Search results for: support vector data description
29976 Determinants of Pupils' Performance in the National Achievement Test in Public Elementary Schools of Cavite City
Authors: Florenda B. Cardinoza
Abstract:
This study was conducted to determine the determinants of Grade III and grade VI pupils’ performance in the National Achievement Test in the Division of Cavite City, School Year 2011-2012. Specifically, the research aimed to: (1) describe the demographic profile of the respondents in terms of age, sex, birth order, family size, family income, and occupation of parents; (2) determine the level of attitude towards NAT; and (3) describe the degree of relationship between the following variables: school support, teachers’ support, and lastly family support for the pupils’ performance in 2012 NAT. The study used the descriptive-correlation research method to investigate the determinants of pupils’ performance in the National Achievement Test of Public Elementary Schools in the Division of Cavite City. The instrument used in data gathering was a self-structured survey. The NAT result for SY 2011-2012 provided by NETRC and DepEd Cavite City was also utilized. The statistical tools used to process and analyze the data were frequency distribution, percentage, mean, standard deviation, Kruskall Wallis, Mann-Whitney, t-test for independent samples, One-way ANOVA, and Spearman Rank Correlational Coefficient. Results revealed that there were more female students than males in the Division of Cavite City; out of 659 respondents, 345 were 11 years old and above; 390 were females; 283 were categorized as first child in the family; 371 of the respondents were from small family; 327 had Php5000 and below family income; 450 of the fathers’ respondents were non professionals; and 431 of the mothers respondents had no occupation. The attitude towards NAT, with a mean of 1.65 and SD of .485, shows that respondents considered NAT important. The school support towards NAT, with a mean of 1.89 and SD of .520, shows that respondents received school support. The pupils had a very high attitude towards teachers’ support in NAT with a mean of 1.60 and SD of .572. Family support, with t-test of 16.201 with a p-value of 0.006, shows significant at 5 percent level. Thus, the determinants of pupils’ performance in NAT in terms of family support for NAT preparation is not significant according to their family income. The grade level, with the t-test is 4.420 and a p-value of 0.000, is significant at 5 percent level. Therefore, the determinants of pupils’ performance in NAT in terms of grade level for NAT preparation vary according to their grade level. For the determinants of pupils’ performance of NAT sample test for attitude towards NAT, school support, teachers’ support, and family support were noted highly significant with a p value of 0.000.Keywords: achievement, determinants, national, performance, public, pupils', test
Procedia PDF Downloads 35029975 A Review on the Problems of Constructing a Theory of Quantum Gravity
Authors: Amber Jamal, Imran Siddiqui, Syed Tanveer Iqbal
Abstract:
This review is aimed to shed some light on problems constructing a theory of spacetime and geometry in terms of all quantum degrees of freedom called ‘Quantum Gravity’. Such a theory, which is effective at all scales of distances and energies, describes the enigma of the beginning of the Universe, its possible end, and reducing to general relativity at large distances but in a semi-classical approximation. Furthermore, the theory of quantum gravity also describes the Universe as a whole and provides a description of most fundamental questions that have puzzled scientists for decades, such as: what is space, what is time, and what is the fundamental structure of the Universe, is the spacetime discrete, if it is, where does the continuum of spacetime come from at low energies and macroscopic scales and where does it emerge from its fundamentally discrete building blocks? Quantum Field Theory (QFT) is a framework which describes the microscopic properties and dynamics of the basic building blocks of any condensed matter system. In QFT, atoms are quanta of continuous fields. At smaller scales or higher energies, the continuum description of spacetime fails. Therefore, a new description is required in terms of microscopic constituents (atoms or molecules). The objective of this scientific endeavor is to discuss the above-mentioned problems rigorously and to discuss possible way-out of the problems.Keywords: QFT, quantum degrees of freedom, quantum gravity, semi-classical approximation
Procedia PDF Downloads 11929974 Support Provided by Midwives to Women during Labour in a Public Hospital, Limpopo Province, South Africa: A Participant Observation Study
Authors: Sonto Maputle
Abstract:
Background: Support during labour increase women's chances of having positive childbirth experiences as well as childbirth outcomes. The purpose of this study was to determine the support provided by midwives to women during labour at the public hospital in Limpopo Province. The study was conducted at the Tertiary hospital in Limpopo Province. Methods: A qualitative, participant observation approach was used. Population consisted of all women that were admitted to deliver their babies and the midwives who provided midwifery care in the obstetric unit of one tertiary public hospital in Limpopo Province. Non-probability, purposive and convenience sampling were used to sample 24 women and 12 midwives. Data were collected through participant observations which included unstructured conversations with the use of observational guide, field notes of events and conversations that occurred when women interact with midwives were recorded verbatim and a Visual Analog Scale to complement the observations. Data was analysed qualitatively but were presented in the tables and bar graphs. Results: Five themes emerged as support provided by midwives during labour, namely; communication between women and midwives, informational support, emotional support activities, interpretation of the experienced labour pain and supportive care activities during labour. Conclusion: The communication was occurring when the midwife was rendering midwifery care and very limited for empowering. The information sharing focused on the assistive actions rather than on the activities that would promote mothers’ participation. The emotional support activities indicated lack of respect and disregard cultural preferences and this contributed to inability to exercise choices in decision-making. The study recommended the implementation of Batho Pele principles in order to provide woman-centred care during labour.Keywords: communication between women and midwives, labour pains, informational and emotional support, physical comforting measures
Procedia PDF Downloads 15229973 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 41629972 Stress and Social Support as Predictors of Quality of Life: A Case among Flood Victims in Malaysia
Authors: Najib Ahmad Marzuki, Che Su Mustaffa, Johana Johari, Nur Haffiza Rahaman
Abstract:
The purpose of this paper is to examine the effects and relationship of stress and social support towards the quality of life among flood victims in Malaysia. A total of 764 respondents took part in the survey via random sampling. The depression, anxiety, and stress scales were utilized to measure stress while The Multidimensional Scale of Perceived Social Support was used to measure the quality of life. The findings of this study indicate that there were significant correlations between variables in the study. The findings show a significant negative relation between stress and quality of life, and significant positive correlations between support from family as well as support from friends with the quality of life. Stress and support from family were found to be significant predictors and influences the quality of life among flood victims.Keywords: stress, social support, quality of life, flood victims
Procedia PDF Downloads 55729971 Dengue Virus Infection Rate in Mosquitoes Collected in Thailand Related to Environmental Factors
Authors: Chanya Jetsukontorn
Abstract:
Dengue hemorrhagic fever is the most important Mosquito-borne disease and the major public health problem in Thailand. The most important vector is Aedes aegypti. Environmental factors such as temperature, relative humidity, and biting rate affect dengue virus infection. The most effective measure for prevention is controlling of vector mosquitoes. In addition, surveillance of field-caught mosquitoes is imperative for determining the natural vector and can provide an early warning sign at risk of transmission in an area. In this study, Aedes aegypti mosquitoes were collected in Amphur Muang, Phetchabun Province, Thailand. The mosquitoes were collected in the rainy season and the dry season both indoor and outdoor. During mosquito’s collection, the data of environmental factors such as temperature, humidity and breeding sites were observed and recorded. After identified to species, mosquitoes were pooled according to genus/species, and sampling location. Pools consisted of a maximum of 10 Aedes mosquitoes. 70 pools of 675 Aedes aegypti were screened with RT-PCR for flaviviruses. To confirm individual infection for determining True infection rate, individual mosquitoes which gave positive results of flavivirus detection were tested for dengue virus by RT-PCR. The infection rate was 5.93% (4 positive individuals from 675 mosquitoes). The probability to detect dengue virus in mosquitoes at the neighbour’s houses was 1.25 times, especially where distances between neighboring houses and patient’s houses were less than 50 meters. The relative humidity in dengue-infected villages with dengue-infected mosquitoes was significantly higher than villages that free from dengue-infected mosquitoes. Indoor biting rate of Aedes aegypti was 14.87 times higher than outdoor, and biting times of 09.00-10.00, 10.00-11.00, 11.00-12.00 yielded 1.77, 1.46, 0.68mosquitoes/man-hour, respectively. These findings confirm environmental factors were related to Dengue infection in Thailand. Data obtained from this study will be useful for the prevention and control of the diseases.Keywords: Aedes aegypti, Dengue virus, environmental factors, one health, PCR
Procedia PDF Downloads 14529970 Analysing Time Series for a Forecasting Model to the Dynamics of Aedes Aegypti Population Size
Authors: Flavia Cordeiro, Fabio Silva, Alvaro Eiras, Jose Luiz Acebal
Abstract:
Aedes aegypti is present in the tropical and subtropical regions of the world and is a vector of several diseases such as dengue fever, yellow fever, chikungunya, zika etc. The growth in the number of arboviruses cases in the last decades became a matter of great concern worldwide. Meteorological factors like mean temperature and precipitation are known to influence the infestation by the species through effects on physiology and ecology, altering the fecundity, mortality, lifespan, dispersion behaviour and abundance of the vector. Models able to describe the dynamics of the vector population size should then take into account the meteorological variables. The relationship between meteorological factors and the population dynamics of Ae. aegypti adult females are studied to provide a good set of predictors to model the dynamics of the mosquito population size. The time-series data of capture of adult females of a public health surveillance program from the city of Lavras, MG, Brazil had its association with precipitation, humidity and temperature analysed through a set of statistical methods for time series analysis commonly adopted in Signal Processing, Information Theory and Neuroscience. Cross-correlation, multicollinearity test and whitened cross-correlation were applied to determine in which time lags would occur the influence of meteorological variables on the dynamics of the mosquito abundance. Among the findings, the studied case indicated strong collinearity between humidity and precipitation, and precipitation was selected to form a pair of descriptors together with temperature. In the techniques used, there were observed significant associations between infestation indicators and both temperature and precipitation in short, mid and long terms, evincing that those variables should be considered in entomological models and as public health indicators. A descriptive model used to test the results exhibits a strong correlation to data.Keywords: Aedes aegypti, cross-correlation, multicollinearity, meteorological variables
Procedia PDF Downloads 18029969 Comparing Deep Architectures for Selecting Optimal Machine Translation
Authors: Despoina Mouratidis, Katia Lida Kermanidis
Abstract:
Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification
Procedia PDF Downloads 13229968 Machine Learning in Agriculture: A Brief Review
Authors: Aishi Kundu, Elhan Raza
Abstract:
"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting
Procedia PDF Downloads 10529967 The Effect of Occupational Calling and Social Support on the Anxiety of Navies Who Are Sent Overseas
Authors: Yonguk L. Park, Jeonghoon Seol
Abstract:
The Republic of Korea is facing a special situation as it is the only divided country in the world. Even though Korea is facing such unstable circumstances in terms of a foreign diplomacy situation, Korea is one of the countries who, in concern for world peace, have been sending troops overseas. The troops spend more than a year at sea and may suffer from different types of psychological disorders. The purpose of this study is to try to find factors that promote psychological well-being of troops and improve their psychological health. We investigated the effect of dispatch sailors’ occupational calling and social support on anxiety before they are sent overseas and also examined the interaction between occupational calling and social support on anxiety. One hundred thirty-eight dispatched sailors participated in this study, wherein they completed the Korean calling scale, multifaceted social support scale, and anxiety scale –Y form. We analyzed the data using hierarchical regression. The results showed that after controlling gender, marital status, and the previous experiences of dispatch, those who have a higher level of occupational calling and perceived social support experienced a low level of anxiety before they are sent (β = -.276, β = -.395). Furthermore, we examined the interaction effect. If the troops’ perceived social support is high, they experience a low level of anxiety—even if they have a low level of occupational calling. This study confirms that both occupational calling and social support reduce the level of anxiety of the troops. The research provides meaningful information in understanding those who serve in the Navy’s distinctive situations and contributes to improving their psychological well-being. We suggest that sailors undergo training to have a higher occupational calling and healthy relationships with friends, families, and co-workers who provide emotional and social support.Keywords: navy, occupational calling, social support, anxiety
Procedia PDF Downloads 25529966 An Examination of the Relationship between Organizational Justice and Trust in the Supervisor: The Mediating Role of Perceived Supervisor Support
Authors: Michel Zaitouni, Mohamed Nassar
Abstract:
The purpose of this study is first, to explore the effect of employees’ perception of justice on trust in the supervisor in the context of performance appraisal; Second, to assess the role of perceived supervisor support as a mediator between organizational justice and trust in the supervisor in a non-western society such as Kuwait.The survey data consisted of 415 employees working at different hierarchical levels in three major banks in Kuwait. Hierarchical regression analysis was used to test the research hypotheses. Results supported hypothesized relationships between distributive, informational and interpersonal justice and trust in the supervisor but failed to support that procedural justice positively and significantly relate to trust in the supervisor. Moreover, results found that this relationship is partially mediated by perceived supervisor support. A potential limitation of this study is that data were obtained from the same industry which limits the generalizability of this study to other industries. Moreover, a longitudinal research will be helpful to strengthen the mediating relationship. The findings provide valuable information for the development of common perspectives regarding the perception of justice in the context of performance appraisal between the western and non-western societies. The paper has the privilege to explore additional relationships related to justice perceptions in the Kuwaiti banking sector, whereas previous research focused mainly on procedural and distributive justice as predictors of trust in the supervisor.Keywords: Kuwait, organizational justice, perceived supervisor support, trust in the supervisor
Procedia PDF Downloads 31029965 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network
Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui
Abstract:
Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN
Procedia PDF Downloads 13129964 Understanding of Chinese Organisations Approach to Dementia: A Case Study of Two Community Centres and One Housing Support Service in the UK
Authors: Emily J. Winnall
Abstract:
It is understood that China has the largest population of people living with dementia in the world; however, little is known about this culturally diverse community, specifically the Chinese Communities, which has been poorly represented in past British research Literature. Further research is needed to gain a greater understanding of the support needs of caregivers caring for a relative living with dementia from the Chinese background. Dementia care and caregivers in Chinese communities are less investigated. The study is a case study of two Chinese community centers and one housing support service. Semi-structured one-to-one interviews and a pilot questionnaire were used as the methods for the study. A toolkit will also be created as a document that provides guidance and signposting to health and social care services for Chinese communities. The findings identified three main themes. Caregivers do not receive any formal support from the UK health and social services, and they felt they would have benefited from getting advice on what support they could access. Furthermore, the data also identified that Chinese organisations do not have the knowledge of dementia, to be able to support those living with dementia and their families. Also, people living with dementia and their families rarely present to Chinese organisations and UK health and social care services, meaning they are not receiving the support they are entitled to or need. Additionally, the community center would like to see workshops/courses around dementia for people from Chinese backgrounds. The study concludes that people from Chinese cultural backgrounds do not have sufficient access to support from UK health and social care services. More information needs to be published that will benefit Chinese communities.Keywords: Chinese, Chinese organisations, Dementia, family caregivers, social care
Procedia PDF Downloads 12229963 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 6229962 Reconceptualizing “Best Practices” in Public Sector
Authors: Eftychia Kessopoulou, Styliani Xanthopoulou, Ypatia Theodorakioglou, George Tsiotras, Katerina Gotzamani
Abstract:
Public sector managers frequently herald that implementing best practices as a set of standards, may lead to superior organizational performance. However, recent research questions the objectification of best practices, highlighting: a) the inability of public sector organizations to develop innovative administrative practices, as well as b) the adoption of stereotypical renowned practices inculcated in the public sector by international governance bodies. The process through which organizations construe what a best practice is, still remains a black box that is yet to be investigated, given the trend of continuous changes in public sector performance, as well as the burgeoning interest of sharing popular administrative practices put forward by international bodies. This study aims to describe and understand how organizational best practices are constructed by public sector performance management teams, like benchmarkers, during the benchmarking-mediated performance improvement process and what mechanisms enable this construction. A critical realist action research methodology is employed, starting from a description of various approaches on best practice nature when a benchmarking-mediated performance improvement initiative, such as the Common Assessment Framework, is applied. Firstly, we observed the benchmarker’s management process of best practices in a public organization, so as to map their theories-in-use. As a second step we contextualized best administrative practices by reflecting the different perspectives emerged from the previous stage on the design and implementation of an interview protocol. We used this protocol to conduct 30 semi-structured interviews with “best practice” process owners, in order to examine their experiences and performance needs. Previous research on best practices has shown that needs and intentions of benchmarkers cannot be detached from the causal mechanisms of the various contexts in which they work. Such causal mechanisms can be found in: a) process owner capabilities, b) the structural context of the organization, and c) state regulations. Therefore, we developed an interview protocol theoretically informed in the first part to spot causal mechanisms suggested by previous research studies and supplemented it with questions regarding the provision of best practice support from the government. Findings of this work include: a) a causal account of the nature of best administrative practices in the Greek public sector that shed light on explaining their management, b) a description of the various contexts affecting best practice conceptualization, and c) a description of how their interplay changed the organization’s best practice management.Keywords: benchmarking, action research, critical realism, best practices, public sector
Procedia PDF Downloads 12729961 Analyzing the Results of Buildings Energy Audit by Using Grey Set Theory
Authors: Tooraj Karimi, Mohammadreza Sadeghi Moghadam
Abstract:
Grey set theory has the advantage of using fewer data to analyze many factors, and it is therefore more appropriate for system study rather than traditional statistical regression which require massive data, normal distribution in the data and few variant factors. So, in this paper grey clustering and entropy of coefficient vector of grey evaluations are used to analyze energy consumption in buildings of the Oil Ministry in Tehran. In fact, this article intends to analyze the results of energy audit reports and defines most favorable characteristics of system, which is energy consumption of buildings, and most favorable factors affecting these characteristics in order to modify and improve them. According to the results of the model, ‘the real Building Load Coefficient’ has been selected as the most important system characteristic and ‘uncontrolled area of the building’ has been diagnosed as the most favorable factor which has the greatest effect on energy consumption of building. Grey clustering in this study has been used for two purposes: First, all the variables of building relate to energy audit cluster in two main groups of indicators and the number of variables is reduced. Second, grey clustering with variable weights has been used to classify all buildings in three categories named ‘no standard deviation’, ‘low standard deviation’ and ‘non- standard’. Entropy of coefficient vector of Grey evaluations is calculated to investigate greyness of results. It shows that among the 38 buildings surveyed in terms of energy consumption, 3 cases are in standard group, 24 cases are in ‘low standard deviation’ group and 11 buildings are completely non-standard. In addition, clustering greyness of 13 buildings is less than 0.5 and average uncertainly of clustering results is 66%.Keywords: energy audit, grey set theory, grey incidence matrixes, grey clustering, Iran oil ministry
Procedia PDF Downloads 37329960 FLC with 3DSVM for 4LEG 4WIRE Shunt Active Power Filter
Authors: Abdelhalim Kessal, Ali Chebabhi
Abstract:
In this paper, a controller based on fuzzy logic control (FLC) associated to Three Dimensional Space Vector Modulation (3DSVM) is applied for shunt active filter in αβo axes domain. The main goals are to improve power quality under disturbed loads, minimize source currents harmonics and reduce neutral current magnitude in the four-wire structure. FLC is used to obtain the reference current and control the DC-bus voltage at the inverter output. The switching signals of the four-leg inverter are generating through a Three Dimensional Space Vector Modulation (3DSVM). Selected simulation results have been shown to validate the proposed system.Keywords: flc, 3dsvm, sapf, harmonic, inverter
Procedia PDF Downloads 49729959 Feature Extraction of MFCC Based on Fisher-Ratio and Correlated Distance Criterion for Underwater Target Signal
Authors: Han Xue, Zhang Lanyue
Abstract:
In order to seek more effective feature extraction technology, feature extraction method based on MFCC combined with vector hydrophone is exposed in the paper. The sound pressure signal and particle velocity signal of two kinds of ships are extracted by using MFCC and its evolution form, and the extracted features are fused by using fisher-ratio and correlated distance criterion. The features are then identified by BP neural network. The results showed that MFCC, First-Order Differential MFCC and Second-Order Differential MFCC features can be used as effective features for recognition of underwater targets, and the fusion feature can improve the recognition rate. Moreover, the results also showed that the recognition rate of the particle velocity signal is higher than that of the sound pressure signal, and it reflects the superiority of vector signal processing.Keywords: vector information, MFCC, differential MFCC, fusion feature, BP neural network
Procedia PDF Downloads 53029958 Modelling Dengue Disease With Climate Variables Using Geospatial Data For Mekong River Delta Region of Vietnam
Authors: Thi Thanh Nga Pham, Damien Philippon, Alexis Drogoul, Thi Thu Thuy Nguyen, Tien Cong Nguyen
Abstract:
Mekong River Delta region of Vietnam is recognized as one of the most vulnerable to climate change due to flooding and seawater rise and therefore an increased burden of climate change-related diseases. Changes in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue fever. In this region, the peak of the dengue epidemic period is around July to September during the rainy season. It is believed that climate is an important factor for dengue transmission. This study aims to enhance the capacity of dengue prediction by the relationship of dengue incidences with climate and environmental variables for Mekong River Delta of Vietnam during 2005-2015. Mathematical models for vector-host infectious disease, including larva, mosquito, and human being were used to calculate the impacts of climate to the dengue transmission with incorporating geospatial data for model input. Monthly dengue incidence data were collected at provincial level. Precipitation data were extracted from satellite observations of GSMaP (Global Satellite Mapping of Precipitation), land surface temperature and land cover data were from MODIS. The value of seasonal reproduction number was estimated to evaluate the potential, severity and persistence of dengue infection, while the final infected number was derived to check the outbreak of dengue. The result shows that the dengue infection depends on the seasonal variation of climate variables with the peak during the rainy season and predicted dengue incidence follows well with this dynamic for the whole studied region. However, the highest outbreak of 2007 dengue was not captured by the model reflecting nonlinear dependences of transmission on climate. Other possible effects will be discussed to address the limitation of the model. This suggested the need of considering of both climate variables and another variability across temporal and spatial scales.Keywords: infectious disease, dengue, geospatial data, climate
Procedia PDF Downloads 38329957 Arabic Handwriting Recognition Using Local Approach
Authors: Mohammed Arif, Abdessalam Kifouche
Abstract:
Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM
Procedia PDF Downloads 7129956 Smart Lean Manufacturing in the Context of Industry 4.0: A Case Study
Authors: M. Ramadan, B. Salah
Abstract:
This paper introduces a framework to digitalize lean manufacturing tools to enhance smart lean-based manufacturing environments or Lean 4.0 manufacturing systems. The paper discusses the integration between lean tools and the powerful features of recent real-time data capturing systems with the help of Information and Communication Technologies (ICT) to develop an intelligent real-time monitoring and controlling system of production operations concerning lean targets. This integration is represented in the Lean 4.0 system called Dynamic Value Stream Mapping (DVSM). Moreover, the paper introduces the practice of Radio Frequency Identification (RFID) and ICT to smartly support lean tools and practices during daily production runs to keep the lean system alive and effective. This work introduces a practical description of how the lean method tools 5S, standardized work, and poka-yoke can be digitalized and smartly monitored and controlled through DVSM. A framework of the three tools has been discussed and put into practice in a German switchgear manufacturer.Keywords: lean manufacturing, Industry 4.0, radio frequency identification, value stream mapping
Procedia PDF Downloads 22929955 Reliability of Social Support Measurement Modification of the BC-SSAS among Women with Breast Cancer Who Undergone Chemotherapy in Selected Hospital, Central Java, Indonesia
Authors: R. R. Dewi Rahmawaty Aktyani Putri, Earmporn Thongkrajai, Dedy Purwito
Abstract:
There were many instruments have been developed to assess social support which has the different dimension in breast cancer patients. The Issue of measurement is a challenge to determining the component of dimensional concept, defining the unit of measurement, and establishing the validity and reliability of the measurement. However, the instruments where need to know how much support which obtained and perceived among women with breast cancer who undergone chemotherapy which it can help nurses to prevent of non-adherence in chemotherapy. This study aimed to measure the reliability of BC-SSAS instrument among 30 Indonesian women with breast cancer aged 18 years and above who undergone chemotherapy for six cycles in the oncological unit of Outpatient Department (OPD), Margono Soekardjo Hospital, Central Java, Indonesia. Data were collected during October to December 2015 by using modified the Breast Cancer Social Support Assessment (BC-SSAS). The Cronbach’s alpha analysis was carried out to measure internal consistency for reliability test of BC-SSAS instrument. This study used five experts for content validity index. The results showed that for content validity, I-CVI was 0.98 and S-CVI was 0.98; Cronbach’s alpha value was 0.971 and the Cronbach’s alpha coefficients for the subscales were high, with 0.903 for emotional support, 0.865 for informational support, 0.901 for tangible support, 0.897 for appraisal support and 0.884 for positive interaction support. The results confirmed that the BC-SSAS instrument has high reliability. BC-SSAS instruments were reliable and can be used in health care services to measure the social support received and perceived among women with breast cancer who undergone chemotherapy so that preventive interventions can be developed and the quality of health services can be improved.Keywords: BC-SSAS, women with breast cancer, chemotherapy, Indonesia
Procedia PDF Downloads 36229954 An Analysis of Business Intelligence Requirements in South African Corporates
Authors: Adheesh Budree, Olaf Jacob, Louis CH Fourie, James Njenga, Gabriel D Hoffman
Abstract:
Business Intelligence (BI) is implemented by organisations for many reasons and chief among these is improved data support, decision support and savings. The main purpose of this study is to determine BI requirements and availability within South African organisations. The study addresses the following areas as identified as part of a literature review; assessing BI practices in businesses over a range of industries, sectors and managerial functions, determining the functionality of BI (technologies, architecture and methods). It was found that the overall satisfaction with BI in larger organisations is low due to lack of ability to meet user requirements.Keywords: business intelligence, business value, data management, South Africa
Procedia PDF Downloads 57729953 Needs and Expectations of Digital Support among Parents of Children in Child Healthcare
Authors: Lotha Valan, Åsa Hörnsten, Ulf Isaksson
Abstract:
Introduction: Sweden has a national child health care program (CHCP) where all parents are offered support to raise their children and support them for lifelong health. A systematic review concludes that there is a request for guidance in using the internet effectively for the health purposes of their children. However, a study about internet use among young mothers means that the internet is not always easy to navigate for parents, and they may need support. To fill this gap and develop a digital channel to complement the child health care (CHC) for the support of parents of children within CHC, there is a demand to investigate parents' needs in relation to this purpose. Methods: The study had a qualitative approach using focus group interviews with parents. The interview data were analyzed using qualitative content analysis. Results: The main theme highlights that parents expected that a digital support channel would be something that might strengthen them toward independence concerning the care of their children in a positive way. However, they also felt that they needed personal support and that relationships with other parents and the child health care nurse were significant and meaningful. Another parental desire that emerged was that a future digital channel would facilitate and simplify access to care, and they suggested having both planned and urgent times available for parents to book. The digital channel was expected to make this possible and be a good complement to the physical contacts the traditional child healthcare currently offers. Discussion/conclusions: The parents in this study believed that digital solutions could increase their parental power in relation to the care of their children. Examples were given as nurse-led parent groups where parents with similar problems and experiences around their children could support each other and were expected to strengthen them over time. The parents stressed that a planned digital support channel also needs satisfactory solutions for both contact and response. It was suggested that there should be bookable times for both planned and urgent needs and also the possibility of rescheduling visits.Keywords: child healthcare, parents, digital support, nursing
Procedia PDF Downloads 7729952 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 12129951 Testing a Moderated Mediation Model of Person–Organization Fit, Organizational Support, and Feelings of Violation
Authors: Chi-Tai Shen
Abstract:
This study aims to examine whether perceived organizational support moderates the relationship between person–former organization fit and person–organization fit after the mediating effect of feelings of violation. A two-stage data collection method was used. Based on our research requirements, we only approached participants who were involuntary turnover from their former organizations and looking for a new job. Our final usable sample was comprised of a total of 264 participants from Taiwan. We followed Muller, Judd, and Yzerbyt, and Preacher, Rucker, and Hayes’s suggestions to test our moderated mediation model. This study found that employee perceived organizational support moderated the indirect effect of person–former organization fit on person–organization fit (through feelings of violation). Our study ends with a discussion of the main research findings and their limitations and presents suggestions regarding the direction of future studies and the empirical implications of the results.Keywords: person–organization fit, feelings of violation, organizational support, moderated mediation
Procedia PDF Downloads 26529950 Postpartum Depression and Its Association with Food Insecurity and Social Support among Women in Post-Conflict Northern Uganda
Authors: Kimton Opiyo, Elliot M. Berry, Patil Karamchand, Barnabas K. Natamba
Abstract:
Background: Postpartum depression (PPD) is a major psychiatric disorder that affects women soon after birth and in some cases, is a continuation of antenatal depression. Food insecurity (FI) and social support (SS) are known to be associated with major depressive disorder, and vice versa. This study was conducted to examine the interrelationships among FI, SS, and PPD among postpartum women in Gulu, a post-conflict region in Uganda. Methods: Cross-sectional data from postpartum women on depression symptoms, FI and SS were, respectively, obtained using the Center for Epidemiologic Studies-Depression (CES-D) scale, Individually Focused FI Access scale (IFIAS) and Duke-UNC functional social support scale. Standard regression methods were used to assess associations among FI, SS, and PPD. Results: A total of 239 women were studied, and 40% were found to have any PPD, i.e., with depressive symptom scores of ≥ 17. The mean ± standard deviation (SD) for FI score and SS scores were 6.47 ± 5.02 and 19.11 ± 4.23 respectively. In adjusted analyses, PPD symptoms were found to be positively associated with FI (unstandardized beta and standardized beta of 0.703 and 0.432 respectively, standard errors =0.093 and p-value < 0.0001) and negatively associated with SS (unstandardized beta and standardized beta of -0.263 and -0.135 respectively, standard errors = 0.111 and p-value = 0.019). Conclusions: Many women in this post-conflict region reported experiencing PPD. In addition, this data suggest that food security and psychosocial support interventions may help mitigate women’s experience of PPD or its severity.Keywords: postpartum depression, food insecurity, social support, post-conflict region
Procedia PDF Downloads 16829949 Reliability Analysis of a Life Support System in a Public Aquarium
Authors: Mehmet Savsar
Abstract:
Complex Life Support Systems (LSS) are used in all large commercial and public aquariums in order to keep the fish alive. Reliabilities of individual equipment, as well as the complete system, are extremely important and critical since the life and safety of important fish depend on these life support systems. Failure of some critical device or equipment, which do not have redundancy, results in negative consequences and affects life support as a whole. In this paper, we have considered a life support system in a large public aquarium in Kuwait Scientific Center and presented a procedure and analysis to show how the reliability of such systems can be estimated by using appropriate tools and collected data. We have also proposed possible improvements for systems reliability. In particular, addition of parallel components and spare parts are considered and the numbers of spare parts needed for each component to achieve a required reliability during specified lead time are calculated. The results show that significant improvements in system reliability can be achieved by operating some LSS components in parallel and having certain numbers of spares available in the spare parts inventories. The procedures and the results presented in this paper are expected to be useful for aquarium engineers and maintenance managers dealing with LSS.Keywords: life support systems, aquariums, reliability, failures, availability, spare parts
Procedia PDF Downloads 28029948 Secure Bio Semantic Computing Scheme
Authors: Hiroshi Yamaguchi, Phillip C. Y. Sheu, Ryo Fujita, Shigeo Tsujii
Abstract:
In this paper, the secure BioSemantic Scheme is presented to bridge biological/biomedical research problems and computational solutions via semantic computing. Due to the diversity of problems in various research fields, the semantic capability description language (SCDL) plays and important role as a common language and generic form for problem formalization. SCDL is expected the essential for future semantic and logical computing in Biosemantic field. We show several example to Biomedical problems in this paper. Moreover, in the coming age of cloud computing, the security problem is considered to be crucial issue and we presented a practical scheme to cope with this problem.Keywords: biomedical applications, private information retrieval (PIR), semantic capability description language (SCDL), semantic computing
Procedia PDF Downloads 39029947 Predicting Daily Patient Hospital Visits Using Machine Learning
Authors: Shreya Goyal
Abstract:
The study aims to build user-friendly software to understand patient arrival patterns and compute the number of potential patients who will visit a particular health facility for a given period by using a machine learning algorithm. The underlying machine learning algorithm used in this study is the Support Vector Machine (SVM). Accurate prediction of patient arrival allows hospitals to operate more effectively, providing timely and efficient care while optimizing resources and improving patient experience. It allows for better allocation of staff, equipment, and other resources. If there's a projected surge in patients, additional staff or resources can be allocated to handle the influx, preventing bottlenecks or delays in care. Understanding patient arrival patterns can also help streamline processes to minimize waiting times for patients and ensure timely access to care for patients in need. Another big advantage of using this software is adhering to strict data protection regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States as the hospital will not have to share the data with any third party or upload it to the cloud because the software can read data locally from the machine. The data needs to be arranged in. a particular format and the software will be able to read the data and provide meaningful output. Using software that operates locally can facilitate compliance with these regulations by minimizing data exposure. Keeping patient data within the hospital's local systems reduces the risk of unauthorized access or breaches associated with transmitting data over networks or storing it in external servers. This can help maintain the confidentiality and integrity of sensitive patient information. Historical patient data is used in this study. The input variables used to train the model include patient age, time of day, day of the week, seasonal variations, and local events. The algorithm uses a Supervised learning method to optimize the objective function and find the global minima. The algorithm stores the values of the local minima after each iteration and at the end compares all the local minima to find the global minima. The strength of this study is the transfer function used to calculate the number of patients. The model has an output accuracy of >95%. The method proposed in this study could be used for better management planning of personnel and medical resources.Keywords: machine learning, SVM, HIPAA, data
Procedia PDF Downloads 65