Search results for: sound absorption coefficients
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3251

Search results for: sound absorption coefficients

2831 Determination of Foaming Behavior in Thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of materials is gradually growing especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent and a thermal process was applied to obtain porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 235
2830 Layer-By-Layer Deposition of Poly (Amidoamine) and Poly (Acrylic Acid) on Grafted-Polylactide Nonwoven with Different Surface Charge

Authors: Sima Shakoorjavan, Mahdieh Eskafi, Dawid Stawski, Somaye Akbari

Abstract:

In this study, poly (amidoamine) dendritic material (PAMAM) and poly (acrylic acid) (PAA) as polycation and polyanion were deposited on surface charged polylactide (PLA) nonwoven to study the relationship of dye absorption capacity of layered-PLA with the number of deposited layers. To produce negatively charged-PLA, acrylic acid (AA) was grafted on the PLA surface (PLA-g-AA) through a chemical redox reaction with the strong oxidizing agent. Spectroscopy analysis, water contact measurement, and FTIR-ATR analysis confirm the successful grafting of AA on the PLA surface through the chemical redox reaction method. In detail, an increase in dye absorption percentage by 19% and immediate absorption of water droplets ensured hydrophilicity of PLA-g-AA surface; and the presence of new carbonyl bond at 1530 cm-¹ and a wide peak of hydroxyl between 3680-3130 cm-¹ confirm AA grafting. In addition, PLA as linear polyester can undergo aminolysis, which is the cleavage of ester bonds and replacement with amid bonds when exposed to an aminolysis agent. Therefore, to produce positively charged PLA, PAMAM as amine-terminated dendritic material was introduced to PLA molecular chains at different conditions; (1) at 60 C for 0.5, 1, 1.5, 2 hours of aminolysis and (2) at room temperature (RT) for 1, 2, 3, and 4 hours of aminolysis. Weight changes and spectrophotometer measurements showed a maximum in weight gain graph and K/S value curve indicating the highest PAMAM attachment at 60 C for 1 hour and RT for 2 hours which is considered as an optimum condition. Also, the emerging new peak around 1650 cm-1 corresponding to N-H bending vibration and double wide peak at around 3670-3170 cm-1 corresponding to N-H stretching vibration confirm PAMAM attachment in selected optimum condition. In the following, regarding the initial surface charge of grafted-PLA, lbl deposition was performed and started with PAA or PAMAM. FTIR-ATR results confirm chemical changes in samples due to deposition of the first layer (PAA or PAMAM). Generally, spectroscopy analysis indicated that an increase in layer number costed dye absorption capacity. It can be due to the partial deposition of a new layer on the previously deposited layer; therefore, the available PAMAM at the first layer is more than the third layer. In detail, in the case of layer-PLA starting lbl with negatively charged, having PAMAM as the first top layer (PLA-g-AA/PAMAM) showed the highest dye absorption of both cationic and anionic model dye.

Keywords: surface modification, layer-by-layer technique, dendritic materials, PAMAM, dye absorption capacity, PLA nonwoven

Procedia PDF Downloads 84
2829 Comparing Sounds of the Singing Voice

Authors: Christel Elisabeth Bonin

Abstract:

This experiment aims at showing that classical singing and belting have both different singing qualities, but singing with a speaking voice has no singing quality. For this purpose, a singing female voice was recorded on four different tone pitches, singing the vowel ‘a’ by using 3 different kinds of singing - classical trained voice, belting voice and speaking voice. The recordings have been entered in the Software Praat. Then the formants of each recorded tone were compared to each other and put in relationship to the singer’s formant. The visible results are taken as an indicator of comparable sound qualities of a classical trained female voice and a belting female voice concerning the concentration of overtones in F1 to F5 and a lack of sound quality in the speaking voice for singing purpose. The results also show that classical singing and belting are both valuable vocal techniques for singing due to their richness of overtones and that belting is not comparable to shouting or screaming. Singing with a speaking voice in contrast should not be called singing due to the lack of overtones which means by definition that there is no musical tone.

Keywords: formants, overtone, singer’s formant, singing voice, belting, classical singing, singing with the speaking voice

Procedia PDF Downloads 328
2828 Determination of Foaming Behavior in thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world, with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of material is gradually growing, especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent, and a thermal process was applied to obtain a porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 238
2827 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4x4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4*4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4*4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: chirp signals, image multiplexing, image transformation, linear canonical transform, polynomial approximation

Procedia PDF Downloads 412
2826 The Influence of Gossip on the Absorption Probabilities in Moran Process

Authors: Jurica Hižak

Abstract:

Getting to know the agents, i.e., identifying the free riders in a population, can be considered one of the main challenges in establishing cooperation. An ordinary memory-one agent such as Tit-for-tat may learn “who is who” in the population through direct interactions. Past experiences serve them as a landmark to know with whom to cooperate and against whom to retaliate in the next encounter. However, this kind of learning is risky and expensive. A cheaper and less painful way to detect free riders may be achieved by gossiping. For this reason, as part of this research, a special type of Tit-for-tat agent was designed – a “Gossip-Tit-for-tat” agent that can share data with other agents of its kind. The performances of both strategies, ordinary Tit-for-tat and Gossip-Tit-for-tat, against Always-defect have been compared in the finite-game framework of the Iterated Prisoner’s Dilemma via the Moran process. Agents were able to move in a random-walk fashion, and they were programmed to play Prisoner’s Dilemma each time they met. Moreover, at each step, one randomly selected individual was eliminated, and one individual was reproduced in accordance with the Moran process of selection. In this way, the size of the population always remained the same. Agents were selected for reproduction via the roulette wheel rule, i.e., proportionally to the relative fitness of the strategy. The absorption probability was calculated after the population had been absorbed completely by cooperators, which means that all the states have been occupied and all of the transition probabilities have been determined. It was shown that gossip increases absorption probabilities and therefore enhances the evolution of cooperation in the population.

Keywords: cooperation, gossip, indirect reciprocity, Moran process, prisoner’s dilemma, tit-for-tat

Procedia PDF Downloads 97
2825 Vapour Liquid Equilibrium Measurement of CO₂ Absorption in Aqueous 2-Aminoethylpiperazine (AEP)

Authors: Anirban Dey, Sukanta Kumar Dash, Bishnupada Mandal

Abstract:

Carbondioxide (CO2) is a major greenhouse gas responsible for global warming and fossil fuel power plants are the main emitting sources. Therefore the capture of CO2 is essential to maintain the emission levels according to the standards. Carbon capture and storage (CCS) is considered as an important option for stabilization of atmospheric greenhouse gases and minimizing global warming effects. There are three approaches towards CCS: Pre combustion capture where carbon is removed from the fuel prior to combustion, Oxy-fuel combustion, where coal is combusted with oxygen instead of air and Post combustion capture where the fossil fuel is combusted to produce energy and CO2 is removed from the flue gases left after the combustion process. Post combustion technology offers some advantage as existing combustion technologies can still be used without adopting major changes on them. A number of separation processes could be utilized part of post –combustion capture technology. These include (a) Physical absorption (b) Chemical absorption (c) Membrane separation (d) Adsorption. Chemical absorption is one of the most extensively used technologies for large scale CO2 capture systems. The industrially important solvents used are primary amines like Monoethanolamine (MEA) and Diglycolamine (DGA), secondary amines like diethanolamine (DEA) and Diisopropanolamine (DIPA) and tertiary amines like methyldiethanolamine (MDEA) and Triethanolamine (TEA). Primary and secondary amines react fast and directly with CO2 to form stable carbamates while Tertiary amines do not react directly with CO2 as in aqueous solution they catalyzes the hydrolysis of CO2 to form a bicarbonate ion and a protonated amine. Concentrated Piperazine (PZ) has been proposed as a better solvent as well as activator for CO2 capture from flue gas with a 10 % energy benefit compared to conventional amines such as MEA. However, the application of concentrated PZ is limited due to its low solubility in water at low temperature and lean CO2 loading. So following the performance of PZ its derivative 2-Aminoethyl piperazine (AEP) which is a cyclic amine can be explored as an activator towards the absorption of CO2. Vapour liquid equilibrium (VLE) in CO2 capture systems is an important factor for the design of separation equipment and gas treating processes. For proper thermodynamic modeling accurate equilibrium data for the solvent system over a wide range of temperatures, pressure and composition is essential. The present work focuses on the determination of VLE data for (AEP + H2O) system at 40 °C for various composition range.

Keywords: absorption, aminoethyl piperazine, carbondioxide, vapour liquid equilibrium

Procedia PDF Downloads 267
2824 Experimental Approach for Determining Hemi-Anechoic Characteristics of Engineering Acoustical Test Chambers

Authors: Santiago Montoya-Ospina, Raúl E. Jiménez-Mejía, Rosa Elvira Correa Gutiérrez

Abstract:

An experimental methodology is proposed for determining hemi-anechoic characteristics of an engineering acoustic room built at the facilities of Universidad Nacional de Colombia to evaluate the free-field conditions inside the chamber. Experimental results were compared with theoretical ones in both, the source and the sound propagation inside the chamber. Acoustic source was modeled by using monopole radiation pattern from punctual sources and the image method was considered for dealing with the reflective plane of the room, that means, the floor without insulation. Finite-difference time-domain (FDTD) method was implemented to calculate the sound pressure value at every spatial point of the chamber. Comparison between theoretical and experimental data yields to minimum error, giving satisfactory results for the hemi-anechoic characterization of the chamber.

Keywords: acoustic impedance, finite-difference time-domain, hemi-anechoic characterization

Procedia PDF Downloads 162
2823 Capital Mobility in Savings and Investment across China and the ASEAN-5: Evidence from Recursive Cointegration

Authors: Chang Lee Shu-Jung, Mei-Se Chien, Chien-Chiang Lee, Hui-Ting Hu

Abstract:

This paper applies recursive cointegration analysis to examine the dynamic changes in Feldstein-Horioka saving-investment (S-I) coefficients across China and the ASEAN-5 countries over time. To the extent that the S-I coefficients measure international capital mobility, the main empirical results are as follows. The recursive trace statistics show that the investment- savings nexus varies in these six countries. There is no cointegration between investment and savings in three countries (China, Malaysia, and Singapore), which means that the mobility of the capital markets in the three is high and that domestic investment in them will be financed by the global pool of capital. As to the other three countries (Indonesia, Thailand, and Philippines), there is cointegration between investment and savings for part of the sample period in the three, including before 2002 for Thailand, before 2001 for Indonesia, and before 2002 for Philippines. This shows these three countries achieved highly mobile and open capital markets later.

Keywords: investment, savings, recursive cointegration test, ASEAN, China

Procedia PDF Downloads 552
2822 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length

Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale

Abstract:

Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity.

Keywords: heart sounds, PCG segmentation, event detection, recurrent neural networks, PCG curve length

Procedia PDF Downloads 178
2821 A Parametric Study on the Backwater Level Due to a Bridge Constriction

Authors: S. Atabay, T. A. Ali, Md. M. Mortula

Abstract:

This paper presents the results and findings from a parametric study on the water surface elevation at upstream of bridge constriction for subcritical flow. In this study, the influence of Manning's Roughness Coefficient of main channel (nmc) and of floodplain (nfp), and bridge opening (b) flow rate (Q), contraction (kcon), and expansion coefficients (kexp) were investigated on backwater level. The DECK bridge models with different span widths and without any pier were investigated within the two stage channel having various roughness conditions. One of the most commonly used commercial one-dimensional HEC-RAS model was used in this parametric study. This study showed that the effects of main channel roughness (nmc) and flow rate (Q) on the backwater level are much higher than those of the floodplain roughness (nfp). Bridge opening (b) with contraction (kcon) and expansion coefficients (kexp) have very little effect on the backwater level within this range of parameters.

Keywords: bridge backwater, parametric study, waterways, HEC-RAS model

Procedia PDF Downloads 306
2820 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 106
2819 Preparation and Characterization of Chitosan-Hydrocortisone Nanoshell for Drug Delivery Application

Authors: Suyeon Kwon, Ik Joong Kang, Wang Bingjie

Abstract:

Chitosan is a polymer that is usually produced from N-deacetylation of chitin. It is emerging as a promising biocompatible polymer that is harmless to humans. For the reason that many merits such as good adsorptive, biodegradability, many researches are being done on the chitosan for drug delivery system. Drug delivery system (DDS) has been developed for the control of drug. It makes the drug can be delivered effectively and safely into the targeted human body. The drug used in this work is hydrocortisone that is used in Rheumatism, skin diseases, allergy treatment. In this work, hydrocortisone was used to make allergic rhinitis medicine. Our study focuses on drug delivery through the nasal mucosa by using hydrocortisone impregnated chitosan nanoshells. This study has performed an investigation in order to establish the optimal conditions, changing concentration, quantity of hydrocortisone. DLS, SEM, TEM, FT-IR, UV spectrum were used to analyze the manufactured chitosan-hydrocortisone silver nanoshell and silver nanoshell, whose function as drug carriers. This study has performed an investigation on new drug carriers and delivery routes for hydrocortisone. Various methods of manufacturing chitosan-hydrocortisone nanoshells were attempted in order to establish the optimal condition. As a result, the average size of chitosan-hydrocortisone silver nanoshell is about 80 nm. So, chitosan-hydrocortisone silver nanoshell is suitable as drug carriers because optimal size of drug carrier in human body is less than 120 nm. UV spectrum of Chitosan-hydrocortisone silver nanoshell shows the characteristic peak of silver nanoshell at 420 nm. Likewise, the average size of chitosan-hydrocortisone silver nanoshell is about 100nm. It is also suitable for drug carrier in human body. Also, multi-layered silver shell over chitosan nanoshells induced the red-shift of absorption peak and increased the intensity of absorption peak. The resultant chitosan–silver nanocomposites (or nanoshells) exhibited the absorption peak around 430nm attributed to silvershell formation. i.e. the absorption peak was red-shifted by ca. 40 nm in reference to 390 nm of silver nanoshells.

Keywords: chitosan, drug delivery, hydrocortisone, rhinitis, nanoshell

Procedia PDF Downloads 260
2818 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: sound detection, impulsive signal, background noise, neural network

Procedia PDF Downloads 319
2817 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation

Authors: Y. T. Tsai, Jin H. Huang

Abstract:

The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.

Keywords: inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method

Procedia PDF Downloads 303
2816 Thermal Expansion Coefficient and Young’s Modulus of Silica-Reinforced Epoxy Composite

Authors: Hyu Sang Jo, Gyo Woo Lee

Abstract:

In this study, the evaluation of thermal stability of the micrometer-sized silica particle reinforced epoxy composite was carried out through the measurement of thermal expansion coefficient and Young’s modulus of the specimens. For all the specimens in this study from the baseline to those containing 50 wt% silica filler, the thermal expansion coefficients and the Young’s moduli were gradually decreased down to 20% and increased up to 41%, respectively. The experimental results were compared with filler-volume-based simple empirical relations. The experimental results of thermal expansion coefficients correspond with those of Thomas’s model which is modified from the rule of mixture. However, the measured result for Young’s modulus tends to be increased slightly. The differences in increments of the moduli between experimental and numerical model data are quite large.

Keywords: thermal stability, silica-reinforced, epoxy composite, coefficient of thermal expansion, empirical model

Procedia PDF Downloads 296
2815 Simulation of Gamma Rays Attenuation Coefficient for Some common Shielding Materials Using Monte Carlo Program

Authors: Cherief Houria, Fouka Mourad

Abstract:

In this work, the simulation of the radiation attenuation is carried out in a photon detector consisting of different common shielding material using a Monte Carlo program called PTM. The aim of the study is to investigate the effect of atomic weight and the thickness of shielding materials on the gamma radiation attenuation ability. The linear attenuation coefficients of Aluminum (Al), Iron (Fe), and lead (Pb) elements were evaluated at photons energy of 661:7KeV that are considered to be emitted from a standard radioactive point source Cs 137. The experimental measurements have been performed for three materials to obtain these linear attenuation coefficients, using a Gamma NaI(Tl) scintillation detector. Our results have been compared with the simulation results of the linear attenuation coefficient using the XCOM database and Geant4 codes and reveal that they are well agreed with both simulation data.

Keywords: gamma photon, Monte Carlo program, radiation attenuation, shielding material, the linear attenuation coefficient

Procedia PDF Downloads 203
2814 Modeling Standpipe Pressure Using Multivariable Regression Analysis by Combining Drilling Parameters and a Herschel-Bulkley Model

Authors: Seydou Sinde

Abstract:

The aims of this paper are to formulate mathematical expressions that can be used to estimate the standpipe pressure (SPP). The developed formulas take into account the main factors that, directly or indirectly, affect the behavior of SPP values. Fluid rheology and well hydraulics are some of these essential factors. Mud Plastic viscosity, yield point, flow power, consistency index, flow rate, drillstring, and annular geometries are represented by the frictional pressure (Pf), which is one of the input independent parameters and is calculated, in this paper, using Herschel-Bulkley rheological model. Other input independent parameters include the rate of penetration (ROP), applied load or weight on the bit (WOB), bit revolutions per minute (RPM), bit torque (TRQ), and hole inclination and direction coupled in the hole curvature or dogleg (DL). The technique of repeating parameters and Buckingham PI theorem are used to reduce the number of the input independent parameters into the dimensionless revolutions per minute (RPMd), the dimensionless torque (TRQd), and the dogleg, which is already in the dimensionless form of radians. Multivariable linear and polynomial regression technique using PTC Mathcad Prime 4.0 is used to analyze and determine the exact relationships between the dependent parameter, which is SPP, and the remaining three dimensionless groups. Three models proved sufficiently satisfactory to estimate the standpipe pressure: multivariable linear regression model 1 containing three regression coefficients for vertical wells; multivariable linear regression model 2 containing four regression coefficients for deviated wells; and multivariable polynomial quadratic regression model containing six regression coefficients for both vertical and deviated wells. Although that the linear regression model 2 (with four coefficients) is relatively more complex and contains an additional term over the linear regression model 1 (with three coefficients), the former did not really add significant improvements to the later except for some minor values. Thus, the effect of the hole curvature or dogleg is insignificant and can be omitted from the input independent parameters without significant losses of accuracy. The polynomial quadratic regression model is considered the most accurate model due to its relatively higher accuracy for most of the cases. Data of nine wells from the Middle East were used to run the developed models with satisfactory results provided by all of them, even if the multivariable polynomial quadratic regression model gave the best and most accurate results. Development of these models is useful not only to monitor and predict, with accuracy, the values of SPP but also to early control and check for the integrity of the well hydraulics as well as to take the corrective actions should any unexpected problems appear, such as pipe washouts, jet plugging, excessive mud losses, fluid gains, kicks, etc.

Keywords: standpipe, pressure, hydraulics, nondimensionalization, parameters, regression

Procedia PDF Downloads 84
2813 Characterization and Modelling of Aerosol Droplet in Absorption Columns

Authors: Hammad Majeed, Hanna Knuutila, Magne Hillestad, Hallvard F. Svendsen

Abstract:

Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem. Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles.

Keywords: absorption columns, aerosol formation, amine emissions, internal droplet profiles, monoethanolamine (MEA), post combustion CO2 capture, simulation

Procedia PDF Downloads 246
2812 Enhancing Seismic Performance of Ductile Moment Frames with Delayed Wire-Rope Bracing Using Middle Steel Plate

Authors: Babak Dizangian, Mohammad Reza Ghasemi, Akram Ghalandari

Abstract:

Moment frames have considerable ductility against cyclic lateral loads and displacements; however, if this feature causes the relative displacement to exceed the permissible limit, it can impose unfavorable hysteretic behavior on the frame. Therefore, adding a bracing system with the capability of preserving the capacity of high energy absorption and controlling displacements without a considerable increase in the stiffness is quite important. This paper investigates the retrofitting of a single storey steel moment frame through a delayed wire-rope bracing system using a middle steel plate. In this model, the steel plate lies where the wire ropes meet, and the model geometry is such that the cables are continuously under tension so that they can take the most advantage of the inherent potential they have in tolerating tensile stress. Using the steel plate also reduces the system stiffness considerably compared to cross bracing systems and preserves the ductile frame’s energy absorption capacity. In this research, the software models of delayed wire-rope bracing system have been studied, validated, and compared with other researchers’ laboratory test results.

Keywords: cyclic loading, delayed wire rope bracing, ductile moment frame, energy absorption, hysteresis curve

Procedia PDF Downloads 290
2811 Yaw Angle Effect on the Aerodynamic Performance of Rear-Roof Spoiler of Hatchback Vehicle

Authors: See-Yuan Cheng, Kwang-Yhee Chin, Shuhaimi Mansor

Abstract:

Rear-roof spoiler is commonly used for improving the aerodynamic performance of road vehicles. This study aims to investigate the effect of yaw angle on the effectiveness of strip-type rear-roof spoiler in providing lower drag and lift coefficients of a hatchback model. A computational fluid dynamics (CFD) method was used. The numerically obtained results were compared to the experimental data for validation of the CFD method. At increasing yaw angle, both the drag and lift coefficients of the model were to increase. In addition, the effectiveness of spoiler was deteriorated. These unfavorable effects were due to the formation of longitudinal vortices around the side edges of the model that had caused the surface pressure of the model to drop. Furthermore, there were significant crossflow structures developed behind the model at larger yaw angle, which were associated with the drop in the surface pressure of the rear section of the model and cause the drag coefficient to rise.

Keywords: Ahmed model, aerodynamics, spoiler, yaw angle

Procedia PDF Downloads 357
2810 Absorption Kinetic and Tensile Mechanical Properties of Swollen Elastomer/Carbon Black Nanocomposites using Typical Solvents

Authors: F. Elhaouzi, H. Lahlali, M. Zaghrioui, I. El Aboudi A. BelfKira, A. Mdarhri

Abstract:

The effect of physico chemical properties of solvents on the transport process and mechanical properties in elastomeric nano composite materials is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate polymer filled with hard spherical carbon black (CB) nano particles. The swelling behavior was studied by immersion the dried samples in selected solvents at room temperature during 2 days. For this purpose, two chemical compounds methyl derivatives of aromatic hydrocarbons of benzene, i.e. toluene and xylene, are used to search for the mass and molar volume dependence on the absorption kinetics. Mass gain relative to the mass of dry material at specific times was recorded to probe the absorption kinetics. The transport of solvent molecules in these filled elastomeric composites is following a Fickian diffusion mechanism. Additionally, the swelling ratio and diffusivity coefficient deduced from the Fickian law are found to decrease with the CB concentration. These results indicate that the CB nano particles increase the effective path length for diffusion and consequently limit the absorption of the solvent by occupation free volumes in the material. According to physico chemical properties of the two used solvents, it is found that the diffusion is more important for the toluene molecules solvent due to their low values of the molecular weight and volume molar compared to those for the xylene. Differential Scanning Calorimetry (DSC) and X-ray photo electron (XPS) were also used to probe the eventual change in the chemical composition for the swollen samples. Mechanically speaking, the stress-strain curves of uniaxial tensile tests pre- and post- swelling highlight a remarkably decrease of the strength and elongation at break of the swollen samples. This behavior can be attributed to the decrease of the load transfer density between the matrix and the CB in the presence of the solvent. We believe that the results reported in this experimental investigation can be useful for some demanding applications e.g. tires, sealing rubber.

Keywords: nanocomposite, absorption kinetics, mechanical behavior, diffusion, modelling, XPS, DSC

Procedia PDF Downloads 352
2809 Durability of Lightweight Concrete Material Made from Date Palma Seeds

Authors: Mohammed Almograbi

Abstract:

Libya is one of the largest producers of dates from date palm, generating about 60000 tonnes of date palm seeds (DPS) annually. This large amount of seeds led to studies into the possible use as aggregates in lightweight concrete for some special structures. The utilization of DPS as aggregate in concrete provides a good solution as alternative aggregate to the stone aggregate. It has been recognized that, DPS can be used as coarse aggregate in structural lightweight concrete industry. For any structure member, the durability is one of the most important considerations during its service life. This paper presents the durability properties of DPS concrete. These include the water permeability, water absorption, sorptivity and chloride penetration. The test results obtained were comparable to the conventional lightweight concrete.

Keywords: date palm seeds, lightweight concrete, durability, sustainability, permeability of concrete, water absorption of concrete, sorptivity of concrete

Procedia PDF Downloads 654
2808 Investigation about Structural and Optical Properties of Bulk and Thin Film of 1H-CaAlSi by Density Functional Method

Authors: M. Babaeipour, M. Vejdanihemmat

Abstract:

Optical properties of bulk and thin film of 1H-CaAlSi for two directions (1,0,0) and (0,0,1) were studied. The calculations are carried out by Density Functional Theory (DFT) method using full potential. GGA approximation was used to calculate exchange-correlation energy. The calculations are performed by WIEN2k package. The results showed that the absorption edge is shifted backward 0.82eV in the thin film than the bulk for both directions. The static values of the real part of dielectric function for four cases were obtained. The static values of the refractive index for four cases are calculated too. The reflectivity graphs have shown an intensive difference between the reflectivity of the thin film and the bulk in the ultraviolet region.

Keywords: 1H-CaAlSi, absorption, bulk, optical, thin film

Procedia PDF Downloads 518
2807 Optimization of Vertical Axis Wind Turbine Based on Artificial Neural Network

Authors: Mohammed Affanuddin H. Siddique, Jayesh S. Shukla, Chetan B. Meshram

Abstract:

The neural networks are one of the power tools of machine learning. After the invention of perceptron in early 1980's, the neural networks and its application have grown rapidly. Neural networks are a technique originally developed for pattern investigation. The structure of a neural network consists of neurons connected through synapse. Here, we have investigated the different algorithms and cost function reduction techniques for optimization of vertical axis wind turbine (VAWT) rotor blades. The aerodynamic force coefficients corresponding to the airfoils are stored in a database along with the airfoil coordinates. A forward propagation neural network is created with the input as aerodynamic coefficients and output as the airfoil co-ordinates. In the proposed algorithm, the hidden layer is incorporated into cost function having linear and non-linear error terms. In this article, it is observed that the ANNs (Artificial Neural Network) can be used for the VAWT’s optimization.

Keywords: VAWT, ANN, optimization, inverse design

Procedia PDF Downloads 323
2806 Determination of Friction and Damping Coefficients of Folded Cover Mechanism Deployed by Torsion Springs

Authors: I. Yilmaz, O. Taga, F. Kosar, O. Keles

Abstract:

In this study, friction and damping coefficients of folded cover mechanism were obtained in accordance with experimental studies and data. Friction and damping coefficients are the most important inputs to accomplish a mechanism analysis. Friction and damping are two objects that change the time of deployment of mechanisms and their dynamic behaviors. Though recommended friction coefficient values exist in literature, damping is differentiating feature according to mechanic systems. So the damping coefficient should be obtained from mechanism test outputs. In this study, the folded cover mechanism use torsion springs for deploying covers that are formerly close folded position. Torsion springs provide folded covers with desirable deploying time according to variable environmental conditions. To verify all design revisions with system tests will be so costly so that some decisions are taken in accordance with numerical methods. In this study, there are two folded covers required to deploy simultaneously. Scotch-yoke and crank-rod mechanisms were combined to deploy folded covers simultaneously. The mechanism was unlocked with a pyrotechnic bolt onto scotch-yoke disc. When pyrotechnic bolt was exploded, torsion springs provided rotational movement for mechanism. Quick motion camera was recording dynamic behaviors of system during deployment case. Dynamic model of mechanism was modeled as rigid body with Adams MBD (multi body dynamics) then torque values provided by torsion springs were used as an input. A well-advised range of friction and damping coefficients were defined in Adams DOE (design of experiment) then a large number of analyses were performed until deployment time of folded covers run in with test data observed in record of quick motion camera, thus the deployment time of mechanism and dynamic behaviors were obtained. Same mechanism was tested with different torsion springs and torque values then outputs were compared with numerical models. According to comparison, it was understood that friction and damping coefficients obtained in this study can be used safely when studying on folded objects required to deploy simultaneously. In addition to model generated with Adams as rigid body the finite element model of folded mechanism was generated with Abaqus then the outputs of rigid body model and finite element model was compared. Finally, the reasonable solutions were suggested about different outputs of these solution methods.

Keywords: damping, friction, pyro-technic, scotch-yoke

Procedia PDF Downloads 322
2805 Analysis of Automotive Sensor for Engine Knock System

Authors: Miroslav Gutten, Jozef Jurcik, Daniel Korenciak, Milan Sebok, Matej Kuceraa

Abstract:

This paper deals with the phenomenon of the undesirable detonation combustion in internal combustion engines. A control unit of the engine monitors these detonations using piezoelectric knock sensors. With the control of these sensors the detonations can be objectively measured just outside the car. If this component provides small amplitude of the output voltage it could happen that there would have been in the areas of the engine ignition combustion. The paper deals with the design of a simple device for the detection of this disorder. A construction of the testing device for the knock sensor suitable for diagnostics of knock combustion in internal combustion engines will be presented. The output signal of presented sensor will be described by Bessel functions. Using the first voltage extremes on the characteristics it is possible to create a reference for the evaluation of the polynomial residue. It should be taken into account that the velocity of sound in air is 330 m/s. This sound impinges on the walls of the combustion chamber and is detected by the sensor. The resonant frequency of the clicking of the motor is usually in the range from 5 kHz to 15 kHz. The sensor worked in the field to 37 kHz, which shall be taken into account on an own sensor resonance.

Keywords: diagnostics, knock sensor, measurement, testing device

Procedia PDF Downloads 447
2804 Stability of Solutions of Semidiscrete Stochastic Systems

Authors: Ramazan Kadiev, Arkadi Ponossov

Abstract:

Semidiscrete systems contain both continuous and discrete components. This means that the dynamics is mostly continuous, but at certain instants, it is exposed to abrupt influences. Such systems naturally appear in applications, for example, in biological and ecological models as well as in the control theory. Therefore, the study of semidiscrete systems has recently attracted the attention of many specialists. Stochastic effects are an important part of any realistic approach to modeling. For example, stochasticity arises in the population dynamics, demographic and ecological due to a change in time of factors external to the system affecting the survival of the population. In control theory, random coefficients can simulate inaccuracies in measurements. It will be shown in the presentation how to incorporate such effects into semidiscrete systems. Stability analysis is an essential part of modeling real-world problems. In the presentation, it will be explained how sufficient conditions for the moment stability of solutions in terms of the coefficients for linear semidiscrete stochastic equations can be derived using non-Lyapunov technique.

Keywords: abrupt changes, exponential stability, regularization, stochastic noises

Procedia PDF Downloads 187
2803 TiO2/PDMS Coating With Minimum Solar Absorption Loss for Passive Daytime Radiative Cooling

Authors: Bhrigu Rishi Mishra, Sreerag Sundaram, Nithin Jo Varghese, Karthik Sasihithlu

Abstract:

We have designed a TiO2/PDMS coating with 94% solar reflection, 96% IR emission, and 81.8 W/m2 cooling power for passive daytime radiative cooling using Kubelka Munk theory and CST microwave studio. To reduce solar absorption loss in 0.3-0.39 m wavelength region, a TiO2 thin film on top of the coating is used. Simulation using Ansys Lumerical shows that for a 20 m thick TiO2/PDMS coating, a TiO2 thin film of 84 nm increases the coating's reflectivity by 11% in the solar region.

Keywords: passive daytime radiative cooling, disordered metamaterial, Kudelka Munk theory, solar reflectivity

Procedia PDF Downloads 131
2802 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: Matevž Breška, Iztok Peruš, Vlado Stankovski

Abstract:

Systematic overview of existing Ground Motion Prediction Equations (GMPEs) has been published by Douglas. The number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration (PGA) the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database, peak ground acceleration

Procedia PDF Downloads 462