characteristics. Moreover, with respect to the flexible segments content, the temperatures corresponding to 5%, 25%, 50% and 90% mass loss as well as the values of tensile modulus decrease with the increasing content of aliphatic polyether or aliphatic polyester in the composition.

Keywords: furan based polymers, multiblock copolymers, supramolecular structure, functional properties

Procedia PDF Downloads 114
12951 Subjective Mapping Methodologies: Mapping Local Perceptions with Geographic Information Systems

Authors: A. Llopis Alvarez, D. Muller-Eie

Abstract:

Participatory GIS (geographic information systems) are designed for community mapping exercises in order to produce spatial representations of local knowledge. Ideally, participatory GIS caters to public participation through the use of spatial data in order to increase community-led policy-and decision-making. Having defined a spatial object, such as a neighborhood, subjective mapping involves attaining a description of the spatial, physical, social and psychological characteristics of that spatial object. This paper highlights an emerging appreciation of the subjective component, particularly in spatial analyses. The beliefs, feelings, and behaviors associated with an urban area reflect its sense of place for an individual or a group. It is important therefore to understand what types of beliefs, emotions, and behavioral patterns are relevant to particular resident, groups and urban scales. In this sense, resident’s emotional attachment to their urban areas motivates civic engagement and facilitates awareness of its strengths and its problems. Similarly, subjective perceptions act in complex ways to influence the formation and maintenance of social identity and quality of life. This paper reports on findings from a case study of immigrant population in Norwegian cities, their residential conditions and their relationship to quality of urban life. Cognitive mapping methodologies are used in this study to understand local perceptions of urban qualities. Thus, measures to alleviate disadvantages and improve quality of urban life are more likely to be effective when they are informed by an understanding of a place as constructed by those who live in it, meaning their subjective perceptions about it.

Keywords: mapping methodologies, participatory GIS, perceptual maps, public participation, spatial analysis, subjective perceptions

Procedia PDF Downloads 127
12950 Effect of Different Flours on the Physical and Sensorial Characteristics of Meatballs

Authors: Elif Aykin Dincer, Ozlem Kilic, Busra F. Bilgic, Mustafa Erbas

Abstract:

Stale breads and rusk flour are used traditionally in meatballs produced in Turkey as a structure enhancer. This study researches the possibilities of using retrograded wheat flour in the meatball production and compares the physical and sensorial characteristics of these meatballs with stale bread (traditional) and rusk (commercial) used meatballs. The cooking loss of meatballs produced with using retrograded flour was similar to that of commercial meatballs. These meatballs have an advantage with respect to cooking loss compared to traditional meatballs. Doses of retrograded flour from 5% to 20% led to a significant decrease in cooking loss, from 21.95% to 6.19%, and in the diameter of meatballs, from 18.60% to 12.74%, but to an increase in the thickness of meatballs, from 28.82% to 41.39%, respectively, compared to the control (0%). The springiness of the traditional meatballs was significantly higher than that of the other meatballs. This might have been due to the bread crumbs having a naturally springy structure. Moreover, the addition of retrograded flour in the meatballs significantly (P<0.05) affected the hardness, springiness and cohesiveness of the meatballs with respect to textural properties. In conclusion, it is considered that the use of 10% retrograded flour is ideal to improve the sensorial values of meatballs and the properties of their structure.

Keywords: cooking loss, flour, hardness, meatball, sensorial characteristics

Procedia PDF Downloads 273
12949 Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles

Authors: S. Levitsky

Abstract:

Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles.

Keywords: sound propagation, gas bubbles, temperature effect, polymeric liquid

Procedia PDF Downloads 287
12948 The Impact of Ozone on the Sensory Perception of Pumpkin Seeds and its Toxicity against Plodia interpunctella (Lepidoptera: Pyralidae)

Authors: Saba Goudarzi Dehrizifar, Aysan Afradi

Abstract:

The utilization of ozone treatment as a potential technique for storage pest control has gained significant attention. This approach presents an alternative to traditional chemical methods. In the current study, the mortality rates of Plodia interpunctella as a primary pest found in stored products particularly nuts, were examined after being exposed to different O3 concentration (minimum, half, and maximum) in three replicates and within 24 hours. As the concentration of O3 increased, the mortality rates of P. interpunctella also experienced a dramatic growth. A 20-member panel (men and women in different ages), formed from the society community, was selected for sensory evaluation. The pumpkin seeds samples were coded and presented randomly in identical containers. The panelists were asked to evaluate their degree of liking or disliking on a seven-point hedonic scale using descriptive categories, ranging 1-7 (1: extremely dislike, 2: very dislike, 3: dislike, 4: no difference, 5: like, 6: very like, and 7: extremely like). The results obtained from experiments on the qualitative characteristics of the studied dates through the sensory test revealed that O3 concentration did not affect their color, crispness, firmness, and overall acceptance and the half concentration of ozone on pumpkin seed had the highest consumption interest. Moreover, minimal alterations were observed in the aroma of the pumpkin seeds, which could be resolved with a short period of air exposure. Therefore, it could be concluded that the atmospheric O3 gas provided a cost-effective and environmentally friendly way for controlling the insect pests in pumpkin seeds, besides preserving their sensory and quality properties.

Keywords: zone, control, pumpkin seeds, qualitative characteristics

Procedia PDF Downloads 35
12947 Nano-Sensors: Search for New Features

Authors: I. Filikhin, B. Vlahovic

Abstract:

We focus on a novel type of detection based on electron tunneling properties of double nanoscale structures in semiconductor materials. Semiconductor heterostructures as quantum wells (QWs), quantum dots (QDs), and quantum rings (QRs) may have energy level structure of several hundred of electron confinement states. The single electron spectra of the double quantum objects (DQW, DQD, and DQR) were studied in our previous works with relation to the electron localization and tunneling between the objects. The wave function of electron may be localized in one of the QDs or be delocalized when it is spread over the whole system. The localizing-delocalizing tunneling occurs when an electron transition between both states is possible. The tunneling properties of spectra differ strongly for “regular” and “chaotic” systems. We have shown that a small violation of the geometry drastically affects localization of electron. In particular, such violations lead to the elimination of the delocalized states of the system. The same symmetry violation effect happens if electrical or magnetic fields are applied. These phenomena could be used to propose a new type of detection based on the high sensitivity of charge transport between double nanostructures and small violations of the shapes. It may have significant technological implications.

Keywords: double quantum dots, single electron levels, tunneling, electron localizations

Procedia PDF Downloads 489
12946 Effect of Marine Stress Starvation Conditions on Survival and Retention of the Properties of Potential Probiotic Bacillus Strains

Authors: Abdelkarim Mahdhi, Fdhila Kais, Faouzi Lamari, Zeineb Hmila, Fathi Kamoun, Maria Ángeles Esteban, Amina Bakhrouf

Abstract:

Pathogenic bacteria are considered to be responsible for several infectious diseases in aquaculture. To overcome diseases in fish culture, the use of antimicrobial drugs as strategy, have been adopted. The use of probiotic was a promising approach to avoid the risk associated to pathogenic bacteria. To find a biological control treatment against pathogens, we undertook this investigation to study the maintain of the probiotic properties of Bacillus sp., such as viability, adhesive ability to abiotic surface, antibacterial activity and pathogenicity/toxicity, under marine starvation conditions. Our data revealed that the tested strains maintained their capacity to inhibit pathogens in vivo and in vitro conditions. These strains maintain their adhesive capacity to polystyrene and do not demonstrate the pathogenic or toxic effect to the host. The obtained results give insight about the effect of starvation conditions on the physiological responses of these Bacillus strains that can be considered as a potential candidate’s probiotic.

Keywords: bacillus, probiotic, cell viability, starvation conditions

Procedia PDF Downloads 393
12945 Seismic Evaluation of Reinforced Concrete Buildings in Myanmar, Based on Microtremor Measurement

Authors: Khaing Su Su Than, Hibino Yo

Abstract:

Seismic evaluation is needed upon the buildings in Myanmar. Microtremor measurement was conducted in the main cities, Mandalay and Yangon. In order to evaluate the seismic properties of buildings currently under construction, seismic information was gathered for six buildings in Yangon city and four buildings in Mandalay city. The investigated buildings vary from 12m-80 m in height, and mostly public residence structures. The predominant period obtained from frequency results of the investigated buildings were given by horizontal to vertical spectral ratio (HVSR) for each building. The fundamental period results have been calculated in the form of Fourier amplitude spectra of translation along with the main structure. Based on that, the height (H)-period(T) relationship was observed as T=0.012H-0.017H in the buildings of Yangon and, observed the relationship as T=0.014H-0.019H in the buildings of Mandalay. The results showed that the relationship between height and natural period was slightly under the relationship T=0.02H that is used for Japanese reinforced concrete buildings, which indicated that the results depend on the properties and characteristics of materials used.

Keywords: HVSR, height-period relationship, microtremor, Myanmar earthquake, reinforced concrete structures

Procedia PDF Downloads 138
12944 Hierarchical Manganese and Nickel Selenide based Ultra-efficient Electrode Material for All-Solid-State Asymmetric Supercapacitors with Extended Energy Efficacy

Authors: Siddhant Srivastav, Soumyaranjan Mishra, Sumanta Kumar Meher

Abstract:

Researchers are attempting to develop extremely efficient electrochemical energy storage technologies as a result of the phenomenal advancement of portable electronic devices. Because of their improved electrical conductivity and narrower band gap, transition metal selenide-based nanostructures have piqued the interest of many researchers in this field. Based on this concept, we present a simple anion exchange hydrothermal synthesis method for synthesizing manganese and nickel based selenide (Mn/NiSe2) nanostructure for use in all-solid-state asymmetric supercapacitors. According to the comprehensive physicochemical characterizations, the material has lowly crystalline properties, a distinct porous microstructure, and a significant bonding contact between the metal and the selenium. The electrochemical investigations of the Mn/NiSe2 electrode material revealed supercapacitive charge discharge properties, excellent electro-kinetic reversibility, and minimal charge transfer resistance (Rct). Furthermore, the all-solid-state asymmetric supercapacitor device assembled using Mn/NiSe2 as positive electrode, nitrogen doped reduced graphene oxide (N-rGO) as negative electrode, and PVA-KOH gel as electrolyte/separator exhibit good redox behaviour, excellent charge-discharge properties with negligible voltage (IR) drop, and lower impedance characteristics. The solid state asymmetric supercapacitor device (Mn/NiSe2||N-rGO) demonstrated the power density of ultra-capacitors and the energy density of rechargeable batteries. Conclusively, the Mn/NiSe2 has been proposed as a potential outstanding electrode material for the next generation of all-solid-state asymmetric supercapacitors.

Keywords: anion exchange, asymmetric supercapacitor, supercapacitive charge-discharge, voltage drop

Procedia PDF Downloads 85
12943 iPSCs More Effectively Differentiate into Neurons on PLA Scaffolds with High Adhesive Properties for Primary Neuronal Cells

Authors: Azieva A. M., Yastremsky E. V., Kirillova D. A., Patsaev T. D., Sharikov R. V., Kamyshinsky R. A., Lukanina K. I., Sharikova N. A., Grigoriev T. E., Vasiliev A. L.

Abstract:

Adhesive properties of scaffolds, which predominantly depend on the chemical and structural features of their surface, play the most important role in tissue engineering. The basic requirements for such scaffolds are biocompatibility, biodegradation, high cell adhesion, which promotes cell proliferation and differentiation. In many cases, synthetic polymers scaffolds have proven advantageous because they are easy to shape, they are tough, and they have high tensile properties. The regeneration of nerve tissue still remains a big challenge for medicine, and neural stem cells provide promising therapeutic potential for cell replacement therapy. However, experiments with stem cells have their limitations, such as low level of cell viability and poor control of cell differentiation. Whereas the study of already differentiated neuronal cell culture obtained from newborn mouse brain is limited only to cell adhesion. The growth and implantation of neuronal culture requires proper scaffolds. Moreover, the polymer scaffolds implants with neuronal cells could demand specific morphology. To date, it has been proposed to use numerous synthetic polymers for these purposes, including polystyrene, polylactic acid (PLA), polyglycolic acid, and polylactide-glycolic acid. Tissue regeneration experiments demonstrated good biocompatibility of PLA scaffolds, despite the hydrophobic nature of the compound. Problem with poor wettability of the PLA scaffold surface could be overcome in several ways: the surface can be pre-treated by poly-D-lysine or polyethyleneimine peptides; roughness and hydrophilicity of PLA surface could be increased by plasma treatment, or PLA could be combined with natural fibers, such as collagen or chitosan. This work presents a study of adhesion of both induced pluripotent stem cells (iPSCs) and mouse primary neuronal cell culture on the polylactide scaffolds of various types: oriented and non-oriented fibrous nonwoven materials and sponges – with and without the effect of plasma treatment and composites with collagen and chitosan. To evaluate the effect of different types of PLA scaffolds on the neuronal differentiation of iPSCs, we assess the expression of NeuN in differentiated cells through immunostaining. iPSCs more effectively differentiate into neurons on PLA scaffolds with high adhesive properties for primary neuronal cells.

Keywords: PLA scaffold, neurons, neuronal differentiation, stem cells, polylactid

Procedia PDF Downloads 68
12942 Performance of High Efficiency Video Codec over Wireless Channels

Authors: Mohd Ayyub Khan, Nadeem Akhtar

Abstract:

Due to recent advances in wireless communication technologies and hand-held devices, there is a huge demand for video-based applications such as video surveillance, video conferencing, remote surgery, Digital Video Broadcast (DVB), IPTV, online learning courses, YouTube, WhatsApp, Instagram, Facebook, Interactive Video Games. However, the raw videos posses very high bandwidth which makes the compression a must before its transmission over the wireless channels. The High Efficiency Video Codec (HEVC) (also called H.265) is latest state-of-the-art video coding standard developed by the Joint effort of ITU-T and ISO/IEC teams. HEVC is targeted for high resolution videos such as 4K or 8K resolutions that can fulfil the recent demands for video services. The compression ratio achieved by the HEVC is twice as compared to its predecessor H.264/AVC for same quality level. The compression efficiency is generally increased by removing more correlation between the frames/pixels using complex techniques such as extensive intra and inter prediction techniques. As more correlation is removed, the chances of interdependency among coded bits increases. Thus, bit errors may have large effect on the reconstructed video. Sometimes even single bit error can lead to catastrophic failure of the reconstructed video. In this paper, we study the performance of HEVC bitstream over additive white Gaussian noise (AWGN) channel. Moreover, HEVC over Quadrature Amplitude Modulation (QAM) combined with forward error correction (FEC) schemes are also explored over the noisy channel. The video will be encoded using HEVC, and the coded bitstream is channel coded to provide some redundancies. The channel coded bitstream is then modulated using QAM and transmitted over AWGN channel. At the receiver, the symbols are demodulated and channel decoded to obtain the video bitstream. The bitstream is then used to reconstruct the video using HEVC decoder. It is observed that as the signal to noise ratio of channel is decreased the quality of the reconstructed video decreases drastically. Using proper FEC codes, the quality of the video can be restored up to certain extent. Thus, the performance analysis of HEVC presented in this paper may assist in designing the optimized code rate of FEC such that the quality of the reconstructed video is maximized over wireless channels.

Keywords: AWGN, forward error correction, HEVC, video coding, QAM

Procedia PDF Downloads 135
12941 Analytical Solutions to the N-Dimensional Schrödinger Equation with a Collective Potential Model to Study Energy Spectra Andthermodynamic Properties of Selected Diatomic Molecules

Authors: BenedictI Ita, Etido P. Inyang

Abstract:

In this work, the resolutions of the N-dimensional Schrödinger equation with the screened modified Kratzerplus inversely quadratic Yukawa potential (SMKIQYP) have been obtained with the Greene-Aldrich approximation scheme using the Nikiforov-Uvarov method. The eigenvalues and the normalized eigenfunctions are obtained. We then apply the energy spectrum to study four (HCl, N₂, NO, and CO) diatomic molecules. The results show that the energy spectra of these diatomic molecules increase as quantum numbers increase. The energy equation was also used to calculate the partition function and other thermodynamic properties. We predicted the partition function of CO and NO. To check the accuracy of our work, the special case (Modified Kratzer and screened Modified Kratzer potentials) of the collective potential energy eigenvalues agrees excellently with the existing literature.

Keywords: Schrödinger equation, Nikiforov-Uvarov method, modified screened Kratzer, inversely quadratic Yukawa potential, diatomic molecules

Procedia PDF Downloads 72
12940 Crystalline Particles Dispersed Cu-Based Metallic Glassy Composites Fabricated by Spark Plasma Sintering

Authors: Sandrine Cardinal, Jean-Marc Pelletier, Guang Xie, Florian Mercier, Florent Delmas

Abstract:

Bulk metallic glasses exhibit several superior properties, compared to their corresponding crystalline counterpart, such as high strength, high elastic limit or good corrosion resistance. Therefore they can be considered as good candidates for structural applications in many sectors. However, they are generally brittle and do not exhibit plastic deformation at room temperature. These materials are mainly obtained by rapid cooling from a liquid state to prevent crystallization, which limits their size. To overcome these two drawbacks: fragility and limited dimensions, composite metallic glass matrix reinforced by a second phase whose role is to slow crack growth are developed. Concerning the limited size of the pieces, the proposed solution is to get the material from amorphous powders by densifying under load. In this study, Cu50Zr45Al5 bulk metallic glassy matrix composites (MGMCs) containing different volume fraction (Vf) of Zr crystalline particles were manufactured by spark plasma sintering (SPS). Microstructure, thermal stability and mechanical properties of the MGMCs were investigated. Matrix of the composites remains a fully amorphous phase after consolidation at 420°C under 600 MPa. A good dispersion of the particles in the glassy matrix is obtained. Results show that the compressive strength decreases with Vf : 1670 MPa (Vf=0%) to 1300MPa (Vf=30%), the elastic modulus decreases but only slighty respectively 97.3GPa and 94.5 GPa and plasticity is improved from 0 to 4%. Fractographic investigation indicates a good bonding between amorphous and crystalline particles. In conclusion, present study has demonstrated that SPS method is useful for the synthesis of the bulk glassy composites. Large controlled microstructure specimens with interesting ductility can be obtained compared with others methods.

Keywords: composite, mechanical properties, metallic glasses, spark plasma sintering

Procedia PDF Downloads 266