Search results for: time series data mining
38533 Association Between Short-term NOx Exposure and Asthma Exacerbations in East London: A Time Series Regression Model
Authors: Hajar Hajmohammadi, Paul Pfeffer, Anna De Simoni, Jim Cole, Chris Griffiths, Sally Hull, Benjamin Heydecker
Abstract:
Background: There is strong interest in the relationship between short-term air pollution exposure and human health. Most studies in this field focus on serious health effects such as death or hospital admission, but air pollution exposure affects many people with less severe impacts, such as exacerbations of respiratory conditions. A lack of quantitative analysis and inconsistent findings suggest improved methodology is needed to understand these effectsmore fully. Method: We developed a time series regression model to quantify the relationship between daily NOₓ concentration and Asthma exacerbations requiring oral steroids from primary care settings. Explanatory variables include daily NOₓ concentration measurements extracted from 8 available background and roadside monitoring stations in east London and daily ambient temperature extracted for London City Airport, located in east London. Lags of NOx concentrations up to 21 days (3 weeks) were used in the model. The dependent variable was the daily number of oral steroid courses prescribed for GP registered patients with asthma in east London. A mixed distribution model was then fitted to the significant lags of the regression model. Result: Results of the time series modelling showed a significant relationship between NOₓconcentrations on each day and the number of oral steroid courses prescribed in the following three weeks. In addition, the model using only roadside stations performs better than the model with a mixture of roadside and background stations.Keywords: air pollution, time series modeling, public health, road transport
Procedia PDF Downloads 14238532 Mining and Ecological Events and its Impact on the Genesis and Geo-Distribution of Ebola Outbreaks in Africa
Authors: E Tambo, O. O. Olalubi, E. C. Ugwu, J. Y. Ngogang
Abstract:
Despite the World Health Organization (WHO) declaration of international health emergency concern, the status quo of responses and efforts to stem the worst-recorded Ebola epidemic Ebola outbreak is still precariously inadequate in most of the affected in West. Mining natural resources have been shown to play a key role in both motivating and fuelling ethnic, civil and armed conflicts that have plagued a number of African countries over the last decade. Revenues from the exploitation of natural resources are not only used in sustaining the national economy but also armies, personal enrichment and building political support. Little is documented on the mining and ecological impact on the emergence and geographical distribution of Ebola in Africa over time and space. We aimed to provide a better understanding of the interconnectedness among issues of mining natural, resource management, mining conflict and post-conflict on Ebola outbreak and how wealth generated from abundant natural resources could be better managed in promoting research and development towards strengthening environmental, socioeconomic and health systems sustainability on Ebola outbreak and other emerging diseases surveillance and responses systems prevention and control, early warning alert, durable peace and sustainable development rather than to fuel conflicts, resurgence and emerging diseases epidemics in the perspective of community and national/regional approach. Our results showed the first assessment of systematic impact of all major minerals conflict events diffusion over space and time and mining activities on nine Ebola genesis and geo-distribution in affected countries across Africa. We demonstrate how, where and when mining activities in Africa increase ecological degradation, conflicts at the local level and then spreads violence across territory and time by enhancing the financial capacities of fighting groups/ethnics and diseases onset. In addition, led process of developing minimum standards for natural resource governance; improving governmental and civil society capacity for natural resource management, including the strengthening of monitoring and enforcement mechanisms; understanding the post-mining and conflicts community or national reconstruction and rehabilitation programmes in strengthening or developing community health systems and regulatory mechanisms. In addition the quest for the control over these resources and illegal mining across the landscape forest incursion provided increase environmental and ecological instability and displacement and disequilibrium, therefore affecting the intensity and duration of mining and conflict/wars and episode of Ebola outbreaks over time and space. We highlight the key findings and lessons learnt in promoting country or community-led process in transforming natural resource wealth from a peace liability to a peace asset. The imperative necessity for advocacy and through facilitating intergovernmental deliberations on critical issues and challenges affecting Africa community transforming exploitation of natural resources from a peace liability to outbreak prevention and control. The vital role of mining in increasing government revenues and expenditures, equitable distribution of wealth and health to all stakeholders, in particular local communities requires coordination, cooperative leadership and partnership in fostering sustainable developmental initiatives from mining context to outbreak and other infectious diseases surveillance responses systems in prevention and control, and judicious resource management.Keywords: mining, mining conflicts, mines, ecological, Ebola, outbreak, mining companies, miners, impact
Procedia PDF Downloads 30038531 Evaluating the Nexus between Energy Demand and Economic Growth Using the VECM Approach: Case Study of Nigeria, China, and the United States
Authors: Rita U. Onolemhemhen, Saheed L. Bello, Akin P. Iwayemi
Abstract:
The effectiveness of energy demand policy depends on identifying the key drivers of energy demand both in the short-run and the long-run. This paper examines the influence of regional differences on the link between energy demand and other explanatory variables for Nigeria, China and USA using the Vector Error Correction Model (VECM) approach. This study employed annual time series data on energy consumption (ED), real gross domestic product (GDP) per capita (RGDP), real energy prices (P) and urbanization (N) for a thirty-six-year sample period. The utilized time-series data are sourced from World Bank’s World Development Indicators (WDI, 2016) and US Energy Information Administration (EIA). Results from the study, shows that all the independent variables (income, urbanization, and price) substantially affect the long-run energy consumption in Nigeria, USA and China, whereas, income has no significant effect on short-run energy demand in USA and Nigeria. In addition, the long-run effect of urbanization is relatively stronger in China. Urbanization is a key factor in energy demand, it therefore recommended that more attention should be given to the development of rural communities to reduce the inflow of migrants into urban communities which causes the increase in energy demand and energy excesses should be penalized while energy management should be incentivized.Keywords: economic growth, energy demand, income, real GDP, urbanization, VECM
Procedia PDF Downloads 31138530 Progress in Accuracy, Reliability and Safety in Firedamp Detection
Authors: José Luis Lorenzo Bayona, Ljiljana Medic-Pejic, Isabel Amez Arenillas, Blanca Castells Somoza
Abstract:
The communication presents the study results carried out by the Official Laboratory J. M. Madariaga (LOM) of the Polytechnic University of Madrid to analyze the reliability of methane detection systems used in underground mining. Poor firedamp control in work can cause from production stoppages to fatal accidents and since there is currently a great variety of equipment with different functional characteristics, a study is needed to indicate which measurement principles have the highest degree of confidence. For the development of the project, a series of fixed, transportable and portable methane detectors with different measurement principles have been selected to subject them to laboratory tests following the methods described in the applicable regulations. The test equipment has been the one usually used in the certification and calibration of these devices, subject to the LOM quality system, and the tests have been carried out on detectors accessible in the market. The conclusions establish the main advantages and disadvantages of the equipment according to the measurement principle used; catalytic combustion, interferometry and infrared absorption.Keywords: ATEX standards, gas detector, methane meter, mining safety
Procedia PDF Downloads 13638529 Greyscale: A Tree-Based Taxonomy for Grey Literature Published by Fisheries Agencies
Authors: Tatiana Tunon, Gottfried Pestal
Abstract:
Government agencies responsible for the management of fisheries resources publish many types of grey literature, and these materials are increasingly accessible to the public on agency websites. However, scope and quality vary considerably, and end-users need meta-data about the report series when deciding whether to use the information (e.g. apply the methods, include the results in a systematic review), or when prioritizing materials for archiving (e.g. library holdings, reference databases). A proposed taxonomy for these report series was developed based on a review of 41 report series from 6 government agencies in 4 countries (Canada, New Zealand, Scotland, and United States). Each report series was categorized according to multiple criteria describing peer-review process, content, and purpose. A robust classification tree was then fitted to these descriptions, and the resulting taxonomic groups were used to compare agency output from 4 countries using reports available in their online repositories.Keywords: classification tree, fisheries, government, grey literature
Procedia PDF Downloads 28038528 A New Approach for Improving Accuracy of Multi Label Stream Data
Authors: Kunal Shah, Swati Patel
Abstract:
Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer
Procedia PDF Downloads 58338527 The Role Of Data Gathering In NGOs
Authors: Hussaini Garba Mohammed
Abstract:
Background/Significance: The lack of data gathering is affecting NGOs world-wide in general to have good data information about educational and health related issues among communities in any country and around the world. For example, HIV/AIDS smoking (Tuberculosis diseases) and COVID-19 virus carriers is becoming a serious public health problem, especially among old men and women. But there is no full details data survey assessment from communities, villages, and rural area in some countries to show the percentage of victims and patients, especial with this world COVID-19 virus among the people. These data are essential to inform programming targets, strategies, and priorities in getting good information about data gathering in any society.Keywords: reliable information, data assessment, data mining, data communication
Procedia PDF Downloads 17838526 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 14938525 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques
Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari
Abstract:
Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.Keywords: data mining, counter terrorism, machine learning, SVM
Procedia PDF Downloads 40538524 Comparison Of Data Mining Models To Predict Future Bridge Conditions
Authors: Pablo Martinez, Emad Mohamed, Osama Mohsen, Yasser Mohamed
Abstract:
Highway and bridge agencies, such as the Ministry of Transportation in Ontario, use the Bridge Condition Index (BCI) which is defined as the weighted condition of all bridge elements to determine the rehabilitation priorities for its bridges. Therefore, accurate forecasting of BCI is essential for bridge rehabilitation budgeting planning. The large amount of data available in regard to bridge conditions for several years dictate utilizing traditional mathematical models as infeasible analysis methods. This research study focuses on investigating different classification models that are developed to predict the bridge condition index in the province of Ontario, Canada based on the publicly available data for 2800 bridges over a period of more than 10 years. The data preparation is a key factor to develop acceptable classification models even with the simplest one, the k-NN model. All the models were tested, compared and statistically validated via cross validation and t-test. A simple k-NN model showed reasonable results (within 0.5% relative error) when predicting the bridge condition in an incoming year.Keywords: asset management, bridge condition index, data mining, forecasting, infrastructure, knowledge discovery in databases, maintenance, predictive models
Procedia PDF Downloads 18938523 The Extent of Big Data Analysis by the External Auditors
Authors: Iyad Ismail, Fathilatul Abdul Hamid
Abstract:
This research was mainly investigated to recognize the extent of big data analysis by external auditors. This paper adopts grounded theory as a framework for conducting a series of semi-structured interviews with eighteen external auditors. The research findings comprised the availability extent of big data and big data analysis usage by the external auditors in Palestine, Gaza Strip. Considering the study's outcomes leads to a series of auditing procedures in order to improve the external auditing techniques, which leads to high-quality audit process. Also, this research is crucial for auditing firms by giving an insight into the mechanisms of auditing firms to identify the most important strategies that help in achieving competitive audit quality. These results are aims to instruct the auditing academic and professional institutions in developing techniques for external auditors in order to the big data analysis. This paper provides appropriate information for the decision-making process and a source of future information which affects technological auditing.Keywords: big data analysis, external auditors, audit reliance, internal audit function
Procedia PDF Downloads 6838522 Impact of Infrastructural Development on Socio-Economic Growth: An Empirical Investigation in India
Authors: Jonardan Koner
Abstract:
The study attempts to find out the impact of infrastructural investment on state economic growth in India. It further tries to determine the magnitude of the impact of infrastructural investment on economic indicator, i.e., per-capita income (PCI) in Indian States. The study uses panel regression technique to measure the impact of infrastructural investment on per-capita income (PCI) in Indian States. Panel regression technique helps incorporate both the cross-section and time-series aspects of the dataset. In order to analyze the difference in impact of the explanatory variables on the explained variables across states, the study uses Fixed Effect Panel Regression Model. The conclusions of the study are that infrastructural investment has a desirable impact on economic development and that the impact is different for different states in India. We analyze time series data (annual frequency) ranging from 1991 to 2010. The study reveals that the infrastructural investment significantly explains the variation of economic indicators.Keywords: infrastructural investment, multiple regression, panel regression techniques, economic development, fixed effect dummy variable model
Procedia PDF Downloads 37038521 A Non-Invasive Blood Glucose Monitoring System Using near-Infrared Spectroscopy with Remote Data Logging
Authors: Bodhayan Nandi, Shubhajit Roy Chowdhury
Abstract:
This paper presents the development of a portable blood glucose monitoring device based on Near-Infrared Spectroscopy. The system supports Internet connectivity through WiFi and uploads the time series data of glucose concentration of patients to a server. In addition, the server is given sufficient intelligence to predict the future pathophysiological state of a patient given the current and past pathophysiological data. This will enable to prognosticate the approaching critical condition of the patient much before the critical condition actually occurs.The server hosts web applications to allow authorized users to monitor the data remotely.Keywords: non invasive, blood glucose concentration, microcontroller, IoT, application server, database server
Procedia PDF Downloads 21538520 Bankruptcy Prediction Analysis on Mining Sector Companies in Indonesia
Authors: Devina Aprilia Gunawan, Tasya Aspiranti, Inugrah Ratia Pratiwi
Abstract:
This research aims to classify the mining sector companies based on Altman’s Z-score model, and providing an analysis based on the Altman’s Z-score model’s financial ratios to provide a picture about the financial condition in mining sector companies in Indonesia and their viability in the future, and to find out the partial and simultaneous impact of each of the financial ratio variables in the Altman’s Z-score model, namely (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), toward the financial condition represented by the Z-score itself. Among 38 mining sector companies listed in Indonesia Stock Exchange (IDX), 28 companies are selected as research sample according to the purposive sampling criteria.The results of this research showed that during 3 years research period at 2010-2012, the amount of the companies that was predicted to be healthy in each year was less than half of the total sample companies and not even reach up to 50%. The multiple regression analysis result showed that all of the research hypotheses are accepted, which means that (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), both partially and simultaneously had an impact towards company’s financial condition.Keywords: Altman’s Z-score model, financial condition, mining companies, Indonesia
Procedia PDF Downloads 52738519 Exploring Gaming-Learning Interaction in MMOG Using Data Mining Methods
Authors: Meng-Tzu Cheng, Louisa Rosenheck, Chen-Yen Lin, Eric Klopfer
Abstract:
The purpose of the research is to explore some of the ways in which gameplay data can be analyzed to yield results that feedback into the learning ecosystem. Back-end data for all users as they played an MMOG, The Radix Endeavor, was collected, and this study reports the analyses on a specific genetics quest by using the data mining techniques, including the decision tree method. In the study, different reasons for quest failure between participants who eventually succeeded and who never succeeded were revealed. Regarding the in-game tools use, trait examiner was a key tool in the quest completion process. Subsequently, the results of decision tree showed that a lack of trait examiner usage can be made up with additional Punnett square uses, displaying multiple pathways to success in this quest. The methods of analysis used in this study and the resulting usage patterns indicate some useful ways that gameplay data can provide insights in two main areas. The first is for game designers to know how players are interacting with and learning from their game. The second is for players themselves as well as their teachers to get information on how they are progressing through the game, and to provide help they may need based on strategies and misconceptions identified in the data.Keywords: MMOG, decision tree, genetics, gaming-learning interaction
Procedia PDF Downloads 35738518 Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery.Keywords: microscopic image processing, scientific data mining, multi-scale modeling, data mining
Procedia PDF Downloads 43338517 Forecasting Model for Rainfall in Thailand: Case Study Nakhon Ratchasima Province
Authors: N. Sopipan
Abstract:
In this paper, we study of rainfall time series of weather stations in Nakhon Ratchasima province in Thailand using various statistical methods enabled to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. ARIMA and Holt-Winter models based on exponential smoothing were built. All the models proved to be adequate. Therefore, could give information that can help decision makers establish strategies for proper planning of agriculture, drainage system and other water resource applications in Nakhon Ratchasima province. We found the best perform for forecasting is ARIMA(1,0,1)(1,0,1)12.Keywords: ARIMA Models, exponential smoothing, Holt-Winter model
Procedia PDF Downloads 29838516 The Need of Sustainable Mining: Communities, Government and Legal Mining in Central Andes of Peru
Authors: Melissa R. Quispe-Zuniga, Daniel Callo-Concha, Christian Borgemeister, Klaus Greve
Abstract:
The Peruvian Andes have a high potential for mining, but many of the mining areas overlay with campesino community lands, being these key actors for agriculture and livestock production. Lead by economic incentives, some communities are renting their lands to mining companies for exploration or exploitation. However, a growing number of campesino communities, usually social and economically marginalized, have developed resistance, alluding consequences, such as water pollution, land-use change, insufficient economic compensation, etc. what eventually end up in Socio-Environmental Conflicts (SEC). It is hypothesized that disclosing the information on environmental pollution and enhance the involvement of communities in the decision-making process may contribute to prevent SEC. To assess whether such complains are grounded on the environmental impact of mining activities, we measured the heavy metals concentration in 24 indicative samples from rivers that run across mining exploitations and farming community lands. Samples were taken during the 2016 dry season and analyzed by inductively-coupled-plasma-atomic-emission-spectroscopy. The results were contrasted against the standards of monitoring government institutions (i.e., OEFA). Furthermore, we investigated the water/environmental complains related to mining in the neighboring 14 communities. We explored the relationship between communities and mining companies, via open-ended interviews with community authorities and non-participatory observations of community assemblies. We found that the concentrations of cadmium (0.023 mg/L), arsenic (0.562 mg/L) and copper (0.07 mg/L), surpass the national water quality standards for Andean rivers (0.00025 mg/L of cadmium, 0.15 mg/L of arsenic and 0.01 mg/L of copper). 57% of communities have posed environmental complains, but 21% of the total number of communities were receiving an annual economic benefit from mining projects. However, 87.5% of the communities who had posed complains have high concentration of heavy metals in their water streams. The evidence shows that mining activities tend to relate to the affectation and vulnerability of campesino community water streams, what justify the environmental complains and eventually the occurrence of a SEC.Keywords: mining companies, campesino community, water, socio-environmental conflict
Procedia PDF Downloads 19738515 Derivatives Formulas Involving I-Functions of Two Variables and Generalized M-Series
Authors: Gebreegziabher Hailu Gebrecherkos
Abstract:
This study explores the derivatives of functions defined by I-functions of two variables and their connections to generalized M-series. We begin by defining I-functions, which are generalized functions that encompass various special functions, and analyze their properties. By employing advanced calculus techniques, we derive new formulas for the first and higher-order derivatives of I-functions with respect to their variables; we establish some derivative formulae of the I-function of two variables involving generalized M-series. The special cases of our derivatives yield interesting results.Keywords: I-function, Mellin-Barners control integral, generalized M-series, higher order derivative
Procedia PDF Downloads 1438514 Power Quality Audit Using Fluke Analyzer
Authors: N. Ravikumar, S. Krishnan, B. Yokeshkumar
Abstract:
In present days, the power quality issues are increases due to non-linear loads like fridge, AC, washing machines, induction motor, etc. This power quality issues will affects the output voltages, output current, and output power of the total performance of the generator. This paper explains how to test the generator using the Fluke 435 II series power quality analyser. This Fluke 435 II series power quality analyser is used to measure the voltage, current, power, energy, total harmonic distortion (THD), current harmonics, voltage harmonics, power factor, and frequency. The Fluke 435 II series power quality analyser have several advantages. They are i) it will records output in analog and digital format. ii) the fluke analyzer will records at every 0.25 sec. iii) it will also measure all the electrical parameter at a time.Keywords: THD, harmonics, power quality, TNEB, Fluke 435
Procedia PDF Downloads 17538513 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components
Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea
Abstract:
Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.Keywords: assessment, part of speech, sentiment analysis, student feedback
Procedia PDF Downloads 14238512 Application of Groundwater Level Data Mining in Aquifer Identification
Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen
Abstract:
Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.Keywords: aquifer identification, decision tree, groundwater, Fourier transform
Procedia PDF Downloads 15538511 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example
Authors: Wang Yang
Abstract:
Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map
Procedia PDF Downloads 10338510 A Novel Computer-Generated Hologram (CGH) Achieved Scheme Generated from Point Cloud by Using a Lens Array
Authors: Wei-Na Li, Mei-Lan Piao, Nam Kim
Abstract:
We proposed a novel computer-generated hologram (CGH) achieved scheme, wherein the CGH is generated from a point cloud which is transformed by a mapping relationship of a series of elemental images captured from a real three-dimensional (3D) object by using a lens array. This scheme is composed of three procedures: mapping from elemental images to point cloud, hologram generation, and hologram display. A mapping method is figured out to achieve a virtual volume date (point cloud) from a series of elemental images. This mapping method consists of two steps. Firstly, the coordinate (x, y) pairs and its appearing number are calculated from the series of sub-images, which are generated from the elemental images. Secondly, a series of corresponding coordinates (x, y, z) are calculated from the elemental images. Then a hologram is generated from the volume data that is calculated by the previous two steps. Eventually, a spatial light modulator (SLM) and a green laser beam are utilized to display this hologram and reconstruct the original 3D object. In this paper, in order to show a more auto stereoscopic display of a real 3D object, we successfully obtained the actual depth data of every discrete point of the real 3D object, and overcame the inherent drawbacks of the depth camera by obtaining point cloud from the elemental images.Keywords: elemental image, point cloud, computer-generated hologram (CGH), autostereoscopic display
Procedia PDF Downloads 58238509 Sexting Phenomenon in Educational Settings: A Data Mining Approach
Authors: Koutsopoulou Ioanna, Gkintoni Evgenia, Halkiopoulos Constantinos, Antonopoulou Hera
Abstract:
Recent advances in Internet Computer Technology (ICT) and the ever-increasing use of technological equipment amongst adolescents and young adults along with unattended access to the internet and social media and uncontrolled use of smart phones and PCs have caused social problems like sexting to emerge. The main purpose of the present article is first to present an analytic theoretical framework of sexting as a recent social phenomenon based on studies that have been conducted the last decade or so; and second to investigate Greek students’ and also social network users, sexting perceptions and to record how often social media users exchange sexual messages and to retrace demographic variables predictors. Data from 1,000 students were collected and analyzed and all statistical analysis was done by the software package WEKA. The results indicate among others, that the use of data mining methods is an important tool to draw conclusions that could affect decision and policy making especially in the field and related social topics of educational psychology. To sum up, sexting lurks many risks for adolescents and young adults students in Greece and needs to be better addressed in relevance to the stakeholders as well as society in general. Furthermore, policy makers, legislation makers and authorities will have to take action to protect minors. Prevention strategies based on Greek cultural specificities are being proposed. This social problem has raised concerns in recent years and will most likely escalate concerns in global communities in the future.Keywords: educational ethics, sexting, Greek sexters, sex education, data mining
Procedia PDF Downloads 18138508 Safety-critical Alarming Strategy Based on Statistically Defined Slope Deformation Behaviour Model Case Study: Upright-dipping Highwall in a Coal Mining Area
Authors: Lintang Putra Sadewa, Ilham Prasetya Budhi
Abstract:
Slope monitoring program has now become a mandatory campaign for any open pit mines around the world to operate safely. Utilizing various slope monitoring instruments and strategies, miners are now able to deliver precise decisions in mitigating the risk of slope failures which can be catastrophic. Currently, the most sophisticated slope monitoring technology available is the Slope Stability Radar (SSR), whichcan measure wall deformation in submillimeter accuracy. One of its eminent features is that SSRcan provide a timely warning by automatically raise an alarm when a predetermined rate-of-movement threshold is reached. However, establishing proper alarm thresholds is arguably one of the onerous challenges faced in any slope monitoring program. The difficulty mainly lies in the number of considerations that must be taken when generating a threshold becausean alarm must be effectivethat it should limit the occurrences of false alarms while alsobeing able to capture any real wall deformations. In this sense, experience shows that a site-specific alarm thresholdtendsto produce more reliable results because it considers site distinctive variables. This study will attempt to determinealarming thresholds for safety-critical monitoring based on an empirical model of slope deformation behaviour that is defined statistically fromdeformation data captured by the Slope Stability Radar (SSR). The study area comprises of upright-dipping highwall setting in a coal mining area with intense mining activities, andthe deformation data used for the study were recorded by the SSR throughout the year 2022. The model is site-specific in nature thus, valuable information extracted from the model (e.g., time-to-failure, onset-of-acceleration, and velocity) will be applicable in setting up site-specific alarm thresholds and will give a clear understanding of how deformation trends evolve over the area.Keywords: safety-critical monitoring, alarming strategy, slope deformation behaviour model, coal mining
Procedia PDF Downloads 8838507 Understanding the Complexity of Corruption and Anti-Corruption in Indonesia's Mining Industry: Challenges and Opportunities
Authors: Ahmad Khoirul Umam, Iin Mayasari
Abstract:
Indonesia is blessed with rich natural resources and frequently dubbed as the 6th richest country in the world in terms of mining resources, including minerals and coal. Mining can contribute to the socio-economic development by generating state revenue for development, elevating poverty through employment, opening and developing remote areas, putting in basic infrastructure and creating new centres of developments. However, favouritism and rent-seeking behaviour committed by government officials, politicians, and business players in licensing and permit giving in mining and forestry sectors have resisted reforms. Even though Indonesia’s Corruption Eradication Commission (KPK) successfully targeted untouchable actors, public criticism continues to focus on questions of why corruption apparently remains systemic in mining industry in the country? This paper revealed that structural anomalies, as well as legacies of the Soeharto era’s power inequities, have severely inhibited Indonesia’s bureaucratic arrangements that continue to influence adversely the elements of transparency and accountability in mining industry governance. In the more liberalized and decentralized political system, the deficiencies have gradually assisted vested interest groups to band together, thus creating a coalition that can challenge, resist, and contain anti-graft actions. Therefore, Indonesia needs much more serious anti-corruption actions that would require eliminating the monopoly over power, enhancing competition, limiting discretion, and clarifying the rules of business and political competition in the mining sector in the country.Keywords: anti-corruption, public integrity, private integrity, mining industry, democratization
Procedia PDF Downloads 11138506 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates
Authors: Abdelaziz Fellah, Allaoua Maamir
Abstract:
We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery
Procedia PDF Downloads 38538505 Delivery Service and Online-and-Offline Purchasing for Collaborative Recommendations on Retail Cross-Channels
Authors: S. H. Liao, J. M. Huang
Abstract:
The delivery service business model is the final link in logistics for both online-and-offline businesses. The online-and-offline business model focuses on the entire customer purchasing process online and offline, placing greater emphasis on the importance of data to optimize overall retail operations. For the retail industry, it is an important task of information and management to strengthen the collection and investigation of consumers' online and offline purchasing data to better understand customers and then recommend products. This study implements two-stage data mining analytics for clustering and association rules analysis to investigate Taiwanese consumers' (n=2,209) preferences for delivery service. This process clarifies online-and-offline purchasing behaviors and preferences to find knowledge profiles/patterns/rules for cross-channel collaborative recommendations. Finally, theoretical and practical implications for methodology and enterprise are presented.Keywords: delivery service, online-and-offline purchasing, retail cross-channel, collaborative recommendations, data mining analytics
Procedia PDF Downloads 3038504 Hybridized Approach for Distance Estimation Using K-Means Clustering
Authors: Ritu Vashistha, Jitender Kumar
Abstract:
Clustering using the K-means algorithm is a very common way to understand and analyze the obtained output data. When a similar object is grouped, this is called the basis of Clustering. There is K number of objects and C number of cluster in to single cluster in which k is always supposed to be less than C having each cluster to be its own centroid but the major problem is how is identify the cluster is correct based on the data. Formulation of the cluster is not a regular task for every tuple of row record or entity but it is done by an iterative process. Each and every record, tuple, entity is checked and examined and similarity dissimilarity is examined. So this iterative process seems to be very lengthy and unable to give optimal output for the cluster and time taken to find the cluster. To overcome the drawback challenge, we are proposing a formula to find the clusters at the run time, so this approach can give us optimal results. The proposed approach uses the Euclidian distance formula as well melanosis to find the minimum distance between slots as technically we called clusters and the same approach we have also applied to Ant Colony Optimization(ACO) algorithm, which results in the production of two and multi-dimensional matrix.Keywords: ant colony optimization, data clustering, centroids, data mining, k-means
Procedia PDF Downloads 127