Search results for: predictive modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2712

Search results for: predictive modelling

2292 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.

Keywords: classification, achine learning, predictive quality, feature selection

Procedia PDF Downloads 157
2291 Systematic Review of Quantitative Risk Assessment Tools and Their Effect on Racial Disproportionality in Child Welfare Systems

Authors: Bronwen Wade

Abstract:

Over the last half-century, child welfare systems have increasingly relied on quantitative risk assessment tools, such as actuarial or predictive risk tools. These tools are developed by performing statistical analysis of how attributes captured in administrative data are related to future child maltreatment. Some scholars argue that attributes in administrative data can serve as proxies for race and that quantitative risk assessment tools reify racial bias in decision-making. Others argue that these tools provide more “objective” and “scientific” guides for decision-making instead of subjective social worker judgment. This study performs a systematic review of the literature on the impact of quantitative risk assessment tools on racial disproportionality; it examines methodological biases in work on this topic, summarizes key findings, and provides suggestions for further work. A search of CINAHL, PsychInfo, Proquest Social Science Premium Collection, and the ProQuest Dissertations and Theses Collection was performed. Academic and grey literature were included. The review includes studies that use quasi-experimental methods and development, validation, or re-validation studies of quantitative risk assessment tools. PROBAST (Prediction model Risk of Bias Assessment Tool) and CHARMS (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) were used to assess the risk of bias and guide data extraction for risk development, validation, or re-validation studies. ROBINS-I (Risk of Bias in Non-Randomized Studies of Interventions) was used to assess for bias and guide data extraction for the quasi-experimental studies identified. Due to heterogeneity among papers, a meta-analysis was not feasible, and a narrative synthesis was conducted. 11 papers met the eligibility criteria, and each has an overall high risk of bias based on the PROBAST and ROBINS-I assessments. This is deeply concerning, as major policy decisions have been made based on a limited number of studies with a high risk of bias. The findings on racial disproportionality have been mixed and depend on the tool and approach used. Authors use various definitions for racial equity, fairness, or disproportionality. These concepts of statistical fairness are connected to theories about the reason for racial disproportionality in child welfare or social definitions of fairness that are usually not stated explicitly. Most findings from these studies are unreliable, given the high degree of bias. However, some of the less biased measures within studies suggest that quantitative risk assessment tools may worsen racial disproportionality, depending on how disproportionality is mathematically defined. Authors vary widely in their approach to defining and addressing racial disproportionality within studies, making it difficult to generalize findings or approaches across studies. This review demonstrates the power of authors to shape policy or discourse around racial justice based on their choice of statistical methods; it also demonstrates the need for improved rigor and transparency in studies of quantitative risk assessment tools. Finally, this review raises concerns about the impact that these tools have on child welfare systems and racial disproportionality.

Keywords: actuarial risk, child welfare, predictive risk, racial disproportionality

Procedia PDF Downloads 48
2290 Comparative Diagnostic Performance of Diffusion-Weighted Imaging Combined With Microcalcifications on Mammography for Discriminating Malignant From Benign Bi-rads 4 Lesions With the Kaiser Score

Authors: Wangxu Xia

Abstract:

BACKGROUND BI-RADS 4 lesions raise the possibility of malignancy that warrant further clinical and radiologic work-up. This study aimed to evaluate the predictive performance of diffusion-weighted imaging(DWI) and microcalcifications on mammography for predicting malignancy of BI-RADS 4 lesions. In addition, the predictive performance of DWI combined with microcalcifications was alsocompared with the Kaiser score. METHODS During January 2021 and June 2023, 144 patients with 178 BI-RADS 4 lesions underwent conventional MRI, DWI, and mammography were included. The lesions were dichotomized intobenign or malignant according to the pathological results from core needle biopsy or surgical mastectomy. DWI was performed with a b value of 0 and 800s/mm2 and analyzed using theapparent diffusion coefficient, and a Kaiser score > 4 was considered to suggest malignancy. Thediagnostic performances for various diagnostic tests were evaluated with the receiver-operatingcharacteristic (ROC) curve. RESULTS The area under the curve (AUC) for DWI was significantly higher than that of the of mammography (0.86 vs 0.71, P<0.001), but was comparable with that of the Kaiser score (0.86 vs 0.84, P=0.58). However, the AUC for DWI combined with mammography was significantly highthan that of the Kaiser score (0.93 vs 0.84, P=0.007). The sensitivity for discriminating malignant from benign BI-RADS 4 lesions was highest at 89% for Kaiser score, but the highest specificity of 83% can be achieved with DWI combined with mammography. CONCLUSION DWI combined with microcalcifications on mammography could discriminate malignant BI-RADS4 lesions from benign ones with a high AUC and specificity. However, Kaiser score had a better sensitivity for discrimination.

Keywords: MRI, DWI, mammography, breast disease

Procedia PDF Downloads 53
2289 Analysis of the Dynamics of Transmission of Microsporidia MB Inside the Population of Anopheles Mosquitoes

Authors: Charlene N. T. Mfangnia, Henri Tonnang, Berge Tsanou, Jeremy Herren

Abstract:

The Microsporidia MB found in the populations of anopheles is a recently discovered symbiont responsible for the Plasmodium transmission blocking. From early studies, it was established that the symbiont can be transmitted vertically and horizontally. The present study uses compartmental mathematical modelling approach to investigate the dynamics of Microsporidia transmission in the mosquito population with the mindset of establishing a mechanism for use to control malaria. Data and information obtained from laboratory experiments are used to estimate the model parameters with and without temperature dependency of mosquito traits. We carry out the mathematical analysis focusing on the equilibria states and their stability for the autonomous model. Through the modelling experiments, we are able to assess and confirm the contribution of vertical and horizontal transmission in the proliferation of Microsporidia MB in the mosquito population. In addition, the basic and target reproductions are computed, and some long-term behaviours of the model, such as the local (and global) stability of equilibrium points, are rigorously analysed and illustrated numerically. We establish the conditions responsible for the low prevalence of the symbiont-infected mosquitoes observed in nature. Moreover, we identify the male death rate, the mating rate and the attractiveness of MB-positive mosquitoes as mosquito traits that significantly influence the spread of Microsporidia MB. Furthermore, we highlight the influence of temperature in the establishment and persistence of MB-infected mosquitoes in a given area.

Keywords: microsporidia MB, vertical transmission, horizontal transmission, compartmental modelling approach, temperature-dependent mosquito traits, malaria, plasmodium-transmission blocking

Procedia PDF Downloads 127
2288 Numerical Modelling of Immiscible Fluids Flow in Oil Reservoir Rocks during Enhanced Oil Recovery Processes

Authors: Zahreddine Hafsi, Manoranjan Mishra , Sami Elaoud

Abstract:

Ensuring the maximum recovery rate of oil from reservoir rocks is a challenging task that requires preliminary numerical analysis of different techniques used to enhance the recovery process. After conventional oil recovery processes and in order to retrieve oil left behind after the primary recovery phase, water flooding in one of several techniques used for enhanced oil recovery (EOR). In this research work, EOR via water flooding is numerically modeled, and hydrodynamic instabilities resulted from immiscible oil-water flow in reservoir rocks are investigated. An oil reservoir is a porous medium consisted of many fractures of tiny dimensions. For modeling purposes, the oil reservoir is considered as a collection of capillary tubes which provides useful insights into how fluids behave in the reservoir pore spaces. Equations governing oil-water flow in oil reservoir rocks are developed and numerically solved following a finite element scheme. Numerical results are obtained using Comsol Multiphysics software. The two phase Darcy module of COMSOL Multiphysics allows modelling the imbibition process by the injection of water (as wetting phase) into an oil reservoir. Van Genuchten, Brooks Corey and Levrett models were considered as retention models and obtained flow configurations are compared, and the governing parameters are discussed. For the considered retention models it was found that onset of instabilities viz. fingering phenomenon is highly dependent on the capillary pressure as well as the boundary conditions, i.e., the inlet pressure and the injection velocity.

Keywords: capillary pressure, EOR process, immiscible flow, numerical modelling

Procedia PDF Downloads 124
2287 Modelling Optimal Control of Diabetes in the Workplace

Authors: Eunice Christabel Chukwu

Abstract:

Introduction: Diabetes is a chronic medical condition which is characterized by high levels of glucose in the blood and urine; it is usually diagnosed by means of a glucose tolerance test (GTT). Diabetes can cause a range of health problems if left unmanaged, as it can lead to serious complications. It is essential to manage the condition effectively, particularly in the workplace where the impact on work productivity can be significant. This paper discusses the modelling of optimal control of diabetes in the workplace using a control theory approach. Background: Diabetes mellitus is a condition caused by too much glucose in the blood. Insulin, a hormone produced by the pancreas, controls the blood sugar level by regulating the production and storage of glucose. In diabetes, there may be a decrease in the body’s ability to respond to insulin or a decrease in insulin produced by the pancreas which will lead to abnormalities in the metabolism of carbohydrates, proteins, and fats. In addition to the health implications, the condition can also have a significant impact on work productivity, as employees with uncontrolled diabetes are at risk of absenteeism, reduced performance, and increased healthcare costs. While several interventions are available to manage diabetes, the most effective approach is to control blood glucose levels through a combination of lifestyle modifications and medication. Methodology: The control theory approach involves modelling the dynamics of the system and designing a controller that can regulate the system to achieve optimal performance. In the case of diabetes, the system dynamics can be modelled using a mathematical model that describes the relationship between insulin, glucose, and other variables. The controller can then be designed to regulate the glucose levels to maintain them within a healthy range. Results: The modelling of optimal control of diabetes in the workplace using a control theory approach has shown promising results. The model has been able to predict the optimal dose of insulin required to maintain glucose levels within a healthy range, taking into account the individual’s lifestyle, medication regimen, and other relevant factors. The approach has also been used to design interventions that can improve diabetes management in the workplace, such as regular glucose monitoring and education programs. Conclusion: The modelling of optimal control of diabetes in the workplace using a control theory approach has significant potential to improve diabetes management and work productivity. By using a mathematical model and a controller to regulate glucose levels, the approach can help individuals with diabetes to achieve optimal health outcomes while minimizing the impact of the condition on their work performance. Further research is needed to validate the model and develop interventions that can be implemented in the workplace.

Keywords: mathematical model, blood, insulin, pancreas, model, glucose

Procedia PDF Downloads 56
2286 Identifying Barriers of Implementing Building Information Modelling in Construction

Authors: Kasra HosseinMostofi, Mohamadamin Oyar Hossein, Reza Mehdizadeh Anvigh

Abstract:

BIM is an innovative concept for the majority of firms operating in industry. BIM offers a new paradigm to design, construct, operate, and maintain a facility. However, even with the most conscientious use, stakeholders can run into trouble during its implementation on a project or within an organization. At times, project stakeholders are unaware of the challenges that they can face with the implementation at the project level or an organizational level. Therefore, the study aimed to identify and compile barriers associated with the BIM implementation at the project and organizational level, as per the literature. Despite the fact that innumerable advantageous involved in exploiting BIM, there are some barriers to implement it properly. These barriers have been proved as impediments for academicians and members of construction team project to take the maximum advantage of its utilization. Although some research has been conducted to identify these barriers regarding BIM implementation in construction industry, more research is needed to be carried out among academicians to identify these barriers in institutions, and most importantly, to make suggestions for eliminating these obstacles.

Keywords: building information modelling, construction, design and construction, designers

Procedia PDF Downloads 179
2285 Scaling Strategy of a New Experimental Rig for Wheel-Rail Contact

Authors: Meysam Naeimi, Zili Li, Rolf Dollevoet

Abstract:

A new small–scale test rig developed for rolling contact fatigue (RCF) investigations in wheel–rail material. This paper presents the scaling strategy of the rig based on dimensional analysis and mechanical modelling. The new experimental rig is indeed a spinning frame structure with multiple wheel components over a fixed rail-track ring, capable of simulating continuous wheel-rail contact in a laboratory scale. This paper describes the dimensional design of the rig, to derive its overall scaling strategy and to determine the key elements’ specifications. Finite element (FE) modelling is used to simulate the mechanical behavior of the rig with two sample scale factors of 1/5 and 1/7. The results of FE models are compared with the actual railway system to observe the effectiveness of the chosen scales. The mechanical properties of the components and variables of the system are finally determined through the design process.

Keywords: new test rig, rolling contact fatigue, rail, small scale

Procedia PDF Downloads 469
2284 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method

Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić

Abstract:

This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.

Keywords: dry stone masonry structures, dynamic load, finite-discrete element method, static load

Procedia PDF Downloads 409
2283 Random Forest Classification for Population Segmentation

Authors: Regina Chua

Abstract:

To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.

Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling

Procedia PDF Downloads 88
2282 Modelling of Rate-Dependent Hysteresis of Polypyrrole Dual Sensing-Actuators for Precise Position Control

Authors: Johanna Schumacher, Toribio F. Otero, Victor H. Pascual

Abstract:

Bending dual sensing-actuators based on electroactive polymers are faradaic motors meaning the consumed charge determines the actuator’s tip position. During actuation, consumed charges during oxidation and reduction result in different tip positions showing dynamic hysteresis effects with errors up to 25%. For a precise position control of these actuators, the characterization of the hysteresis effect due to irreversible reactions is crucial. Here, the investigation and modelling of dynamic hysteresis effects of polypyrrole-dodezylbenzenesulfonate (PPyDBS) actuators under ambient working conditions are presented. The hysteresis effect is studied for charge consumption at different frequencies and a rate-dependent hysteresis model is derived. The hysteresis model is implemented as closed loop system and is verified experimentally.

Keywords: dual sensing-actuator, electroactive polymers, hysteresis, position control

Procedia PDF Downloads 383
2281 2D RF ICP Torch Modelling with Fluid Plasma

Authors: Mokhtar Labiod, Nabil Ikhlef, Keltoum Bouherine, Olivier Leroy

Abstract:

A numerical model for the radio-frequency (RF) Argon discharge chamber is developed to simulate the low pressure low temperature inductively coupled plasma. This model will be of fundamental importance in the design of the plasma magnetic control system. Electric and magnetic fields inside the discharge chamber are evaluated by solving a magnetic vector potential equation. To start with, the equations of the ideal magnetohydrodynamics theory will be presented describing the basic behaviour of magnetically confined plasma and equations are discretized with finite element method in cylindrical coordinates. The discharge chamber is assumed to be axially symmetric and the plasma is treated as a compressible gas. Plasma generation due to ionization is added to the continuity equation. Magnetic vector potential equation is solved for the electromagnetic fields. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

Keywords: direct-coupled model, magnetohydrodynamic, modelling, plasma torch simulation

Procedia PDF Downloads 428
2280 Application of Terminal Sliding Mode Control to the Stabilization of the Indoor Temperature in Buildings

Authors: Pawel Skruch, Marek Dlugosz

Abstract:

The paper starts with a general model of the temperature dynamics in buildings. The modelling approach relies on thermodynamics, in particular heat transfer, principles. The model considers heat loses by conduction and ventilation and internal heat gains. The parameters of the model can be determined uniquely from the geometry of the building and from thermal properties of construction materials. The model is presented using state space notation and this form is used in the control design procedure. A sliding surface is defined by the system output and the desired trajectory. The control law is designed to force the trajectory of the system from any initial condition to the sliding surface in finite time. The trajectory of the system after reaching the sliding surface remains on it. A simulation example is included to verify the approach and to demonstrate the achievable performance improvement by the proposed solution in the temperature control in buildings.

Keywords: modelling, building, temperature dynamics, sliding-mode control, sliding surface

Procedia PDF Downloads 542
2279 Choral Singers' Preference for Expressive Priming Techniques

Authors: Shawn Michael Condon

Abstract:

Current research on teaching expressivity mainly involves instrumentalists. This study focuses on choral singers’ preference of priming techniques based on four methods for teaching expressivity. 112 choral singers answered the survey about their preferred methods for priming expressivity (vocal modelling, using metaphor, tapping into felt emotions, and drawing on past experiences) in three conditions (active, passive, and instructor). Analysis revealed higher preference for drawing on past experience among more experienced singers. The most preferred technique in the passive and instructor roles was vocal modelling, with metaphors and tapping into felt emotions favoured in an active role. Priming techniques are often used in combination with other methods to enhance singing technique or expressivity and are dependent upon the situation, repertoire, and the preferences of the instructor and performer.

Keywords: emotion, expressivity, performance, singing, teaching

Procedia PDF Downloads 150
2278 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand

Authors: Gaurav Kumar Sinha

Abstract:

The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.

Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning

Procedia PDF Downloads 29
2277 Modelling and Simulation Efforts in Scale-Up and Characterization of Semi-Solid Dosage Forms

Authors: Saurav S. Rath, Birendra K. David

Abstract:

Generic pharmaceutical industry has to operate in strict timelines of product development and scale-up from lab to plant. Hence, detailed product & process understanding and implementation of appropriate mechanistic modelling and Quality-by-design (QbD) approaches are imperative in the product life cycle. This work provides example cases of such efforts in topical dosage products. Topical products are typically in the form of emulsions, gels, thick suspensions or even simple solutions. The efficacy of such products is determined by characteristics like rheology and morphology. Defining, and scaling up the right manufacturing process with a given set of ingredients, to achieve the right product characteristics presents as a challenge to the process engineer. For example, the non-Newtonian rheology varies not only with CPPs and CMAs but also is an implicit function of globule size (CQA). Hence, this calls for various mechanistic models, to help predict the product behaviour. This paper focusses on such models obtained from computational fluid dynamics (CFD) coupled with population balance modelling (PBM) and constitutive models (like shear, energy density). In a special case of the use of high shear homogenisers (HSHs) for the manufacture of thick emulsions/gels, this work presents some findings on (i) scale-up algorithm for HSH using shear strain, a novel scale-up parameter for estimating mixing parameters, (ii) non-linear relationship between viscosity and shear imparted into the system, (iii) effect of hold time on rheology of product. Specific examples of how this approach enabled scale-up across 1L, 10L, 200L, 500L and 1000L scales will be discussed.

Keywords: computational fluid dynamics, morphology, quality-by-design, rheology

Procedia PDF Downloads 266
2276 Improving Our Understanding of the in vivo Modelling of Psychotic Disorders

Authors: Zsanett Bahor, Cristina Nunes-Fonseca, Gillian L. Currie, Emily S. Sena, Lindsay D.G. Thomson, Malcolm R. Macleod

Abstract:

Psychosis is ranked as the third most disabling medical condition in the world by the World Health Organization. Despite a substantial amount of research in recent years, available treatments are not universally effective and have a wide range of adverse side effects. Since many clinical drug candidates are identified through in vivo modelling, a deeper understanding of these models, and their strengths and limitations, might help us understand reasons for difficulties in psychosis drug development. To provide an unbiased summary of the preclinical psychosis literature we performed a systematic electronic search of PubMed for publications modelling a psychotic disorder in vivo, identifying 14,721 relevant studies. Double screening of 11,000 publications from this dataset so far established 2403 animal studies of psychosis, with the most common model being schizophrenia (95%). 61% of these models are induced using pharmacological agents. For all the models only 56% of publications test a therapeutic treatment. We propose a systematic review of these studies to assess the prevalence of reporting of measures to reduce risk of bias, and a meta-analysis to assess the internal and external validity of these animal models. Our findings are likely to be relevant to future preclinical studies of psychosis as this generation of strong empirical evidence has the potential to identify weaknesses, areas for improvement and make suggestions on refinement of experimental design. Such a detailed understanding of the data which inform what we think we know will help improve the current attrition rate between bench and bedside in psychosis research.

Keywords: animal models, psychosis, systematic review, schizophrenia

Procedia PDF Downloads 285
2275 A Design of an Augmented Reality Based Virtual Heritage Application

Authors: Stephen Barnes, Ian Mills, Frances Cleary

Abstract:

Augmented and virtual reality-based applications offer many benefits for the heritage and tourism sector. This technology provides a platform to showcase the regions of interest to people without the need for them to be physically present, which has had a positive impact on enticing tourists to visit those locations. However, the technology also provides the opportunity to present historical artefacts in a form that accurately represents their original, intended appearance. Three sites of interest were identified in the Lingaun Valley in South East Ireland, wherein virtual representations of site-specific artefacts of interest were created via a multidisciplinary team encompassing archaeology, art history, 3D modelling, design, and software development. The collated information has been presented to users via an augmented reality mobile-based application that provides information in an engaging manner that encourages an interest in history as well as visits to the sites in the Lingaun Valley.

Keywords: augmented reality, virtual heritage, 3D modelling, archaeology, virtual representation

Procedia PDF Downloads 78
2274 A Finite Element Based Predictive Stone Lofting Simulation Methodology for Automotive Vehicles

Authors: Gaurav Bisht, Rahul Rathnakumar, Ravikumar Duggirala

Abstract:

Predictive simulations are one of the key focus areas in safety-critical industries such as aerospace and high-performance automotive engineering. The stone-chipping study is one such effort taken up by the industry to predict and evaluate the damage caused due to gravel impact on vehicles. This paper describes a finite elements based method that can simulate the ejection of gravel chips from a vehicle tire. The FE simulations were used to obtain the initial ejection velocity of the stones for various driving conditions using a computational contact mechanics approach. To verify the accuracy of the tire model, several parametric studies were conducted. The FE simulations resulted in stone loft velocities ranging from 0–8 m/s, regardless of tire speed. The stress on the tire at the instant of initial contact with the stone increased linearly with vehicle speed. Mesh convergence studies indicated that a highly resolved tire mesh tends to result in better momentum transfer between the tire and the stone. A fine tire mesh also showed a linearly increasing relationship between the tire forward speed and stone lofting speed, which was not observed in coarser meshes. However, it also highlighted a potential challenge, in that the ejection velocity vector of the stone seemed to be sensitive to the mesh, owing to the FE-based contact mechanical formulation of the problem.

Keywords: abaqus, contact mechanics, foreign object debris, stone chipping

Procedia PDF Downloads 259
2273 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections

Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu

Abstract:

In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.

Keywords: connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control

Procedia PDF Downloads 353
2272 Software Component Identification from Its Object-Oriented Code: Graph Metrics Based Approach

Authors: Manel Brichni, Abdelhak-Djamel Seriai

Abstract:

Systems are increasingly complex. To reduce their complexity, an abstract view of the system can simplify its development. To overcome this problem, we propose a method to decompose systems into subsystems while reducing their coupling. These subsystems represent components. Consisting of an existing object-oriented systems, the main idea of our approach is based on modelling as graphs all entities of an oriented object source code. Such modelling is easy to handle, so we can apply restructuring algorithms based on graph metrics. The particularity of our approach consists in integrating in addition to standard metrics, such as coupling and cohesion, some graph metrics giving more precision during the components identi cation. To treat this problem, we relied on the ROMANTIC approach that proposed a component-based software architecture recovery from an object oriented system.

Keywords: software reengineering, software component and interfaces, metrics, graphs

Procedia PDF Downloads 498
2271 Computational Fluid Dynamics Modelling of the Improved Airflow on a Ballistic Grille Using a Porous Medium Approach

Authors: Mapula Mothomogolo, Anria Clarke

Abstract:

The ballistic grille has become a mission critical component for protection on an armoured vehicle. They are designed to protect the armoured vehicle against ballistic threats while maintaining sufficient airflow for under-hood thermal management. Improving the ballistic grille for better ballistic protection can compromise the airflow to the engine. This reduces the cooling capacity of the armoured vehicle, thus reducing the overall power performance of the vehicle. This paper investigates the airflow through a grille using a computational fluid dynamics modelling approach. A comparative study was conducted between a standard armoured vehicle grille and a ballistic grille. The results were used as a benchmark for optimising the airflow through the ballistic grille by reducing the pressure drop through the grille. The ballistic grille was modelled as a porous medium to account for the pressure drop in the porous region. The effects of the porous zone were accounted for in the source term of the momentum Navier Stokes equation. The source term defines the pressure drop in the porous region as a function of the velocity. A pressure gradient curve approach was used to determine the Darcy coefficient and inertial resistance coefficient of the source term. The empirically defined coefficients were used as simulation input for a more accurate pressure drop prediction in the porous region. Additionally, the ballistic grille geometry was optimised using an adjoint solver (shape optimisation module in Ansys fluent) to reduce the pressure drop through the ballistic grille by 30%. Based on the simulation results, the optimised ballistic grille geometry will be further tested experimentally to validate the numerical model.

Keywords: ballistic grille, computational fluid modelling, Darcy’s law, porous medium, pressure drop

Procedia PDF Downloads 21
2270 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement

Authors: Ferinar Moaidi, Mahdi Moaidi

Abstract:

Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.

Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement

Procedia PDF Downloads 142
2269 Peril´s Environment of Energetic Infrastructure Complex System, Modelling by the Crisis Situation Algorithms

Authors: Jiří F. Urbánek, Alena Oulehlová, Hana Malachová, Jiří J. Urbánek Jr.

Abstract:

Crisis situations investigation and modelling are introduced and made within the complex system of energetic critical infrastructure, operating on peril´s environments. Every crisis situations and perils has an origin in the emergency/ crisis event occurrence and they need critical/ crisis interfaces assessment. Here, the emergency events can be expected - then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping; or it may be unexpected - without pre-prepared scenario of event. But the both need operational coping by means of crisis management as well. The operation, forms, characteristics, behaviour and utilization of crisis management have various qualities, depending on real critical infrastructure organization perils, and prevention training processes. An aim is always - better security and continuity of the organization, which successful obtainment needs to find and investigate critical/ crisis zones and functions in critical infrastructure organization models, operating in pertinent perils environment. Our DYVELOP (Dynamic Vector Logistics of Processes) method is disposables for it. Here, it is necessary to derive and create identification algorithm of critical/ crisis interfaces. The locations of critical/ crisis interfaces are the flags of crisis situation in organization of critical infrastructure models. Then, the model of crisis situation will be displayed at real organization of Czech energetic crisis infrastructure subject in real peril environment. These efficient measures are necessary for the infrastructure protection. They will be derived for peril mitigation, crisis situation coping and for environmentally friendly organization survival, continuity and its sustainable development advanced possibilities.

Keywords: algorithms, energetic infrastructure complex system, modelling, peril´s environment

Procedia PDF Downloads 399
2268 Storms Dynamics in the Black Sea in the Context of the Climate Changes

Authors: Eugen Rusu

Abstract:

The objective of the work proposed is to perform an analysis of the wave conditions in the Black Sea basin. This is especially focused on the spatial and temporal occurrences and on the dynamics of the most extreme storms in the context of the climate changes. A numerical modelling system, based on the spectral phase averaged wave model SWAN, has been implemented and validated against both in situ measurements and remotely sensed data, all along the sea. Moreover, a successive correction method for the assimilation of the satellite data has been associated with the wave modelling system. This is based on the optimal interpolation of the satellite data. Previous studies show that the process of data assimilation improves considerably the reliability of the results provided by the modelling system. This especially concerns the most sensitive cases from the point of view of the accuracy of the wave predictions, as the extreme storm situations are. Following this numerical approach, it has to be highlighted that the results provided by the wave modelling system above described are in general in line with those provided by some similar wave prediction systems implemented in enclosed or semi-enclosed sea basins. Simulations of this wave modelling system with data assimilation have been performed for the 30-year period 1987-2016. Considering this database, the next step was to analyze the intensity and the dynamics of the higher storms encountered in this period. According to the data resulted from the model simulations, the western side of the sea is considerably more energetic than the rest of the basin. In this western region, regular strong storms provide usually significant wave heights greater than 8m. This may lead to maximum wave heights even greater than 15m. Such regular strong storms may occur several times in one year, usually in the wintertime, or in late autumn, and it can be noticed that their frequency becomes higher in the last decade. As regards the case of the most extreme storms, significant wave heights greater than 10m and maximum wave heights close to 20m (and even greater) may occur. Such extreme storms, which in the past were noticed only once in four or five years, are more recent to be faced almost every year in the Black Sea, and this seems to be a consequence of the climate changes. The analysis performed included also the dynamics of the monthly and annual significant wave height maxima as well as the identification of the most probable spatial and temporal occurrences of the extreme storm events. Finally, it can be concluded that the present work provides valuable information related to the characteristics of the storm conditions and on their dynamics in the Black Sea. This environment is currently subjected to high navigation traffic and intense offshore and nearshore activities and the strong storms that systematically occur may produce accidents with very serious consequences.

Keywords: Black Sea, extreme storms, SWAN simulations, waves

Procedia PDF Downloads 240
2267 LTE Modelling of a DC Arc Ignition on Cold Electrodes

Authors: O. Ojeda Mena, Y. Cressault, P. Teulet, J. P. Gonnet, D. F. N. Santos, MD. Cunha, M. S. Benilov

Abstract:

The assumption of plasma in local thermal equilibrium (LTE) is commonly used to perform electric arc simulations for industrial applications. This assumption allows to model the arc using a set of magneto-hydromagnetic equations that can be solved with a computational fluid dynamic code. However, the LTE description is only valid in the arc column, whereas in the regions close to the electrodes the plasma deviates from the LTE state. The importance of these near-electrode regions is non-trivial since they define the energy and current transfer between the arc and the electrodes. Therefore, any accurate modelling of the arc must include a good description of the arc-electrode phenomena. Due to the modelling complexity and computational cost of solving the near-electrode layers, a simplified description of the arc-electrode interaction was developed in a previous work to study a steady high-pressure arc discharge, where the near-electrode regions are introduced at the interface between arc and electrode as boundary conditions. The present work proposes a similar approach to simulate the arc ignition in a free-burning arc configuration following an LTE description of the plasma. To obtain the transient evolution of the arc characteristics, appropriate boundary conditions for both the near-cathode and the near-anode regions are used based on recent publications. The arc-cathode interaction is modeled using a non-linear surface heating approach considering the secondary electron emission. On the other hand, the interaction between the arc and the anode is taken into account by means of the heating voltage approach. From the numerical modelling, three main stages can be identified during the arc ignition. Initially, a glow discharge is observed, where the cold non-thermionic cathode is uniformly heated at its surface and the near-cathode voltage drop is in the order of a few hundred volts. Next, a spot with high temperature is formed at the cathode tip followed by a sudden decrease of the near-cathode voltage drop, marking the glow-to-arc discharge transition. During this stage, the LTE plasma also presents an important increase of the temperature in the region adjacent to the hot spot. Finally, the near-cathode voltage drop stabilizes at a few volts and both the electrode and plasma temperatures reach the steady solution. The results after some seconds are similar to those presented for thermionic cathodes.

Keywords: arc-electrode interaction, thermal plasmas, electric arc simulation, cold electrodes

Procedia PDF Downloads 117
2266 Building Information Modelling Based Value for Money Assessment in Public-Private Partnership

Authors: Guoqian Ren, Haijiang Li, Jisong Zhang

Abstract:

Over the past 40 years, urban development has undergone large-scale, high-speed expansion, beyond what was previously considered normal and in a manner not proportionally related to population growth or physical considerations. With more scientific and refined decision-making in the urban construction process, new urbanization approaches, aligned with public-private partnerships (PPPs) which evolved in the early 1990s, have become acceptable and, in some situations, even better solutions to outstanding urban municipal construction projects, especially in developing countries. However, as the main driving force to deal with urban public services, PPPs are still problematic regarding value for money (VFM) process in most large-scale construction projects. This paper therefore reviews recent PPP articles in popular project management journals and relevant toolkits, published in the last 10 years, to identify the indicators that influence VFM within PPPs across regions. With increasing concerns about profitability and environmental and social impacts, the current PPP structure requires a more integrated platform to manage multi-performance project life cycles. Building information modelling (BIM), a popular approach to the procurement process in AEC sectors, provides the potential to ensure VFM while also working in tandem with the semantic approach to holistically measure life cycle costs (LCC) and achieve better sustainability. This paper suggests that BIM applied to the entire PPP life cycle could support holistic decision-making regarding VFM processes and thus meet service targets.

Keywords: public-private partnership, value for money, building information modelling, semantic approach

Procedia PDF Downloads 204
2265 Concussion: Clinical and Vocational Outcomes from Sport Related Mild Traumatic Brain Injury

Authors: Jack Nash, Chris Simpson, Holly Hurn, Ronel Terblanche, Alan Mistlin

Abstract:

There is an increasing incidence of mild traumatic brain injury (mTBI) cases throughout sport and with this, a growing interest from governing bodies to ensure these are managed appropriately and player welfare is prioritised. The Berlin consensus statement on concussion in sport recommends a multidisciplinary approach when managing those patients who do not have full resolution of mTBI symptoms. There are as of yet no standardised guideline to follow in the treatment of complex cases mTBI in athletes. The aim of this project was to analyse the outcomes, both clinical and vocational, of all patients admitted to the mild Traumatic Brain Injury (mTBI) service at the UK’s Defence Military Rehabilitation Centre Headley Court between 1st June 2008 and 1st February 2017, as a result of a sport induced injury, and evaluate potential predictive indicators of outcome. Patients were identified from a database maintained by the mTBI service. Clinical and occupational outcomes were ascertained from medical and occupational employment records, recorded prospectively, at time of discharge from the mTBI service. Outcomes were graded based on the vocational independence scale (VIS) and clinical documentation at discharge. Predictive indicators including referral time, age at time of injury, previous mental health diagnosis and a financial claim in place at time of entry to service were assessed using logistic regression. 45 Patients were treated for sport-related mTBI during this time frame. Clinically 96% of patients had full resolution of their mTBI symptoms after input from the mTBI service. 51% of patients returned to work at their previous vocational level, 4% had ongoing mTBI symptoms, 22% had ongoing physical rehabilitation needs, 11% required mental health input and 11% required further vestibular rehabilitation. Neither age, time to referral, pre-existing mental health condition nor compensation seeking had a significant impact on either vocational or clinical outcome in this population. The vast majority of patients reviewed in the mTBI clinic had persistent symptoms which could not be managed in primary care. A consultant-led, multidisciplinary approach to the diagnosis and management of mTBI has resulted in excellent clinical outcomes in these complex cases. High levels of symptom resolution suggest that this referral and treatment pathway is successful and is a model which could be replicated in other organisations with consultant led input. Further understanding of both predictive and individual factors would allow clinicians to focus treatments on those who are most likely to develop long-term complications following mTBI. A consultant-led, multidisciplinary service ensures a large number of patients will have complete resolution of mTBI symptoms after sport-related mTBI. Further research is now required to ascertain the key predictive indicators of outcome following sport-related mTBI.

Keywords: brain injury, concussion, neurology, rehabilitation, sports injury

Procedia PDF Downloads 149
2264 Modelling of Atomic Force Microscopic Nano Robot's Friction Force on Rough Surfaces

Authors: M. Kharazmi, M. Zakeri, M. Packirisamy, J. Faraji

Abstract:

Micro/Nanorobotics or manipulation of nanoparticles by Atomic Force Microscopic (AFM) is one of the most important solutions for controlling the movement of atoms, particles and micro/nano metrics components and assembling of them to design micro/nano-meter tools. Accurate modelling of manipulation requires identification of forces and mechanical knowledge in the Nanoscale which are different from macro world. Due to the importance of the adhesion forces and the interaction of surfaces at the nanoscale several friction models were presented. In this research, friction and normal forces that are applied on the AFM by using of the dynamic bending-torsion model of AFM are obtained based on Hurtado-Kim friction model (HK), Johnson-Kendall-Robert contact model (JKR) and Greenwood-Williamson roughness model (GW). Finally, the effect of standard deviation of asperities height on the normal load, friction force and friction coefficient are studied.

Keywords: atomic force microscopy, contact model, friction coefficient, Greenwood-Williamson model

Procedia PDF Downloads 194
2263 Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging

Authors: Matar Celine, Gaucel Sebastien, Gontard Nathalie, Guilbert Stephane, Guillard Valerie

Abstract:

To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose.

Keywords: food losses and wastes, modified atmosphere packaging, mathematical modeling, shelf life prediction

Procedia PDF Downloads 180