Search results for: productivity measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4204

Search results for: productivity measurement

3784 Pushover Experiment of Traditional Dieh-Dou Timber Frame

Authors: Ren Zuo Wang

Abstract:

In this paper, in order to investigate the joint behaviors of the Dieh-Dou structure. A pushover experiment of Dieh-Dou Jia-Dong is implemented. NDI, LVDT and image measurement system are used to measure displacements of joints and deformations of Dieh-Dou Jia-Dong. In addition, joint rotation-moment relationships of column restoring force, purlin-supporting, Dou-Shu, Dou-Gong brackets, primary beam-Gua Tong, secondary beam-Gua Tong, Tertiary beam are builied. From Jia-Dong experiments, formulations of joint rotation are proposed.

Keywords: pushover experiment, Dieh-Dou timber frame, image measurement system, joint rotation-moment relationships

Procedia PDF Downloads 444
3783 Investigation of the Effects of the Whey Addition on the Biogas Production of a Reactor Using Cattle Manure for Biogas Production

Authors: Behnam Mahdiyan Nasl

Abstract:

In a lab-scale research, the effects of feeding whey into the biogas system and how to solve the probable problems arising were analysed. In the study a semi-continuous glass reactor, having a total capacity of 13 liters and having a working capacity of 10 liters, was placed in an incubator, and the temperature was tried to be held at 38 °C. At first, the reactor was operated by adding 5 liters of animal manure and water with a ratio of 1/1. By passing time, the production rate of the gas reduced intensively that on the fourth day there was no production of gas and the system stopped working. In this condition, the pH was adjusted and by adding NaOH, it was increased from 5.4 to 7. On 48th day, the first gas measurement was done and an amount of 12.07 % of CH₄ was detected. After making buffer in the ambient, the number of bacteria existing in the cattle’s manure and contributing to the gas production was thought to be not adequate, and up to 20 % of its volume 2 liters of mud was added to the reactor. 7 days after adding the anaerobic mud, second gas measurement was carried out, and biogas including 43 % CH₄ was obtained. From the 61st day of the study, the cheese whey with the animal manure was started to be added with an amount of 40 mL per day. However, by passing time, the raising of the microorganisms existed in the whey (especially Ni and Co), the percent of methane in the biogas decreased. In fact, 2 weeks after adding PAS, the gas measurement was done and 36,97 % CH₄ was detected. 0,06 mL Ni-Co (to gain a concentration of 0.05 mg/L in the reactor’s mixture) solution was added to the system for 15 days. To find out the effect of the solution on archaea, 7 days after stopping addition of the solution, methane gas was found to have a 9,03 % increase and reach 46 %. Lastly, the effects of adding molasses to the reactor were investigated. The effects of its activity on the bacteria was analysed by adding 4 grams of it to the system. After adding molasses in 10 days, according to the last measurement, the amount of methane gas reached up to 49%.

Keywords: biogas, cheese whey, cattle manure, energy

Procedia PDF Downloads 334
3782 Understanding the Impact of Climate-Induced Rural-Urban Migration on the Technical Efficiency of Maize Production in Malawi

Authors: Innocent Pangapanga-Phiri, Eric Dada Mungatana

Abstract:

This study estimates the effect of climate-induced rural-urban migrants (RUM) on maize productivity. It uses panel data gathered by the National Statistics Office and the World Bank to understand the effect of RUM on the technical efficiency of maize production in rural Malawi. The study runs the two-stage Tobit regression to isolate the real effect of rural-urban migration on the technical efficiency of maize production. The results show that RUM significantly reduces the technical efficiency of maize production. However, the interaction of RUM and climate-smart agriculture has a positive and significant influence on the technical efficiency of maize production, suggesting the need for re-investing migrants’ remittances in agricultural activities.

Keywords: climate-smart agriculture, farm productivity, rural-urban migration, panel stochastic frontier models, two-stage Tobit regression

Procedia PDF Downloads 133
3781 Continuous Blood Pressure Measurement from Pulse Transit Time Techniques

Authors: Chien-Lin Wang, Cha-Ling Ko, Tainsong Chen

Abstract:

Pulse Blood pressure (BP) is one of the vital signs, and is an index that helps determining the stability of life. In this respect, some spinal cord injury patients need to take the tilt table test. While doing the test, the posture changes abruptly, and may cause a patient’s BP to change abnormally. This may cause patients to feel discomfort, and even feel as though their life is threatened. Therefore, if a continuous non-invasive BP assessment system were built, it could help to alert health care professionals in the process of rehabilitation when the BP value is out of range. In our research, BP assessed by the pulse transit time technique was developed. In the system, we use a self-made photoplethysmograph (PPG) sensor and filter circuit to detect two PPG signals and to calculate the time difference. The BP can immediately be assessed by the trend line. According to the results of this study, the relationship between the systolic BP and PTT has a highly negative linear correlation (R2=0.8). Further, we used the trend line to assess the value of the BP and compared it to a commercial sphygmomanometer (Omron MX3); the error rate of the system was found to be in the range of ±10%, which is within the permissible error range of a commercial sphygmomanometer. The continue blood pressure measurement from pulse transit time technique may have potential to become a convenience method for clinical rehabilitation.

Keywords: continous blood pressure measurement, PPG, time transit time, transit velocity

Procedia PDF Downloads 354
3780 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
3779 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry

Authors: C. A. Barros, Ana P. Barroso

Abstract:

Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.

Keywords: automotive Industry, industry 4.0, Internet of Things, IATF 16949:2016, measurement system analysis

Procedia PDF Downloads 214
3778 Stray Light Reduction Methodology by a Sinusoidal Light Modulation and Three-Parameter Sine Curve Fitting Algorithm for a Reflectance Spectrometer

Authors: Hung Chih Hsieh, Cheng Hao Chang, Yun Hsiang Chang, Yu Lin Chang

Abstract:

In the applications of the spectrometer, the stray light that comes from the environment affects the measurement results a lot. Hence, environment and instrument quality control for the stray reduction is critical for the spectral reflectance measurement. In this paper, a simple and practical method has been developed to correct a spectrometer's response for measurement errors arising from the environment's and instrument's stray light. A sinusoidal modulated light intensity signal was incident on a tested sample, and then the reflected light was collected by the spectrometer. Since a sinusoidal signal modulated the incident light, the reflected light also had a modulated frequency which was the same as the incident signal. Using the three-parameter sine curve fitting algorithm, we can extract the primary reflectance signal from the total measured signal, which contained the primary reflectance signal and the stray light from the environment. The spectra similarity between the extracted spectra by this proposed method with extreme environment stray light is 99.98% similar to the spectra without the environment's stray light. This result shows that we can measure the reflectance spectra without the affection of the environment's stray light.

Keywords: spectrometer, stray light, three-parameter sine curve fitting, spectra extraction

Procedia PDF Downloads 248
3777 Study on Intensity Modulated Non-Contact Optical Fiber Vibration Sensors of Different Configurations

Authors: Dinkar Dantala, Kishore Putha, Padmavathi Manchineelu

Abstract:

Optical fibers are widely used in the measurement of several physical parameters like temperature, pressure, vibrations etc. Measurement of vibrations plays a vital role in machines. In this paper, three fiber optic non-contact vibration sensors were discussed, which are designed based on the principle of light intensity modulation. The Dual plastic optical fiber, Fiber optic fused 1x2 coupler and Fiber optic fused 2x2 coupler vibration sensors are compared based on range of frequency, resolution and sensitivity. It is to conclude that 2x2 coupler configuration shows better response than other two sensors.

Keywords: fiber optic, PMMA, vibration sensor, intensity-modulated

Procedia PDF Downloads 372
3776 Study on Concentration and Temperature Measurement with 760 nm Diode Laser in Combustion System Using Tunable Diode Laser Absorption Spectroscopy

Authors: Miyeon Yoo, Sewon Kim, Changyeop Lee

Abstract:

It is important to measure the internal temperature or temperature distribution precisely in combustion system to increase energy efficiency and reduce the pollutants. Especially in case of large combustion systems such as power plant boiler and reheating furnace of steel making process, it is very difficult to measure those physical properties in detail. Tunable diode laser absorption spectroscopy measurement and analysis can be attractive method to overcome the difficulty. In this paper, TDLAS methods are used to measure the oxygen concentration and temperature distribution in various experimental conditions.

Keywords: tunable diode laser absorption Spectroscopy, temperature distribution, gas concentration

Procedia PDF Downloads 386
3775 A Study of Stress and Coping Strategies of School Teachers

Authors: G.S. Patel

Abstract:

In this research paper the discussion have been made on teachers work mental stress and coping strategies. Stress Measurement scale was developed for school teachers. All the scientific steps of test construction was followed. For this test construction, different factors like teachers workplace, teachers' residential area, teachers' family life, teachers' ability and skills, economic factors and other factors to construct teachers stress measurement scale. In this research tool, situational statements have been made and teachers have to give a response in each statement on five-point rating scale what they experienced in their daily life. Special features of the test also established like validity and reliability of this test and also computed norms for its interpretation. A sample of 320 teachers of school teachers of Gujarat state was selected by Cluster sampling technique. t-test was computed for testing null hypothesis. The main findings of the present study are Urban area teachers feel more stressful situation compare to rural area teachers. Those teachers who live in the joint family feel less stress compare to teachers who live in a nuclear family. This research work is very useful to prepare list of activities to reduce teachers mental stress.

Keywords: stress measurement scale, level of stress, validity, reliability, norms

Procedia PDF Downloads 195
3774 Impact of Tillage and Crop Establishment on Fertility and Sustainability of the Rice-Wheat Cropping System in Inceptisols of Varanasi, Up, India

Authors: Pramod Kumar Sharma, Pratibha Kumari, Udai Pratap Singh, Sustainability

Abstract:

In the Indo-Gangetic Plains of South-East Asia, the rice-wheat cropping system (RWCS) is dominant with conventional tillage (CT) without residue management, which shows depletion of soil fertility and non-sustainable crop productivity. Hence, this investigation was planned to identify suitable natural resource management practices involving different tillage and crop establishment (TCE) methods along with crop residue and their effects, on the sustainability of dominant cropping systems through enhancing soil fertility and productivity. This study was conducted for two consecutive years 2018-19 and 2019-20 on a long-term field experiment that was started in the year 2015-16 taking six different combinations of TCE methods viz. CT, partial conservation agriculture (PCA) i.e. anchored residue of rice and full conservation agriculture (FCA)] i.e. anchored residue of rice and wheat under RWCS in terms of crop productivity, sustainability of soil health, and crop nutrition by the crops. Results showed that zero tillage direct-seeded rice (ZTDSR) - zero tillage wheat (ZTW) [FCA + green gram residue retention (RR)] recorded the highest yield attributes and yield during both the crops. Compared to conventional tillage rice (CTR)-conventional tillage wheat (CTW) [residue removal (R 0 )], the soil quality parameters were improved significantly with ZTDSR-ZTW (FCA+RR). Overall, ZTDSR-ZTW (FCA+RR) had higher nutrient uptake by the crops than CT-based treatment CTR-CTW (R 0 ) and CTR-CTW (RI).These results showed that there is significant profitability of yield and resource utilization by the adoption of FCA it may be a better alternative to the dominant tillage system i.e. CT in RWSC.

Keywords: tillage and crop establishment, soil fertility, rice-wheat cropping system, sustainability

Procedia PDF Downloads 107
3773 Reliability of Social Support Measurement Modification of the BC-SSAS among Women with Breast Cancer Who Undergone Chemotherapy in Selected Hospital, Central Java, Indonesia

Authors: R. R. Dewi Rahmawaty Aktyani Putri, Earmporn Thongkrajai, Dedy Purwito

Abstract:

There were many instruments have been developed to assess social support which has the different dimension in breast cancer patients. The Issue of measurement is a challenge to determining the component of dimensional concept, defining the unit of measurement, and establishing the validity and reliability of the measurement. However, the instruments where need to know how much support which obtained and perceived among women with breast cancer who undergone chemotherapy which it can help nurses to prevent of non-adherence in chemotherapy. This study aimed to measure the reliability of BC-SSAS instrument among 30 Indonesian women with breast cancer aged 18 years and above who undergone chemotherapy for six cycles in the oncological unit of Outpatient Department (OPD), Margono Soekardjo Hospital, Central Java, Indonesia. Data were collected during October to December 2015 by using modified the Breast Cancer Social Support Assessment (BC-SSAS). The Cronbach’s alpha analysis was carried out to measure internal consistency for reliability test of BC-SSAS instrument. This study used five experts for content validity index. The results showed that for content validity, I-CVI was 0.98 and S-CVI was 0.98; Cronbach’s alpha value was 0.971 and the Cronbach’s alpha coefficients for the subscales were high, with 0.903 for emotional support, 0.865 for informational support, 0.901 for tangible support, 0.897 for appraisal support and 0.884 for positive interaction support. The results confirmed that the BC-SSAS instrument has high reliability. BC-SSAS instruments were reliable and can be used in health care services to measure the social support received and perceived among women with breast cancer who undergone chemotherapy so that preventive interventions can be developed and the quality of health services can be improved.

Keywords: BC-SSAS, women with breast cancer, chemotherapy, Indonesia

Procedia PDF Downloads 362
3772 Effectuation in Production: How Production Managers Can Apply Decision-Making Techniques of Successful Entrepreneurs

Authors: Malte Brettel, David Bendig, Michael Keller, Marius Rosenberg

Abstract:

What are the core competences necessary in order to sustain manufacturing in high-wage countries? Aspiring countries all over the world gain market share in manufacturing and rapidly close the productivity and quality gap that has until now protected some parts of the industry in Europe and the United States from dislocation. However, causal production planning and manufacturing, the basis for productivity and quality, is challenged by the ever-greater need for flexibility and customized products in an uncertain business environment. This article uses a case-study-based approach to assess how production managers in high-wage countries can apply decision-making principals from successful entrepreneurs. 'Effectuation' instead of causal decision making can be applied to handle uncertainty of mass customization, to seek the right partners in alliances and to advance towards virtual production. The findings help managers to use their resources more efficiently and contribute to bridge the gap between production research and entrepreneurship.

Keywords: case studies, decision-making behavior, effectuation, production planning

Procedia PDF Downloads 348
3771 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.

Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity

Procedia PDF Downloads 324
3770 Blood Glucose Level Measurement from Breath Analysis

Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman

Abstract:

The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.

Keywords: blood glucose level, breath acetone concentration, diabetes, linear regression

Procedia PDF Downloads 172
3769 An Efficiency Measurement of E-Government Performance for United Nation Ranking Index

Authors: Yassine Jadi, Lin Jie

Abstract:

In order to serve the society in an electronic manner, many developing countries have launched tremendous e-government projects. The strategies of development and implementation e-government system have reached different levels, and to ensure consistency of development, the governments need to evaluate e-government performance. The United nation has design e-government development ranking index (EGDI) that rely on three indexes, Online service index (OSI), Telecommunication Infrastructure index (TII), and human capital index( HCI) which are not reflecting the interaction between a government and their citizens. Based on data envelopment analyses (DEA) technique, we are using E-participating index (EPI) as an output of government effort to evaluate the performance of e-government system. Therefore, the ranking index can be achieved in efficiency manner.

Keywords: e-government, DEA, efficiency measurement, EGDI

Procedia PDF Downloads 376
3768 Facies Sedimentology and Astronomic Calibration of the Reinech Member (Lutetian)

Authors: Jihede Haj Messaoud, Hamdi Omar, Hela Fakhfakh Ben Jemia, Chokri Yaich

Abstract:

The Upper Lutetian alternating marl–limestone succession of Reineche Member was deposited over a warm shallow carbonate platform that permits Nummulites proliferation. High-resolution studies of 30 meters thick Nummulites-bearing Reineche Member, cropping out in Central Tunisia (Jebel Siouf), have been undertaken, regarding pronounced cyclical sedimentary sequences, in order to investigate the periodicity of cycles and their related orbital-scale oceanic and climatic changes. The palaeoenvironmental and palaeoclimatic data are preserved in several proxies obtainable through high-resolution sampling and laboratories measurement and analysis as magnetic susceptibility (MS) and carbonates contents in conjunction with a wireline logging tools. The time series analysis of proxies permits to establish cyclicity orders present in the studied intervals which could be linked to the orbital cycles. MS records provide high-resolution proxies for relative sea level change in Late Lutetian strata. The spectral analysis of MS fluctuations confirmed the orbital forcing by the presence of the complete suite of orbital frequencies in the precession of 23 ka, the obliquity of 41 ka, and notably the two modes of eccentricity of 100 and 405 ka. Regarding the two periodic sedimentary cycles detected by wavelet analysis of proxy fluctuations which coincide with the long-term 405 ka eccentricity cycle, the Reineche Member spanned 0,8 Myr. Wireline logging tools as gamma ray and sonic were used as a proxies to decipher cyclicity and trends in sedimentation and contribute to identifying and correlate units. There are used to constraint the highest frequency cyclicity modulated by a long term wavelength cycling apparently controlled by clay content. Interpreted as a result of variations in carbonate productivity, it has been suggested that the marl-limestone couplets, represent the sedimentary response to the orbital forcing. The calculation of cycle durations through Reineche Member, is used as a geochronometer and permit the astronomical calibration of the geologic time scale. Furthermore, MS coupled with carbonate contents, and fossil occurrences provide strong evidence for combined detrital inputs and marine surface carbonate productivity cycles. These two synchronous processes were driven by the precession index and ‘fingerprinted’ in the basic marl–limestone couplets, modulated by orbital eccentricity.

Keywords: magnetic susceptibility, cyclostratigraphy, orbital forcing, spectral analysis, Lutetian

Procedia PDF Downloads 294
3767 Alternate Approaches to Quality Measurement: An Exploratory Study in Differentiation of “Quality” Characteristics in Services and Supports

Authors: Caitlin Bailey, Marian Frattarola Saulino, Beth Steinberg

Abstract:

Today, virtually all programs offered to people with intellectual and developmental disabilities tout themselves as person-centered, community-based and inclusive, yet there is a vast range in type and quality of services that use these similar descriptors. The issue is exacerbated by the fields’ measurement practices around quality, inclusion, independent living, choice and person-centered outcomes. For instance, community inclusion for people with disabilities is often measured by the number of times person steps into his or her community. These measurement approaches set standards for quality too low so that agencies supporting group home residents to go bowling every week can report the same outcomes as an agency that supports one person to join a book club that includes people based on their literary interests rather than disability labels. Ultimately, lack of delineation in measurement contributes to the confusion between face value “quality” and true quality services and supports for many people with disabilities and their families. This exploratory study adopts alternative approaches to quality measurement including co-production methods and systems theoretical framework in order to identify the factors that 1) lead to high-quality supports and, 2) differentiate high-quality services. Project researchers have partnered with community practitioners who are all committed to providing quality services and supports but vary in the degree to which they are actually able to provide them. The study includes two parts; first, an online survey distributed to more than 500 agencies that have demonstrated commitment to providing high-quality services; and second, four in-depth case studies with agencies in three United States and Israel providing a variety of supports to children and adults with disabilities. Results from both the survey and in-depth case studies were thematically analyzed and coded. Results show that there are specific factors that differentiate service quality; however meaningful quality measurement practices also require that researchers explore the contextual factors that contribute to quality. These not only include direct services and interactions, but also characteristics of service users, their environments as well as organizations providing services, such as management and funding structures, culture and leadership. Findings from this study challenge researchers, policy makers and practitioners to examine existing quality service standards and measurements and to adopt alternate methodologies and solutions to differentiate and scale up evidence-based quality practices so that all people with disabilities have access to services that support them to live, work, and enjoy where and with whom they choose.

Keywords: co-production, inclusion, independent living, quality measurement, quality supports

Procedia PDF Downloads 399
3766 On-Chip Aging Sensor Circuit Based on Phase Locked Loop Circuit

Authors: Ararat Khachatryan, Davit Mirzoyan

Abstract:

In sub micrometer technology, the aging phenomenon starts to have a significant impact on the reliability of integrated circuits by bringing performance degradation. For that reason, it is important to have a capability to evaluate the aging effects accurately. This paper presents an accurate aging measurement approach based on phase-locked loop (PLL) and voltage-controlled oscillator (VCO) circuit. The architecture is rejecting the circuit self-aging effect from the characteristics of PLL, which is generating the frequency without any aging phenomena affects. The aging monitor is implemented in low power 32 nm CMOS technology, and occupies a pretty small area. Aging simulation results show that the proposed aging measurement circuit improves accuracy by about 2.8% at high temperature and 19.6% at high voltage.

Keywords: aging effect, HCI, NBTI, nanoscale

Procedia PDF Downloads 359
3765 Remote Sensing and GIS Integration for Paddy Production Estimation in Bali Province, Indonesia

Authors: Sarono, Hamim Zaky Hadibasyir, dan Ridho Kurniawan

Abstract:

Estimation of paddy production is one of the areas that can be examined using the techniques of remote sensing and geographic information systems (GIS) in the field of agriculture. The purpose of this research is to know the amount of the paddy production estimation and how remote sensing and geographic information systems (GIS) are able to perform analysis of paddy production estimation in Tegalallang and Payangan Sub district, Bali Province, Indonesia. The method used is the method of land suitability. This method associates a physical parameters which are to be embodied in the smallest unit of a mapping that represents a mapping unit in a particular field and connecting with its field productivity. Analysis of estimated production using standard land suitability from FAO using matching technique. The parameters used to create the land unit is slope (FAO), climate classification (Oldeman), landform (Prapto Suharsono), and soil type. Land use map consist of paddy and non paddy field information obtained from Geo-eye 1 imagery using visual interpretation technique. Landsat image of the Data used for the interpretation of the landform, the classification of the slopes obtained from high point identification with method of interpolation spline, whereas climate data, soil, use secondary data originating from institutions-related institutions. The results of this research indicate Tegallalang and Payangan Districts in known wetland suitability consists of S1 (very suitable) covering an area of 2884,7 ha with the productivity of 5 tons/ha and S2 (suitable) covering an area of 482,9 ha with the productivity of 3 tons/ha. The sum of paddy production estimation as a results in both districts are 31.744, 3 tons in one year.

Keywords: production estimation, paddy, remote sensing, geography information system, land suitability

Procedia PDF Downloads 342
3764 Modification of Working Conditions Based on Participatory Ergonomics to Improve Occupational Health and Safety (K3) and Welding Worker Productivity

Authors: Tri Wisudawati, Radita Dwi Putera

Abstract:

The role of human resources is the basic capital in determining the purpose of a business place. Without the role of human resources, activities in the company will not run smoothly. Every business place always has a risk of accidents. The magnitude of the risk that occurs depends on the type of industry, technology, and risk control efforts made. Work-related accidents are accidents that occur due to work or while carrying out work. Welding MSMEs have a fairly high risk to health, safety and the environment both from the side of workers who can cause accidents and from the side of the work environment, which has the potential to become a hazard and risk. Participatory ergonomic intervention can be a feasible and effective approach to reducing exposure to work-related risk factors in developing country industries. Complaints about occupational health and safety experienced by workers in the welding workshop industry should be able to be overcome by implementing an ergonomic intervention approach. The analysis process includes HIRARC analysis, participatory ergonomics analysis, and SEM-PLS analysis. Hierarch analysis is carried out by assessing the level of severity and likelihood, as well as risk control. At the participatory ergonomics analysis stage, it is obtained from the organizational culture and organizational stakeholders. At the SEM-PLS stage, an analysis is carried out to see whether there is a strong relationship between the research variables in order to produce occupational health and safety (K3) and worker productivity in the welding shop better and in accordance with welding safety standards. So that the output of this study is how participatory ergonomics interventions affect working conditions to improve occupational health and safety and the productivity of welding workers.

Keywords: ergonomic partisipatory, health and safety, welding workers, welding safety

Procedia PDF Downloads 23
3763 Virtual Assessment of Measurement Error in the Fractional Flow Reserve

Authors: Keltoum Chahour, Mickael Binois

Abstract:

Due to a lack of standardization during the invasive fractional flow reserve (FFR) procedure, the index is subject to many sources of uncertainties. In this paper, we investigate -through simulation- the effect of the (FFR) device position and configuration on the obtained value of the (FFR) fraction. For this purpose, we use computational fluid dynamics (CFD) in a 3D domain corresponding to a diseased arterial portion. The (FFR) pressure captor is introduced inside it with a given length and coefficient of bending to capture the (FFR) value. To get over the computational limitations, basically, the time of the simulation is about 2h 15min for one (FFR) value; we generate a Gaussian Process (GP) model for (FFR) prediction. The (GP) model indicates good accuracy and demonstrates the effective error in the measurement created by the random configuration of the pressure captor.

Keywords: fractional flow reserve, Gaussian processes, computational fluid dynamics, drift

Procedia PDF Downloads 136
3762 The Impact of the Business Process Reengineering on the Practices of the Human Resources Management in the Franco Tunisian Company-Network

Authors: Nesrine Bougarech, Habib Affes

Abstract:

This research lays the emphasis on the business process reengineering (BPR) which consists in radically altering the organizational processes through the optimal use of information technology (IT) to attain major enhancements in terms of quality, performance and productivity. A survey of the business process reengineering (BPR) was carried out in three French groups and their subsidiaries in Tunisia. The data collected were qualitatively analyzed in an attempt to test the main indicators of the success of a business process reengineering project (BPR) and to compare the importance of these indicators in the context of France versus Tunisia. The study corroborates that the respect of the inherent principles of the business process reengineering (BPR) and the diversity of the human resources involved in the project can lead to better productivity, higher quality of the goods or services and lower cost. Additionally, our results mirror the extent to which the respect of the principles and the diversity of resources are more important in the French companies than in their Tunisian subsidiaries.

Keywords: business process reengineering (BPR), human resources management (HRM), information technology (IT), management

Procedia PDF Downloads 409
3761 Online Measurement of Fuel Stack Elongation

Authors: Sung Ho Ahn, Jintae Hong, Chang Young Joung, Tae Ho Yang, Sung Ho Heo, Seo Yun Jang

Abstract:

The performances of nuclear fuels and materials are qualified at an irradiation system in research reactors operating under the commercial nuclear power plant conditions. Fuel centerline temperature, coolant temperature, neutron flux, deformations of fuel stack and swelling are important parameters needed to analyze the nuclear fuel performances. The dimensional stability of nuclear fuels is a key parameter measuring the fuel densification and swelling. In this study, the fuel stack elongation is measured using a LVDT. A mockup LVDT instrumented fuel rod is developed. The performances of mockup LVDT instrumented fuel rod is evaluated by experiments.

Keywords: axial deformation, elongation measurement, in-pile instrumentation, LVDT

Procedia PDF Downloads 534
3760 Neural Synchronization - The Brain’s Transfer of Sensory Data

Authors: David Edgar

Abstract:

To understand how the brain’s subconscious and conscious functions, we must conquer the physics of Unity, which leads to duality’s algorithm. Where the subconscious (bottom-up) and conscious (top-down) processes function together to produce and consume intelligence, we use terms like ‘time is relative,’ but we really do understand the meaning. In the brain, there are different processes and, therefore, different observers. These different processes experience time at different rates. A sensory system such as the eyes cycles measurement around 33 milliseconds, the conscious process of the frontal lobe cycles at 300 milliseconds, and the subconscious process of the thalamus cycle at 5 milliseconds. Three different observers experience time differently. To bridge observers, the thalamus, which is the fastest of the processes, maintains a synchronous state and entangles the different components of the brain’s physical process. The entanglements form a synchronous cohesion between the brain components allowing them to share the same state and execute in the same measurement cycle. The thalamus uses the shared state to control the firing sequence of the brain’s linear subconscious process. Sharing state also allows the brain to cheat on the amount of sensory data that must be exchanged between components. Only unpredictable motion is transferred through the synchronous state because predictable motion already exists in the shared framework. The brain’s synchronous subconscious process is entirely based on energy conservation, where prediction regulates energy usage. So, the eyes every 33 milliseconds dump their sensory data into the thalamus every day. The thalamus is going to perform a motion measurement to identify the unpredictable motion in the sensory data. Here is the trick. The thalamus conducts its measurement based on the original observation time of the sensory system (33 ms), not its own process time (5 ms). This creates a data payload of synchronous motion that preserves the original sensory observation. Basically, a frozen moment in time (Flat 4D). The single moment in time can then be processed through the single state maintained by the synchronous process. Other processes, such as consciousness (300 ms), can interface with the synchronous state to generate awareness of that moment. Now, synchronous data traveling through a separate faster synchronous process creates a theoretical time tunnel where observation time is tunneled through the synchronous process and is reproduced on the other side in the original time-relativity. The synchronous process eliminates time dilation by simply removing itself from the equation so that its own process time does not alter the experience. To the original observer, the measurement appears to be instantaneous, but in the thalamus, a linear subconscious process generating sensory perception and thought production is being executed. It is all just occurring in the time available because other observation times are slower than thalamic measurement time. For life to exist in the physical universe requires a linear measurement process, it just hides by operating at a faster time relativity. What’s interesting is time dilation is not the problem; it’s the solution. Einstein said there was no universal time.

Keywords: neural synchronization, natural intelligence, 99.95% IoT data transmission savings, artificial subconscious intelligence (ASI)

Procedia PDF Downloads 127
3759 Flexible Mixed Model Assembly Line Design: A Strategy to Respond for Demand Uncertainty at Automotive Part Manufacturer in Indonesia

Authors: T. Yuri, M. Zagloel, Inaki M. Hakim, Tegu Bintang Nugraha

Abstract:

In an era of customer centricity, automotive parts manufacturer in Indonesia must be able to keep up with the uncertainty and fluctuation of consumer demand. Flexible Manufacturing System (FMS) is a strategy to react to predicted and unpredicted changes of demand in automotive industry. This research is about flexible mixed model assembly line design through Value Stream Mapping (VSM) and Line Balancing in mixed model assembly line prior to simulation. It uses value stream mapping to identify and reduce waste while finding the best position to add or reduce manpower. Line balancing is conducted to minimize or maximize production rate while increasing assembly line productivity and efficiency. Results of this research is a recommendation of standard work combination for specifics demand scenario which can enhance assembly line efficiency and productivity.

Keywords: automotive industry, demand uncertainty, flexible assembly system, line balancing, value stream mapping

Procedia PDF Downloads 330
3758 Measurement of Temperature, Humidity and Strain Variation Using Bragg Sensor

Authors: Amira Zrelli, Tahar Ezzeddine

Abstract:

Measurement and monitoring of temperature, humidity and strain variation are very requested in great fields and areas such as structural health monitoring (SHM) systems. Currently, the use of fiber Bragg grating sensors (FBGS) is very recommended in SHM systems due to the specifications of these sensors. In this paper, we present the theory of Bragg sensor, therefore we try to measure the efficient variation of strain, temperature and humidity (SV, ST, SH) using Bragg sensor. Thus, we can deduce the fundamental relation between these parameters and the wavelength of Bragg sensor.

Keywords: Fiber Bragg Grating Sensors (FBGS), strain, temperature, humidity, structural health monitoring (SHM)

Procedia PDF Downloads 316
3757 Using Optimal Cultivation Strategies for Enhanced Biomass and Lipid Production of an Indigenous Thraustochytrium sp. BM2

Authors: Hsin-Yueh Chang, Pin-Chen Liao, Jo-Shu Chang, Chun-Yen Chen

Abstract:

Biofuel has drawn much attention as a potential substitute to fossil fuels. However, biodiesel from waste oil, oil crops or other oil sources can only satisfy partial existing demands for transportation. Due to the feature of being clean, green and viable for mass production, using microalgae as a feedstock for biodiesel is regarded as a possible solution for a low-carbon and sustainable society. In particular, Thraustochytrium sp. BM2, an indigenous heterotrophic microalga, possesses the potential for metabolizing glycerol to produce lipids. Hence, it is being considered as a promising microalgae-based oil source for biodiesel production and other applications. This study was to optimize the culture pH, scale up, assess the feasibility of producing microalgal lipid from crude glycerol and apply operation strategies following optimal results from shake flask system in a 5L stirred-tank fermenter for further enhancing lipid productivities. Cultivation of Thraustochytrium sp. BM2 without pH control resulted in the highest lipid production of 3944 mg/L and biomass production of 4.85 g/L. Next, when initial glycerol and corn steep liquor (CSL) concentration increased five times (50 g and 62.5 g, respectively), the overall lipid productivity could reach 124 mg/L/h. However, when using crude glycerol as a sole carbon source, direct addition of crude glycerol could inhibit culture growth. Therefore, acid and metal salt pretreatment methods were utilized to purify the crude glycerol. Crude glycerol pretreated with acid and CaCl₂ had the greatest overall lipid productivity 131 mg/L/h when used as a carbon source and proved to be a better substitute for pure glycerol as carbon source in Thraustochytrium sp. BM2 cultivation medium. Engineering operation strategies such as fed-batch and semi-batch operation were applied in the cultivation of Thraustochytrium sp. BM2 for the improvement of lipid production. In cultivation of fed-batch operation strategy, harvested biomass 132.60 g and lipid 69.15 g were obtained. Also, lipid yield 0.20 g/g glycerol was same as in batch cultivation, although with poor overall lipid productivity 107 mg/L/h. In cultivation of semi-batch operation strategy, overall lipid productivity could reach 158 mg/L/h due to the shorter cultivation time. Harvested biomass and lipid achieved 232.62 g and 126.61 g respectively. Lipid yield was improved from 0.20 to 0.24 g/g glycerol. Besides, product costs of three kinds of operation strategies were also calculated. The lowest product cost 12.42 $NTD/g lipid was obtained while employing semi-batch operation strategy and reduced 33% in comparison with batch operation strategy.

Keywords: heterotrophic microalga Thrasutochytrium sp. BM2, microalgal lipid, crude glycerol, fermentation strategy, biodiesel

Procedia PDF Downloads 148
3756 Strategic Analysis of Energy and Impact Assessment of Microalgae Based Biodiesel and Biogas Production in Outdoor Raceway Pond: A Life Cycle Perspective

Authors: T. Sarat Chandra, M. Maneesh Kumar, S. N. Mudliar, V. S. Chauhan, S. Mukherji, R. Sarada

Abstract:

The life cycle assessment (LCA) of biodiesel production from freshwater microalgae Scenedesmus dimorphus cultivated in open raceway pond is performed. Various scenarios for biodiesel production were simulated using primary and secondary data. The parameters varied in the modelled scenarios were related to biomass productivity, mode of culture mixing and type of energy source. The process steps included algae cultivation in open raceway ponds, harvesting by chemical flocculation, dewatering by mechanical drying option (MDO) followed by extraction, reaction and purification. Anaerobic digestion of defatted algal biomass (DAB) for biogas generation is considered as a co-product allocation and the energy derived from DAB was thereby used in the upstream of the process. The scenarios were analysed for energy demand, emissions and environmental impacts within the boundary conditions grounded on "cradle to gate" inventory. Across all the Scenarios, cultivation via raceway pond was observed to be energy intensive process. The mode of culture mixing and biomass productivity determined the energy requirements of the cultivation step. Emissions to Freshwater were found to be maximum contributing to 93-97% of total emissions in all the scenarios. Global warming potential (GWP) was the found to be major environmental impact accounting to about 99% of total environmental impacts in all the modelled scenarios. It was noticed that overall emissions and impacts were directly related to energy demand and an inverse relationship was observed with biomass productivity. The geographic location of an energy source affected the environmental impact of a given process. The integration of defatted algal remnants derived electricity with the cultivation system resulted in a 2% reduction in overall energy demand. Direct biogas generation from microalgae post harvesting is also analysed. Energy surplus was observed after using part of the energy in upstream for biomass production. Results suggest biogas production from microalgae post harvesting as an environmentally viable and sustainable option compared to biodiesel production.

Keywords: biomass productivity, energy demand, energy source, Lifecycle Assessment (LCA), microalgae, open raceway pond

Procedia PDF Downloads 288
3755 Improvement to Abiotic Stress Tolerance in Durum Wheat (Triticum Durum Desf) with the Vegetable Extract Application

Authors: Zemour Kamel, Chouhim Kadda Mohamed Amine

Abstract:

Salinity is one of the most environmental factors limiting crop productivity. It has a negative effect on both germination and plant growth processes (photosynthesis, respiration, and transpiration), nutrient balance, membrane properties and cellular homeostasis, enzymatic and metabolic activities. Among the strategic crops in the world and more mainly in Algeria, durum wheat is very affected by this abiotic stress. For that, this study focuses on an evaluation of salt stress effect on the germination process of durum wheat as well as its response after application of lavender hydrosol and aqueous pistachio extract. The results have shown that all the physicochemical parameters of germination have been affected by this stress. However, lavender hydrosol and aqueous pistachio extract, considered as organic compounds, significantly improved the germination of wheat seeds. Finally, this study has highlighted the importance of using organic products as an ideal alternative to reduce the effect of abiotic stress on durum wheat productivity.

Keywords: salinity, wheat durum, extract, lavender hydrosol, aqueous pistachio

Procedia PDF Downloads 83