Search results for: underactuated systems
8947 Reinventing Education Systems: Towards an Approach Based on Universal Values and Digital Technologies
Authors: Ilyes Athimni, Mouna Bouzazi, Mongi Boulehmi, Ahmed Ferchichi
Abstract:
The principles of good governance, universal values, and digitization are among the tools to fight corruption and improve the quality of service delivery. In recent years, these tools have become one of the most controversial topics in the field of education and a concern of many international organizations and institutions against the problem of corruption. Corruption in the education sector, particularly in higher education, has negative impacts on the quality of education systems and on the quality of administrative or educational services. Currently, the health crisis due to the spread of the COVID-19 pandemic reveals the difficulties encountered by education systems in most countries of the world. Due to the poor governance of these systems, many educational institutions were unable to continue working remotely. To respond to these problems encountered by most education systems in many countries of the world, our initiative is to propose a methodology to reinvent education systems based on global values and digital technologies. This methodology includes a work strategy for educational institutions, whether in the provision of administrative services or in the teaching method, based on information and communication technologies (ICTs), intelligence artificial, and intelligent agents. In addition, we will propose a supervisory law that will be implemented and monitored by intelligent agents to improve accountability, transparency, and accountability in educational institutions. On the other hand, we will implement and evaluate a field experience by applying the proposed methodology in the operation of an educational institution and comparing it to the traditional methodology through the results of teaching an educational program. With these specifications, we can reinvent quality education systems. We also expect the results of our proposal to play an important role at local, regional, and international levels in motivating governments of countries around the world to change their university governance policies.Keywords: artificial intelligence, corruption in education, distance learning, education systems, ICTs, intelligent agents, good governance
Procedia PDF Downloads 2138946 Optimization of Solar Tracking Systems
Authors: A. Zaher, A. Traore, F. Thiéry, T. Talbert, B. Shaer
Abstract:
In this paper, an intelligent approach is proposed to optimize the orientation of continuous solar tracking systems on cloudy days. Considering the weather case, the direct sunlight is more important than the diffuse radiation in case of clear sky. Thus, the panel is always pointed towards the sun. In case of an overcast sky, the solar beam is close to zero, and the panel is placed horizontally to receive the maximum of diffuse radiation. Under partly covered conditions, the panel must be pointed towards the source that emits the maximum of solar energy and it may be anywhere in the sky dome. Thus, the idea of our approach is to analyze the images, captured by ground-based sky camera system, in order to detect the zone in the sky dome which is considered as the optimal source of energy under cloudy conditions. The proposed approach is implemented using experimental setup developed at PROMES-CNRS laboratory in Perpignan city (France). Under overcast conditions, the results were very satisfactory, and the intelligent approach has provided efficiency gains of up to 9% relative to conventional continuous sun tracking systems.Keywords: clouds detection, fuzzy inference systems, images processing, sun trackers
Procedia PDF Downloads 1938945 Dynamic Performance Analysis of Distribution/ Sub-Transmission Networks with High Penetration of PV Generation
Authors: Cristian F.T. Montenegro, Luís F. N. Lourenço, Maurício B. C. Salles, Renato M. Monaro
Abstract:
More PV systems have been connected to the electrical network each year. As the number of PV systems increases, some issues affecting grid operations have been identified. This paper studied the impacts related to changes in solar irradiance on a distribution/sub-transmission network, considering variations due to moving clouds and daily cycles. Using MATLAB/Simulink software, a solar farm of 30 MWp was built and then implemented to a test network. From simulations, it has been determined that irradiance changes can have a significant impact on the grid by causing voltage fluctuations outside the allowable thresholds. This work discussed some local control strategies and grid reinforcements to mitigate the negative effects of the irradiance changes on the grid.Keywords: reactive power control, solar irradiance, utility-scale PV systems, voltage fluctuations
Procedia PDF Downloads 4608944 Methodological Aspect of Emergy Accounting in Co-Production Branching Systems
Authors: Keshab Shrestha, Hung-Suck Park
Abstract:
Emergy accounting of the systems networks is guided by a definite rule called ‘emergy algebra’. The systems networks consist of two types of branching. These are the co-product branching and split branching. The emergy accounting procedure for both the branching types is different. According to the emergy algebra, each branch in the co-product branching has different transformity values whereas the split branching has the same transformity value. After the transformity value of each branch is determined, the emergy is calculated by multiplying this with the energy. The aim of this research is to solve the problems in determining the transformity values in the co-product branching through the introduction of a new methodology, the modified physical quantity method. Initially, the existing methodologies for emergy accounting in the co-product branching is discussed and later, the modified physical quantity method is introduced with a case study of the Eucalyptus pulp production. The existing emergy accounting methodologies in the co-product branching has wrong interpretations with incorrect emergy calculations. The modified physical quantity method solves those problems of emergy accounting in the co-product branching systems. The transformity value calculated for each branch is different and also applicable in the emergy calculations. The methodology also strictly follows the emergy algebra rules. This new modified physical quantity methodology is a valid approach in emergy accounting particularly in the multi-production systems networks.Keywords: co-product branching, emergy accounting, emergy algebra, modified physical quantity method, transformity value
Procedia PDF Downloads 2928943 DNA Multiplier: A Design Architecture of a Multiplier Circuit Using DNA Molecules
Authors: Hafiz Md. Hasan Babu, Khandaker Mohammad Mohi Uddin, Nitish Biswas, Sarreha Tasmin Rikta, Nuzmul Hossain Nahid
Abstract:
Nanomedicine and bioengineering use biological systems that can perform computing operations. In a biocomputational circuit, different types of biomolecules and DNA (Deoxyribose Nucleic Acid) are used as active components. DNA computing has the capability of performing parallel processing and a large storage capacity that makes it diverse from other computing systems. In most processors, the multiplier is treated as a core hardware block, and multiplication is one of the time-consuming and lengthy tasks. In this paper, cost-effective DNA multipliers are designed using algorithms of molecular DNA operations with respect to conventional ones. The speed and storage capacity of a DNA multiplier are also much higher than a traditional silicon-based multiplier.Keywords: biological systems, DNA multiplier, large storage, parallel processing
Procedia PDF Downloads 2178942 Cultivating Social-Ecological Resilience, Harvesting Biocultural Resistance in Southern Andes
Authors: Constanza Monterrubio-Solis, Jose Tomas Ibarra
Abstract:
The fertile interdependence of social-ecological systems reveals itself in the interactions between native forests and seeds, home gardens, kitchens, foraging activities, local knowledge, and food practices, creating particular flavors and food meanings as part of cultural identities within territories. Resilience in local-food systems, from a relational perspective, can be understood as the balance between persistence and adaptability to change. Food growing, preparation, and consumption are constantly changing and adapting as expressions of agency of female and male indigenous peoples and peasants. This paper explores local food systems’ expressions of resilience in the la Araucanía region of Chile, namely: diversity, redundancy, buffer capacity, modularity, self-organization, governance, learning, equity, and decision-making. Applying ethnographic research methods (participant observation, focus groups, and semi-structured interviews), this work reflects on the experience developed through work with Mapuche women cultivating home gardens in the region since 2012; it looks to material and symbolic elements of resilience in the local indigenous food systems. Local food systems show indeed indicators of social-ecological resilience. The biocultural memory is expressed in affection to particular flavors and recipes, the cultural importance of seeds and reciprocity networks, as well as an accurate knowledge about the indicators of the seasons and weather, which have allowed local food systems to thrive with a strong cultural foundation. Furthermore, these elements turn into biocultural resistance in the face of the current institutional pressures for rural specialization, processes of cultural assimilation such as agroecosystems and diet homogenization, as well as structural threats towards the diversity and freedom of native seeds. Thus, the resilience-resistance dynamic shown by the social-ecological systems of the southern Andes is daily expressed in the local food systems and flavors and is key for diverse and culturally sound social-ecological health.Keywords: biocultural heritage, indigenous food systems, social-ecological resilience, southern Andes
Procedia PDF Downloads 1368941 Characterization of Solar Panel Efficiency Using Sun Tracking Device and Cooling System
Authors: J. B. G. Ibarra, J. M. A. Gagui, E. J. T. Jonson, J. A. V. Lim
Abstract:
This paper focused on studying the performance of the solar panels that were equipped with water-spray cooling system, solar tracking system, and combination of both systems. The efficiencies were compared with the solar panels without any efficiency improvement technique. The efficiency of each setup was computed on an hourly basis every day for a month. The study compared the efficiencies and combined systems that significantly improved at a specific time of the day. The data showed that the solar tracking system had the highest efficiency during 6:00 AM to 7:45 AM. Then after 7:45 AM, the combination of both solar tracking and water-spray cooling system was the most efficient to use up to 12:00 NN. Meanwhile, from 12:00 NN to 12:45 PM, the water-spray cooling system had the significant contribution on efficiency. From 12:45 PM up to 4:30 PM, the combination of both systems was the most efficient, and lastly, from 4:30 PM to 6:00 PM, the solar tracking system was the best to use. The study intended to use solar tracking or water-spray cooling system or combined systems alternately to improve the solar panel efficiency on a specific time of the day.Keywords: solar panel efficiency, solar panel efficiency technique, solar tracking system, water-spray cooling system
Procedia PDF Downloads 1648940 Application of Supervised Deep Learning-based Machine Learning to Manage Smart Homes
Authors: Ahmed Al-Adaileh
Abstract:
Renewable energy sources, domestic storage systems, controllable loads and machine learning technologies will be key components of future smart homes management systems. An energy management scheme that uses a Deep Learning (DL) approach to support the smart home management systems, which consist of a standalone photovoltaic system, storage unit, heating ventilation air-conditioning system and a set of conventional and smart appliances, is presented. The objective of the proposed scheme is to apply DL-based machine learning to predict various running parameters within a smart home's environment to achieve maximum comfort levels for occupants, reduced electricity bills, and less dependency on the public grid. The problem is using Reinforcement learning, where decisions are taken based on applying the Continuous-time Markov Decision Process. The main contribution of this research is the proposed framework that applies DL to enhance the system's supervised dataset to offer unlimited chances to effectively support smart home systems. A case study involving a set of conventional and smart appliances with dedicated processing units in an inhabited building can demonstrate the validity of the proposed framework. A visualization graph can show "before" and "after" results.Keywords: smart homes systems, machine learning, deep learning, Markov Decision Process
Procedia PDF Downloads 2028939 An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip
Authors: Sina Saadati
Abstract:
Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems.Keywords: task scheduling, MOSOC, artificial neural network, machine learning, architecture of computers, artificial intelligence
Procedia PDF Downloads 1038938 Formulation and Evaluation of TDDS for Sustained Release Ondansetron HCL Patches
Authors: Baljinder Singh, Navneet Sharma
Abstract:
The skin can be used as the site for drug administration for continuous transdermal drug infusion into the systemic circulation. For the continuous diffusion/penetration of the drugs through the intact skin surface membrane-moderated systems, matrix dispersion type systems, adhesive diffusion controlled systems and micro reservoir systems have been developed. Various penetration enhancers are used for the drug diffusion through skin. In matrix dispersion type systems, the drug is dispersed in the solvent along with the polymers and solvent allowed to evaporate forming a homogeneous drug-polymer matrix. Matrix type systems were developed in the present study. In the present work, an attempt has been made to develop a matrix-type transdermal therapeutic system comprising of ondansetron-HCl with different ratios of hydrophilic and hydrophobic polymeric combinations using solvent evaporation technique. The physicochemical compatibility of the drug and the polymers was studied by infrared spectroscopy. The results obtained showed no physical-chemical incompatibility between the drug and the polymers. The patches were further subjected to various physical evaluations along with the in-vitro permeation studies using rat skin. On the basis of results obtained form the in vitro study and physical evaluation, the patches containing hydrophilic polymers i.e. polyvinyl alcohol and poly vinyl pyrrolidone with oleic acid as the penetration enhancer(5%) were considered as suitable for large scale manufacturing with a backing layer and a suitable adhesive membrane.Keywords: transdermal drug delivery, penetration enhancers, hydrophilic and hydrophobic polymers, ondansetron HCl
Procedia PDF Downloads 3228937 3-D Visualization and Optimization for SISO Linear Systems Using Parametrization of Two-Stage Compensator Design
Authors: Kazuyoshi Mori, Keisuke Hashimoto
Abstract:
In this paper, we consider the two-stage compensator designs of SISO plants. As an investigation of the characteristics of the two-stage compensator designs, which is not well investigated yet, of SISO plants, we implement three dimensional visualization systems of output signals and optimization system for SISO plants by the parametrization of stabilizing controllers based on the two-stage compensator design. The system runs on Mathematica by using “Three Dimensional Surface Plots,” so that the visualization can be interactively manipulated by users. In this paper, we use the discrete-time LTI system model. Even so, our approach is the factorization approach, so that the result can be applied to many linear models.Keywords: linear systems, visualization, optimization, Mathematica
Procedia PDF Downloads 2988936 [Keynote]: No-Trust-Zone Architecture for Securing Supervisory Control and Data Acquisition
Authors: Michael Okeke, Andrew Blyth
Abstract:
Supervisory Control And Data Acquisition (SCADA) as the state of the art Industrial Control Systems (ICS) are used in many different critical infrastructures, from smart home to energy systems and from locomotives train system to planes. Security of SCADA systems is vital since many lives depend on it for daily activities and deviation from normal operation could be disastrous to the environment as well as lives. This paper describes how No-Trust-Zone (NTZ) architecture could be incorporated into SCADA Systems in order to reduce the chances of malicious intent. The architecture is made up of two distinctive parts which are; the field devices such as; sensors, PLCs pumps, and actuators. The second part of the architecture is designed following lambda architecture, which is made up of a detection algorithm based on Particle Swarm Optimization (PSO) and Hadoop framework for data processing and storage. Apache Spark will be a part of the lambda architecture for real-time analysis of packets for anomalies detection.Keywords: industrial control system (ics, no-trust-zone (ntz), particle swarm optimisation (pso), supervisory control and data acquisition (scada), swarm intelligence (SI)
Procedia PDF Downloads 3458935 Integrated Teaching of Hardware Courses for the Undergraduates of Computer Science and Engineering to Attain Focused Outcomes
Authors: Namrata D. Hiremath, Mahalaxmi Bhille, P. G. Sunitha Hiremath
Abstract:
Computer systems play an integral role in all facets of the engineering profession. This calls for an understanding of the processor-level components of computer systems, their design and operation, and their impact on the overall performance of the systems. Systems users are always in need of faster, more powerful, yet cheaper computer systems. The focus of Computer Science engineering graduates is inclined towards software oriented base. To be an efficient programmer there is a need to understand the role of hardware architecture towards the same. It is essential for the students of Computer Science and Engineering to know the basic building blocks of any computing device and how the digital principles can be used to build them. Hence two courses Digital Electronics of 3 credits, which is associated with lab of 1.5 credits and Computer Organization of 5 credits, were introduced at the sophomore level. Activity was introduced with the objective to teach the hardware concepts to the students of Computer science engineering through structured lab. The students were asked to design and implement a component of a computing device using MultiSim simulation tool and build the same using hardware components. The experience of the activity helped the students to understand the real time applications of the SSI and MSI components. The impact of the activity was evaluated and the performance was measured. The paper explains the achievement of the ABET outcomes a, c and k.Keywords: digital, computer organization, ABET, structured enquiry, course activity
Procedia PDF Downloads 5018934 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks
Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin
Abstract:
This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.Keywords: hybrid fault diagnosis, dynamic neural networks, nonlinear systems, fault tolerant observer
Procedia PDF Downloads 4018933 Reconsidering Taylor’s Law with Chaotic Population Dynamical Systems
Authors: Yuzuru Mitsui, Takashi Ikegami
Abstract:
The exponents of Taylor’s law in deterministic chaotic systems are computed, and their meanings are intensively discussed. Taylor’s law is the scaling relationship between the mean and variance (in both space and time) of population abundance, and this law is known to hold in a variety of ecological time series. The exponents found in the temporal Taylor’s law are different from those of the spatial Taylor’s law. The temporal Taylor’s law is calculated on the time series from the same locations (or the same initial states) of different temporal phases. However, with the spatial Taylor’s law, the mean and variance are calculated from the same temporal phase sampled from different places. Most previous studies were done with stochastic models, but we computed the temporal and spatial Taylor’s law in deterministic systems. The temporal Taylor’s law evaluated using the same initial state, and the spatial Taylor’s law was evaluated using the ensemble average and variance. There were two main discoveries from this work. First, it is often stated that deterministic systems tend to have the value two for Taylor’s exponent. However, most of the calculated exponents here were not two. Second, we investigated the relationships between chaotic features measured by the Lyapunov exponent, the correlation dimension, and other indexes with Taylor’s exponents. No strong correlations were found; however, there is some relationship in the same model, but with different parameter values, and we will discuss the meaning of those results at the end of this paper.Keywords: chaos, density effect, population dynamics, Taylor’s law
Procedia PDF Downloads 1748932 The Benefits of Security Culture for Improving Physical Protection Systems at Detection and Radiation Measurement Laboratory
Authors: Ari S. Prabowo, Nia Febriyanti, Haryono B. Santosa
Abstract:
Security function that is called as Physical Protection Systems (PPS) has functions to detect, delay and response. Physical Protection Systems (PPS) in Detection and Radiation Measurement Laboratory needs to be improved continually by using internal resources. The nuclear security culture provides some potentials to support this research. The study starts by identifying the security function’s weaknesses and its strengths of security culture as a purpose. Secondly, the strengths of security culture are implemented in the laboratory management. Finally, a simulation was done to measure its effectiveness. Some changes were happened in laboratory personnel behaviors and procedures. All became more prudent. The results showed a good influence of nuclear security culture in laboratory security functions.Keywords: laboratory, physical protection system, security culture, security function
Procedia PDF Downloads 1858931 A Proposed Framework for Software Redocumentation Using Distributed Data Processing Techniques and Ontology
Authors: Laila Khaled Almawaldi, Hiew Khai Hang, Sugumaran A. l. Nallusamy
Abstract:
Legacy systems are crucial for organizations, but their intricacy and lack of documentation pose challenges for maintenance and enhancement. Redocumentation of legacy systems is vital for automatically or semi-automatically creating documentation for software lacking sufficient records. It aims to enhance system understandability, maintainability, and knowledge transfer. However, existing redocumentation methods need improvement in data processing performance and document generation efficiency. This stems from the necessity to efficiently handle the extensive and complex code of legacy systems. This paper proposes a method for semi-automatic legacy system re-documentation using semantic parallel processing and ontology. Leveraging parallel processing and ontology addresses current challenges by distributing the workload and creating documentation with logically interconnected data. The paper outlines challenges in legacy system redocumentation and suggests a method of redocumentation using parallel processing and ontology for improved efficiency and effectiveness.Keywords: legacy systems, redocumentation, big data analysis, parallel processing
Procedia PDF Downloads 468930 Application of Axiomatic Design in Industrial Control and Automation Software
Authors: Aydin Homay, Mario de Sousa, Martin Wollschlaeger
Abstract:
Axiomatic design is a system design methodology that systematically analyses the transformation of customer needs into functional requirements, design parameters, and process variables. This approach aims to create high-quality product or system designs by adhering to specific design principles or axioms, namely, the independence and information axiom. The application of axiomatic design in the design of industrial control and automation software systems could be challenging due to the high flexibility exposed by the software system and the coupling enforced by the hardware part. This paper aims to present how to use axiomatic design for designing industrial control and automation software systems and how to satisfy the independence axiom within these tightly coupled systems.Keywords: axiomatic design, decoupling, uncoupling, automation
Procedia PDF Downloads 528929 Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration
Authors: A. Ghodbane, M. Saad, J. F. Boland, C. Thibeault
Abstract:
Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model.Keywords: actuators’ faults, fault detection and diagnosis, fault tolerant flight control, sliding mode control, geometric approach for fault reconstruction, Lyapunov stability
Procedia PDF Downloads 4188928 Markov Characteristics of the Power Line Communication Channels in China
Authors: Ming-Yue Zhai
Abstract:
Due to the multipath and pulse noise nature, power line communications(PLC) channel can be modelled as a memory one with the finite states Markov model(FSMC). As the most important parameter modelling a Markov channel,the memory order in an FSMC is not solved in PLC systems yet. In the paper, the mutual information is used as a measure of the dependence between the different symbols, treated as the received SNA or amplitude of the current channel symbol or that of previous symbols. The joint distribution probabilities of the envelopes in PLC systems are computed based on the multi-path channel model, which is commonly used in PLC. we confirm that given the information of the symbol immediately preceding the current one, any other previous symbol is independent of the current one in PLC systems, which means the PLC channels is a Markov chain with the first-order. The field test is also performed to model the received OFDM signals with the help of AR model. The results show that the first-order AR model is enough to model the fading channel in PLC systems, which means the amount of uncertainty remaining in the current symbol should be negligible, given the information corresponding to the immediately preceding one.Keywords: power line communication, channel model, markovian, information theory, first-order
Procedia PDF Downloads 4128927 Backstepping Design and Fractional Differential Equation of Chaotic System
Authors: Ayub Khan, Net Ram Garg, Geeta Jain
Abstract:
In this paper, backstepping method is proposed to synchronize two fractional-order systems. The simulation results show that this method can effectively synchronize two chaotic systems.Keywords: backstepping method, fractional order, synchronization, chaotic system
Procedia PDF Downloads 4588926 Study on the Integration Schemes and Performance Comparisons of Different Integrated Solar Combined Cycle-Direct Steam Generation Systems
Authors: Liqiang Duan, Ma Jingkai, Lv Zhipeng, Haifan Cai
Abstract:
The integrated solar combined cycle (ISCC) system has a series of advantages such as increasing the system power generation, reducing the cost of solar power generation, less pollutant and CO2 emission. In this paper, the parabolic trough collectors with direct steam generation (DSG) technology are considered to replace the heat load of heating surfaces in heat regenerator steam generation (HRSG) of a conventional natural gas combined cycle (NGCC) system containing a PG9351FA gas turbine and a triple pressure HRSG with reheat. The detailed model of the NGCC system is built in ASPEN PLUS software and the parabolic trough collectors with DSG technology is modeled in EBSILON software. ISCC-DSG systems with the replacement of single, two, three and four heating surfaces are studied in this paper. Results show that: (1) the ISCC-DSG systems with the replacement heat load of HPB, HPB+LPE, HPE2+HPB+HPS, HPE1+HPE2+ HPB+HPS are the best integration schemes when single, two, three and four stages of heating surfaces are partly replaced by the parabolic trough solar energy collectors with DSG technology. (2) Both the changes of feed water flow and the heat load of the heating surfaces in ISCC-DSG systems with the replacement of multi-stage heating surfaces are smaller than those in ISCC-DSG systems with the replacement of single heating surface. (3) ISCC-DSG systems with the replacement of HPB+LPE heating surfaces can increase the solar power output significantly. (4) The ISCC-DSG systems with the replacement of HPB heating surfaces has the highest solar-thermal-to-electricity efficiency (47.45%) and the solar radiation energy-to-electricity efficiency (30.37%), as well as the highest exergy efficiency of solar field (33.61%).Keywords: HRSG, integration scheme, parabolic trough collectors with DSG technology, solar power generation
Procedia PDF Downloads 2538925 Video Based Automatic License Plate Recognition System
Authors: Ali Ganoun, Wesam Algablawi, Wasim BenAnaif
Abstract:
Video based traffic surveillance based on License Plate Recognition (LPR) system is an essential part for any intelligent traffic management system. The LPR system utilizes computer vision and pattern recognition technologies to obtain traffic and road information by detecting and recognizing vehicles based on their license plates. Generally, the video based LPR system is a challenging area of research due to the variety of environmental conditions. The LPR systems used in a wide range of commercial applications such as collision warning systems, finding stolen cars, controlling access to car parks and automatic congestion charge systems. This paper presents an automatic LPR system of Libyan license plate. The performance of the proposed system is evaluated with three video sequences.Keywords: license plate recognition, localization, segmentation, recognition
Procedia PDF Downloads 4648924 AI Ethical Values as Dependent on the Role and Perspective of the Ethical AI Code Founder- A Mapping Review
Authors: Moshe Davidian, Shlomo Mark, Yotam Lurie
Abstract:
With the rapid development of technology and the concomitant growth in the capability of Artificial Intelligence (AI) systems and their power, the ethical challenges involved in these systems are also evolving and increasing. In recent years, various organizations, including governments, international institutions, professional societies, civic organizations, and commercial companies, have been choosing to address these various challenges by publishing ethical codes for AI systems. However, despite the apparent agreement that AI should be “ethical,” there is debate about the definition of “ethical artificial intelligence.” This study investigates the various AI ethical codes and their key ethical values. From the vast collection of codes that exist, it analyzes and compares 25 ethical codes that were found to be representative of different types of organizations. In addition, as part of its literature review, the study overviews data collected in three recent reviews of AI codes. The results of the analyses demonstrate a convergence around seven key ethical values. However, the key finding is that the different AI ethical codes eventually reflect the type of organization that designed the code; i.e., the organizations’ role as regulator, user, or developer affects the view of what ethical AI is. The results show a relationship between the organization’s role and the dominant values in its code. The main contribution of this study is the development of a list of the key values for all AI systems and specific values that need to impact the development and design of AI systems, but also allowing for differences according to the organization for which the system is being developed. This will allow an analysis of AI values in relation to stakeholders.Keywords: artificial intelligence, ethical codes, principles, values
Procedia PDF Downloads 1078923 CFD Prediction of the Round Elbow Fitting Loss Coefficient
Authors: Ana Paula P. dos Santos, Claudia R. Andrade, Edson L. Zaparoli
Abstract:
Pressure loss in ductworks is an important factor to be considered in design of engineering systems such as power-plants, refineries, HVAC systems to reduce energy costs. Ductwork can be composed by straight ducts and different types of fittings (elbows, transitions, converging and diverging tees and wyes). Duct fittings are significant sources of pressure loss in fluid distribution systems. Fitting losses can be even more significant than equipment components such as coils, filters, and dampers. At the present work, a conventional 90o round elbow under turbulent incompressible airflow is studied. Mass, momentum, and k-e turbulence model equations are solved employing the finite volume method. The SIMPLE algorithm is used for the pressure-velocity coupling. In order to validate the numerical tool, the elbow pressure loss coefficient is determined using the same conditions to compare with ASHRAE database. Furthermore, the effect of Reynolds number variation on the elbow pressure loss coefficient is investigated. These results can be useful to perform better preliminary design of air distribution ductworks in air conditioning systems.Keywords: duct fitting, pressure loss, elbow, thermodynamics
Procedia PDF Downloads 3918922 Artificial Intelligence and Distributed System Computing: Application and Practice in Real Life
Authors: Lai Junzhe, Wang Lihao, Burra Venkata Durga Kumar
Abstract:
In recent years, due to today's global technological advances, big data and artificial intelligence technologies have been widely used in various industries and fields, playing an important role in reducing costs and increasing efficiency. Among them, artificial intelligence has derived another branch in its own continuous progress and the continuous development of computer personnel, namely distributed artificial intelligence computing systems. Distributed AI is a method for solving complex learning, decision-making, and planning problems, characterized by the ability to take advantage of large-scale computation and the spatial distribution of resources, and accordingly, it can handle problems with large data sets. Nowadays, distributed AI is widely used in military, medical, and human daily life and brings great convenience and efficient operation to life. In this paper, we will discuss three areas of distributed AI computing systems in vision processing, blockchain, and smart home to introduce the performance of distributed systems and the role of AI in distributed systems.Keywords: distributed system, artificial intelligence, blockchain, IoT, visual information processing, smart home
Procedia PDF Downloads 1138921 Obtainment of Systems with Efavirenz and Lamellar Double Hydroxide as an Alternative for Solubility Improvement of the Drug
Authors: Danilo A. F. Fontes, Magaly A. M.Lyra, Maria L. C. Moura, Leslie R. M. Ferraz, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim, Giovanna C. R. M. Schver, Ping I. Lee, Severino Alves-Júnior, José L. Soares-Sobrinho, Pedro J. Rolim-Neto
Abstract:
Efavirenz (EFV) is a first-choice drug in antiretroviral therapy with high efficacy in the treatment of infection by Human Immunodeficiency Virus, which causes Acquired Immune Deficiency Syndrome (AIDS). EFV has low solubility in water resulting in a decrease in the dissolution rate and, consequently, in its bioavailability. Among the technological alternatives to increase solubility, the Lamellar Double Hydroxides (LDH) have been applied in the development of systems with poorly water-soluble drugs. The use of analytical techniques such as X-Ray Diffraction (XRD), Infrared Spectroscopy (IR) and Differential Scanning Calorimetry (DSC) allowed the elucidation of drug interaction with the lamellar compounds. The objective of this work was to characterize and develop the binary systems with EFV and LDH in order to increase the solubility of the drug. The LDH-CaAl was synthesized by the method of co-precipitation from salt solutions of calcium nitrate and aluminum nitrate in basic medium. The systems EFV-LDH and their physical mixtures (PM) were obtained at different concentrations (5-60% of EFV) using the solvent technique described by Takahashi & Yamaguchi (1991). The characterization of the systems and the PM’s was performed by XRD techniques, IR, DSC and dissolution test under non-sink conditions. The results showed improvements in the solubility of EFV when associated with LDH, due to a possible change in its crystal structure and formation of an amorphous material. From the DSC results, one could see that the endothermic peak at 173°C, temperature that correspond to the melting process of EFZ in the crystal form, was present in the PM results. For the EFZ-LDH systems (with 5, 10 and 30% of drug loading), this peak was not observed. XRD profiles of the PM showed well-defined peaks for EFV. Analyzing the XRD patterns of the systems, it was found that the XRD profiles of all the systems showed complete attenuation of the characteristic peaks of the crystalline form of EFZ. The IR technique showed that, in the results of the PM, there was the appearance of one band and overlap of other bands, while the IR results of the systems with 5, 10 and 30% drug loading showed the disappearance of bands and a few others with reduced intensity. The dissolution test under non-sink conditions showed that systems with 5, 10 and 30% drug loading promoted a great increase in the solubility of EFV, but the system with 10% of drug loading was the only one that could keep substantial amount of drug in solution at different pHs.Keywords: Efavirenz, Lamellar Double Hydroxides, Pharmaceutical Techonology, Solubility
Procedia PDF Downloads 5848920 Using Seismic Base Isolation Systems in High-Rise Hospital Buildings and a Hybrid Proposal
Authors: Elif Bakkaloglu, Necdet Torunbalci
Abstract:
The fact of earthquakes in Turkiye is an inevitable natural disaster. Therefore, buildings must be prepared for this natural hazard. Especially in hospital buildings, earthquake resistance is an essential point because hospitals are one of the first places where people come after an earthquake. Although hospital buildings are more suitable for horizontal architecture, it is necessary to construct and expand multi-storey hospital buildings due to difficulties in finding suitable places as a result of excessive urbanization, difficulties in obtaining appropriate size land and decrease in suitable places and increase in land values. In Turkiye, using seismic isolators in public hospitals, which are placed in first-degree earthquake zone and have more than 100 beds, is made obligatory by general instruction. As a result of this decision, it may sometimes be necessary to construct seismic isolated multi-storey hospital buildings in cities where those problems are experienced. Although widespread use of seismic isolators in Japan, there are few multi-storey buildings in which seismic isolators are used in Turkiye. As it is known, base isolation systems are the most effective methods of earthquake resistance, as number of floors increases, center of gravity moves away from base in multi-storey buildings, increasing the overturning effect and limiting the use of these systems. In this context, it is aimed to investigate structural systems of multi-storey buildings which built using seismic isolation methods in the World. In addition to this, a working principle is suggested for disseminating seismic isolators in multi-storey hospital buildings. The results to be obtained from the study will guide architects who design multi-storey hospital buildings in their architectural designs and engineers in terms of structural system design.Keywords: earthquake, energy absorbing systems, hospital, seismic isolation systems
Procedia PDF Downloads 1518919 Optimal Solutions for Real-Time Scheduling of Reconfigurable Embedded Systems Based on Neural Networks with Minimization of Power Consumption
Authors: Ghofrane Rehaiem, Hamza Gharsellaoui, Samir Benahmed
Abstract:
In this study, Artificial Neural Networks (ANNs) were used for modeling the parameters that allow the real-time scheduling of embedded systems under resources constraints designed for real-time applications running. The objective of this work is to implement a neural networks based approach for real-time scheduling of embedded systems in order to handle real-time constraints in execution scenarios. In our proposed approach, many techniques have been proposed for both the planning of tasks and reducing energy consumption. In fact, a combination of Dynamic Voltage Scaling (DVS) and time feedback can be used to scale the frequency dynamically adjusting the operating voltage. Indeed, we present in this paper a hybrid contribution that handles the real-time scheduling of embedded systems, low power consumption depending on the combination of DVS and Neural Feedback Scheduling (NFS) with the energy Priority Earlier Deadline First (PEDF) algorithm. Experimental results illustrate the efficiency of our original proposed approach.Keywords: optimization, neural networks, real-time scheduling, low-power consumption
Procedia PDF Downloads 3718918 Application of Hybrid Honey Bees Mating Optimization Algorithm in Multiuser Detection of Wireless Communication Systems
Abstract:
Wireless communication systems have changed dramatically and shown spectacular evolution over the past two decades. These radio technologies are engaged in a quest endless high-speed transmission coupled to a constant need to improve transmission quality. Various radio communication systems being developed use code division multiple access (CDMA) technique. This work analyses a hybrid honey bees mating optimization algorithm (HBMO) applied to multiuser detection (MuD) in CDMA communication systems. The HBMO is a swarm-based optimization algorithm, which simulates the mating process of real honey bees. We apply a hybridization of HBMO with simulated annealing (SA) in order to improve the solution generated by the HBMO. Simulation results show that the detection based on Hybrid HBMO, in term of bit error rate (BER), is viable option when compared with the classic detectors from literature under Rayleigh flat fading channel.Keywords: BER, DS-CDMA multiuser detection, genetic algorithm, hybrid HBMO, simulated annealing
Procedia PDF Downloads 435