Search results for: medical data visualization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27584

Search results for: medical data visualization

27164 Addressing the Exorbitant Cost of Labeling Medical Images with Active Learning

Authors: Saba Rahimi, Ozan Oktay, Javier Alvarez-Valle, Sujeeth Bharadwaj

Abstract:

Successful application of deep learning in medical image analysis necessitates unprecedented amounts of labeled training data. Unlike conventional 2D applications, radiological images can be three-dimensional (e.g., CT, MRI), consisting of many instances within each image. The problem is exacerbated when expert annotations are required for effective pixel-wise labeling, which incurs exorbitant labeling effort and cost. Active learning is an established research domain that aims to reduce labeling workload by prioritizing a subset of informative unlabeled examples to annotate. Our contribution is a cost-effective approach for U-Net 3D models that uses Monte Carlo sampling to analyze pixel-wise uncertainty. Experiments on the AAPM 2017 lung CT segmentation challenge dataset show that our proposed framework can achieve promising segmentation results by using only 42% of the training data.

Keywords: image segmentation, active learning, convolutional neural network, 3D U-Net

Procedia PDF Downloads 156
27163 Evaluation of the Factors Affecting Violence Against Women (Case Study: Couples Referring to Family Counseling Centers in Tehran)

Authors: Hassan Manouchehri

Abstract:

The present study aimed to identify and evaluate the factors affecting violence against women. The statistical population included all couples referring to family counseling centers in Tehran due to domestic violence during the past year. A number of 305 people were selected as a statistical sample using simple random sampling and Cochran's formula in unlimited conditions. A researcher-made questionnaire including 110 items was used for data collection. The face validity and content validity of the questionnaire were confirmed by 30 experts and its reliability was obtained above 0.7 for all studied variables in a preliminary test with 30 subjects and it was acceptable. In order to analyze the data, descriptive statistical methods were used with SPSS software version 22 and inferential statistics were used for modeling structural equations in Smart PLS software version 2. Evaluating the theoretical framework and domestic and foreign studies indicated that, in general, four main factors, including cultural and social factors, economic factors, legal factors, as well as medical factors, underlie violence against women. In addition, structural equation modeling findings indicated that cultural and social factors, economic factors, legal factors, and medical factors affect violence against women.

Keywords: violence against women, cultural and social factors, economic factors, legal factors, medical factors

Procedia PDF Downloads 142
27162 The Role of Health Tourism in Enhancing the Quality of life and Cultural Transmission in Developing Countries

Authors: Fatemeh Noughani, Seyd Mehdi Sadat

Abstract:

Medical tourism or travel therapy is travelling from one country to another to be under medical treatment, utilizing the health factors of natural sector like mineral water springs and so on. From 1990s medical tourism around the world developed and grew because of different factors like globalization and free trade in the fields of health services, changes in exchange rates in the world economy (which caused the desirability of Asian countries as a medical tourist attraction) in a way that currently there is a close competition in this field among famous countries in medical services to make them find a desirable place in medical tourism market of the world as a complicated and growing industry in a short time. Perhaps tourism is an attractive industry and a good support for the economy of Iran, if we try to merge oil earnings and tourism industry it would be better and more constructive than putting them in front of each other. Moving from oil toward tourism economy especially medical tourism, must be one of the prospects of Iran's government for the oil industry to provide a few percent of the yearly earnings of the country. Among the achievements in medical tourism we can name the prevention of brain drain to other countries and an increase in employment rate for healthcare staff, increase in foreign exchange earnings of the country because of the tourists' staying and followed by increasing the quality of life and cultural transmission as well as empowering the medical human resources.

Keywords: developing countries, health tourism, quality of life, cultural transmission

Procedia PDF Downloads 436
27161 Afrikan Natural Medicines: An Innovation-Based Model for Medicines Production, Curriculum Development and Clinical Application

Authors: H. Chabalala, A. Grootboom, M. Tang

Abstract:

The innovative development, production, and clinical utilisation of African natural medicines requires frameworks from systematisation, innovation, registration. Afrika faces challenges when it comes to these sectors. The opposite is the case as is is evident in ancient Asian (Traditional Chinese Medicine and Indian Ayurveda and Siddha) medical systems, which are interfaced into their respective national health and educational systems. Afrikan Natural Medicines (ANMs) are yet to develop systematisation frameworks, i.e. disease characterisation and medicines classification. This paper explores classical medical systems drawn from Afrikan and Chinese experts in natural medicines. An Afrikological research methodology was used to conduct in-depth interviews with 20 key respondents selected through purposeful sampling technique. Data was summarised into systematisation frameworks for classical disease theories, patient categorisation, medicine classification, aetiology and pathogenesis of disease, diagnosis and prognosis techniques and treatment methods. It was discovered that ancient Afrika had systematic medical cosmologies, remnants of which are evident in most Afrikan cultural health practices. Parallels could be drawn from classical medical concepts of antiquity, like Chinese Taoist and Indian tantric health systems. Data revealed that both the ancient and contemporary ANM systems were based on living medical cosmologies. The study showed that African Natural Healing Systems have etiological systems, general pathogenesis knowledge, differential diagnostic techniques, comprehensive prognosis and holistic treatment regimes. Systematisation models were developed out of these frameworks, and this could be used for evaluation of clinical research, medical application including development of curriculum for high-education. It was envisaged that frameworks will pave way towards the development, production and commercialisation of ANMs. This was piloted in inclusive innovation, technology transfer and commercialisation of South African natural medicines, cosmeceuticals, nutraceuticals and health infusions. The central model presented here in will assist in curriculum development and establishment of Afrikan Medicines Hospitals and Pharmaceutical Industries.

Keywords: African Natural Medicines, Indigenous Knowledge Systems, Medical Cosmology, Clinical Application

Procedia PDF Downloads 130
27160 Design of a Real Time Heart Sounds Recognition System

Authors: Omer Abdalla Ishag, Magdi Baker Amien

Abstract:

Physicians used the stethoscope for listening patient heart sounds in order to make a diagnosis. However, the determination of heart conditions by acoustic stethoscope is a difficult task so it requires special training of medical staff. This study developed an accurate model for analyzing the phonocardiograph signal based on PC and DSP processor. The system has been realized into two phases; offline and real time phase. In offline phase, 30 cases of heart sounds files were collected from medical students and doctor's world website. For experimental phase (real time), an electronic stethoscope has been designed, implemented and recorded signals from 30 volunteers, 17 were normal cases and 13 were various pathologies cases, these acquired 30 signals were preprocessed using an adaptive filter to remove lung sounds. The background noise has been removed from both offline and real data, using wavelet transform, then graphical and statistics features vector elements were extracted, finally a look-up table was used for classification heart sounds cases. The obtained results of the implemented system showed accuracy of 90%, 80% and sensitivity of 87.5%, 82.4% for offline data, and real data respectively. The whole system has been designed on TMS320VC5509a DSP Platform.

Keywords: code composer studio, heart sounds, phonocardiograph, wavelet transform

Procedia PDF Downloads 448
27159 Visualizing the Consequences of Smoking Using Augmented Reality

Authors: B. Remya Mohan, Kamal Bijlani, R. Jayakrishnan

Abstract:

Visualization in an educational context provides the learner with visual means of information. Conceptualizing certain circumstances such as consequences of smoking can be done more effectively with the help of the technology, Augmented Reality (AR). It is a new methodology for effective learning. This paper proposes an approach on how AR based on Marker Technology simulates the harmful effects of smoking and its consequences using Unity 3D game engine. The study also illustrates the impact of AR technology on students for better learning. AR technology can be used as a method to improve learning.

Keywords: augmented reality, marker technology, multi-platform, virtual buttons

Procedia PDF Downloads 578
27158 A Quantitative Analysis of Rural to Urban Migration in Morocco

Authors: Donald Wright

Abstract:

The ultimate goal of this study is to reinvigorate the philosophical underpinnings the study of urbanization with scientific data with the goal of circumventing what seems an inevitable future clash between rural and urban populations. To that end urban infrastructure must be sustainable economically, politically and ecologically over the course of several generations as cities continue to grow with the incorporation of climate refugees. Our research will provide data concerning the projected increase in population over the coming two decades in Morocco, and the population will shift from rural areas to urban centers during that period of time. As a result, urban infrastructure will need to be adapted, developed or built to fit the demand of future internal migrations from rural to urban centers in Morocco. This paper will also examine how past experiences of internally displaced people give insight into the challenges faced by future migrants and, beyond the gathering of data, how people react to internal migration. This study employs four different sets of research tools. First, a large part of this study is archival, which involves compiling the relevant literature on the topic and its complex history. This step also includes gathering data bout migrations in Morocco from public data sources. Once the datasets are collected, the next part of the project involves populating the attribute fields and preprocessing the data to make it understandable and usable by machine learning algorithms. In tandem with the mathematical interpretation of data and projected migrations, this study benefits from a theoretical understanding of the critical apparatus existing around urban development of the 20th and 21st centuries that give us insight into past infrastructure development and the rationale behind it. Once the data is ready to be analyzed, different machine learning algorithms will be experimented (k-clustering, support vector regression, random forest analysis) and the results compared for visualization of the data. The final computational part of this study involves analyzing the data and determining what we can learn from it. This paper helps us to understand future trends of population movements within and between regions of North Africa, which will have an impact on various sectors such as urban development, food distribution and water purification, not to mention the creation of public policy in the countries of this region. One of the strengths of this project is the multi-pronged and cross-disciplinary methodology to the research question, which enables an interchange of knowledge and experiences to facilitate innovative solutions to this complex problem. Multiple and diverse intersecting viewpoints allow an exchange of methodological models that provide fresh and informed interpretations of otherwise objective data.

Keywords: climate change, machine learning, migration, Morocco, urban development

Procedia PDF Downloads 156
27157 Analysis of Big Data

Authors: Sandeep Sharma, Sarabjit Singh

Abstract:

As per the user demand and growth trends of large free data the storage solutions are now becoming more challenge-able to protect, store and to retrieve data. The days are not so far when the storage companies and organizations are start saying 'no' to store our valuable data or they will start charging a huge amount for its storage and protection. On the other hand as per the environmental conditions it becomes challenge-able to maintain and establish new data warehouses and data centers to protect global warming threats. A challenge of small data is over now, the challenges are big that how to manage the exponential growth of data. In this paper we have analyzed the growth trend of big data and its future implications. We have also focused on the impact of the unstructured data on various concerns and we have also suggested some possible remedies to streamline big data.

Keywords: big data, unstructured data, volume, variety, velocity

Procedia PDF Downloads 549
27156 Mobile Augmented Reality for Collaboration in Operation

Authors: Chong-Yang Qiao

Abstract:

Mobile augmented reality (MAR) tracking targets from the surroundings and aids operators for interactive data and procedures visualization, potential equipment and system understandably. Operators remotely communicate and coordinate with each other for the continuous tasks, information and data exchange between control room and work-site. In the routine work, distributed control system (DCS) monitoring and work-site manipulation require operators interact in real-time manners. The critical question is the improvement of user experience in cooperative works through applying Augmented Reality in the traditional industrial field. The purpose of this exploratory study is to find the cognitive model for the multiple task performance by MAR. In particular, the focus will be on the comparison between different tasks and environment factors which influence information processing. Three experiments use interface and interaction design, the content of start-up, maintenance and stop embedded in the mobile application. With the evaluation criteria of time demands and human errors, and analysis of the mental process and the behavior action during the multiple tasks, heuristic evaluation was used to find the operators performance with different situation factors, and record the information processing in recognition, interpretation, judgment and reasoning. The research will find the functional properties of MAR and constrain the development of the cognitive model. Conclusions can be drawn that suggest MAR is easy to use and useful for operators in the remote collaborative works.

Keywords: mobile augmented reality, remote collaboration, user experience, cognition model

Procedia PDF Downloads 198
27155 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer

Authors: Surita Maini, Sanjay Dhanka

Abstract:

Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.

Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning

Procedia PDF Downloads 68
27154 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique

Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu

Abstract:

Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.

Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing

Procedia PDF Downloads 101
27153 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges

Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars

Abstract:

In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.

Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting

Procedia PDF Downloads 153
27152 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification

Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos

Abstract:

Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.

Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology

Procedia PDF Downloads 149
27151 Model for Remanufacture of Medical Equipment in Cross Border Collaboration

Authors: Kingsley Oturu, Winifred Ijomah, Wale Coker, Chibueze Achi

Abstract:

With the impact of BREXIT and the need for cross-border collaboration, this international research investigated the use of a conceptual model for remanufacturing medical equipment (with a focus on anesthetic machines and baby incubators). Early findings of the research suggest that contextual factors need to be taken into consideration, as well as an emphasis on cleaning (e.g., sterilization) during the process of remanufacturing medical equipment. For example, copper tubings may be more important in the remanufacturing of anesthetic equipment in tropical climates than in cold climates.

Keywords: medical equipment remanufacture, sustainability, circular business models, remanufacture process model

Procedia PDF Downloads 172
27150 Empirical Study From Final Exams of Graduate Courses in Computer Science to Demystify the Notion of an Average Software Engineer and Offer a Direction to Address Diversity of Professional Backgrounds of a Student Body

Authors: Alex Elentukh

Abstract:

The paper is based on data collected from final exams administered during five years of teaching the graduate course in software engineering. The visualization instrument with four distinct personas has been used to improve the effectiveness of each class. The study offers a plethora of clues toward students' behavioral preferences. Diversity among students (professional background, physical proximity) is too significant to assume a single face of a learner. This is particularly true for a body of online graduate students in computer science. Conclusions of the study (each learner is unique, and each class is unique) are extrapolated to demystify the notion of an 'average software engineer.' An immediate direction for an educator is to ensure a course applies to a wide audience of very different individuals. On the other hand, a student should be clear about his/her abilities and preferences - to follow the most effective learning path.

Keywords: K.3.2 computer and information science education, learner profiling, adaptive learning, software engineering

Procedia PDF Downloads 104
27149 The Effect of Socialization Tactics on Job Satisfaction of Employees, Regarding to Personality Types in Tehran University of Medical Science’s Employees

Authors: Maryam Hoorzad, Narges Shokry, Mandan Momeni

Abstract:

According to importance of socialization in effectiveness of organizations and on the other hand assessing the impact of individual differences on socialization tactics by measuring employees satisfaction, can be assessed for each of the personality types which socialization tactics is the more effective. The aim of this paper is to investigate how organizational socialization tactics affect job satisfaction of employees according to personality types. A survey was conducted using a measurement tool based on Van Maanen and Schein’s theory on organizational socialization tactics and Myers Briggs’ measurement tools of personality types. The respondents were employees with more than 3 years backward in Tehran University of Medical Science. Data collection was performed using both library and field, the data collection instrument was questionnaires and data were analysed using the Spss and Lisrel programs. It was found that investiture and serial tactics has a significant effect on employees satisfaction, any increase in investiture and serial tactics led to increase in job satisfaction and any increase in divestiture and disjunctive tactics led to reduction of job satisfaction. Investiture tactic has the most effect on employees satisfaction. Also based on the results, personality types affect the relationship between socialization tactics and job satisfaction. In the ESFJ personality type the effect of investiture tactic on employee satisfaction is the most.

Keywords: organizational socialization, organizational socialization tactics, personality types, job satisfaction

Procedia PDF Downloads 442
27148 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements

Authors: Ebru Turgal, Beyza Doganay Erdogan

Abstract:

Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.

Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data

Procedia PDF Downloads 203
27147 An Audit of Climate Change and Sustainability Teaching in Medical School

Authors: Karolina Wieczorek, Zofia Przypaśniak

Abstract:

Climate change is a rapidly growing threat to global health, and part of the responsibility to combat it lies within the healthcare sector itself, including adequate education of future medical professionals. To mitigate the consequences, the General Medical Council (GMC) has equipped medical schools with a list of outcomes regarding sustainability teaching. Students are expected to analyze the impact of the healthcare sector’s emissions on climate change. The delivery of the related teaching content is, however, often inadequate and insufficient time is devoted for exploration of the topics. Teaching curricula lack in-depth exploration of the learning objectives. This study aims to assess the extent and characteristics of climate change and sustainability subjects teaching in the curriculum of a chosen UK medical school (Barts and The London School of Medicine and Dentistry). It compares the data to the national average scores from the Climate Change and Sustainability Teaching (C.A.S.T.) in Medical Education Audit to draw conclusions about teaching on a regional level. This is a single-center audit of the timetabled sessions of teaching in the medical course. The study looked at the academic year 2020/2021 which included a review of all non-elective, core curriculum teaching materials including tutorials, lectures, written resources, and assignments in all five years of the undergraduate and graduate degrees, focusing only on mandatory teaching attended by all students (excluding elective modules). The topics covered were crosschecked with GMC Outcomes for graduates: “Educating for Sustainable Healthcare – Priority Learning Outcomes” as gold standard to look for coverage of the outcomes and gaps in teaching. Quantitative data was collected in form of time allocated for teaching as proxy of time spent per individual outcomes. The data was collected independently by two students (KW and ZP) who have received prior training and assessed two separate data sets to increase interrater reliability. In terms of coverage of learning outcomes, 12 out of 13 were taught (with the national average being 9.7). The school ranked sixth in the UK for time spent per topic and second in terms of overall coverage, meaning the school has a broad range of topics taught with some being explored in more detail than others. For the first outcome 4 out of 4 objectives covered (average 3.5) with 47 minutes spent per outcome (average 84 min), for the second objective 5 out of 5 covered (average 3.5) with 46 minutes spent (average 20), for the third 3 out of 4 (average 2.5) with 10 mins pent (average 19 min). A disproportionately large amount of time is spent delivering teaching regarding air pollution (respiratory illnesses), which resulted in the topic of sustainability in other specialties being excluded from teaching (musculoskeletal, ophthalmology, pediatrics, renal). Conclusions: Currently, there is no coherent strategy on national teaching of climate change topics and as a result an unstandardized amount of time spent on teaching and coverage of objectives can be observed.

Keywords: audit, climate change, sustainability, education

Procedia PDF Downloads 87
27146 Temperature-Dependent Post-Mortem Changes in Human Cardiac Troponin-T (cTnT): An Approach in Determining Postmortem Interval

Authors: Sachil Kumar, Anoop Kumar Verma, Wahid Ali, Uma Shankar Singh

Abstract:

Globally approximately 55.3 million people die each year. In the India there were 95 lakh annual deaths in 2013. The number of deaths resulted from homicides, suicides and unintentional injuries in the same period was about 5.7 lakh. The ever-increasing crime rate necessitated the development of methods for determining time since death. An erroneous time of death window can lead investigators down the wrong path or possibly focus a case on an innocent suspect. In this regard a research was carried out by analyzing the temperature dependent degradation of a Cardiac Troponin-T protein (cTnT) in the myocardium postmortem as a marker for time since death. Cardiac tissue samples were collected from (n=6) medico-legal autopsies, (in the Department of Forensic Medicine and Toxicology, King George’s Medical University, Lucknow India) after informed consent from the relatives and studied post-mortem degradation by incubation of the cardiac tissue at room temperature (20±2 OC), 12 0C, 25 0C and 37 0C for different time periods ((~5, 26, 50, 84, 132, 157, 180, 205, and 230 hours). The cases included were the subjects of road traffic accidents (RTA) without any prior history of disease who died in the hospital and their exact time of death was known. The analysis involved extraction of the protein, separation by denaturing gel electrophoresis (SDS-PAGE) and visualization by Western blot using cTnT specific monoclonal antibodies. The area of the bands within a lane was quantified by scanning and digitizing the image using Gel Doc. The data shows a distinct temporal profile corresponding to the degradation of cTnT by proteases found in cardiac muscle. The disappearance of intact cTnT and the appearance of lower molecular weight bands are easily observed. Western blot data clearly showed the intact protein at 42 kDa, two major (27 kDa, 10kDa) fragments, two additional minor fragments (32 kDa) and formation of low molecular weight fragments as time increases. At 12 0C the intensity of band (intact cTnT) decreased steadily as compared to RT, 25 0C and 37 0C. Overall, both PMI and temperature had a statistically significant effect where the greatest amount of protein breakdown was observed within the first 38 h and at the highest temperature, 37 0C. The combination of high temperature (37 0C) and long Postmortem interval (105.15 hrs) had the most drastic effect on the breakdown of cTnT. If the percent intact cTnT is calculated from the total area integrated within a Western blot lane, then the percent intact cTnT shows a pseudo-first order relationship when plotted against the log of the time postmortem. These plots show a good coefficient of correlation of r = 0.95 (p=0.003) for the regression of the human heart at different temperature conditions. The data presented demonstrates that this technique can provide an extended time range during which Postmortem interval can be more accurately estimated.

Keywords: degradation, postmortem interval, proteolysis, temperature, troponin

Procedia PDF Downloads 386
27145 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 387
27144 Reinforced Concrete Bridge Deck Condition Assessment Methods Using Ground Penetrating Radar and Infrared Thermography

Authors: Nicole M. Martino

Abstract:

Reinforced concrete bridge deck condition assessments primarily use visual inspection methods, where an inspector looks for and records locations of cracks, potholes, efflorescence and other signs of probable deterioration. Sounding is another technique used to diagnose the condition of a bridge deck, however this method listens for damage within the subsurface as the surface is struck with a hammer or chain. Even though extensive procedures are in place for using these inspection techniques, neither one provides the inspector with a comprehensive understanding of the internal condition of a bridge deck – the location where damage originates from.  In order to make accurate estimates of repair locations and quantities, in addition to allocating the necessary funding, a total understanding of the deck’s deteriorated state is key. The research presented in this paper collected infrared thermography and ground penetrating radar data from reinforced concrete bridge decks without an asphalt overlay. These decks were of various ages and their condition varied from brand new, to in need of replacement. The goals of this work were to first verify that these nondestructive evaluation methods could identify similar areas of healthy and damaged concrete, and then to see if combining the results of both methods would provide a higher confidence than if the condition assessment was completed using only one method. The results from each method were presented as plan view color contour plots. The results from one of the decks assessed as a part of this research, including these plan view plots, are presented in this paper. Furthermore, in order to answer the interest of transportation agencies throughout the United States, this research developed a step-by-step guide which demonstrates how to collect and assess a bridge deck using these nondestructive evaluation methods. This guide addresses setup procedures on the deck during the day of data collection, system setups and settings for different bridge decks, data post-processing for each method, and data visualization and quantification.

Keywords: bridge deck deterioration, ground penetrating radar, infrared thermography, NDT of bridge decks

Procedia PDF Downloads 155
27143 Research of Data Cleaning Methods Based on Dependency Rules

Authors: Yang Bao, Shi Wei Deng, WangQun Lin

Abstract:

This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSQL), and gives 6 data cleaning methods based on these algorithms.

Keywords: data cleaning, dependency rules, violation data discovery, data repair

Procedia PDF Downloads 564
27142 A World Map of Seabed Sediment Based on 50 Years of Knowledge

Authors: T. Garlan, I. Gabelotaud, S. Lucas, E. Marchès

Abstract:

Production of a global sedimentological seabed map has been initiated in 1995 to provide the necessary tool for searches of aircraft and boats lost at sea, to give sedimentary information for nautical charts, and to provide input data for acoustic propagation modelling. This original approach had already been initiated one century ago when the French hydrographic service and the University of Nancy had produced maps of the distribution of marine sediments of the French coasts and then sediment maps of the continental shelves of Europe and North America. The current map of the sediment of oceans presented was initiated with a UNESCO's general map of the deep ocean floor. This map was adapted using a unique sediment classification to present all types of sediments: from beaches to the deep seabed and from glacial deposits to tropical sediments. In order to allow good visualization and to be adapted to the different applications, only the granularity of sediments is represented. The published seabed maps are studied, if they present an interest, the nature of the seabed is extracted from them, the sediment classification is transcribed and the resulted map is integrated in the world map. Data come also from interpretations of Multibeam Echo Sounder (MES) imagery of large hydrographic surveys of deep-ocean. These allow a very high-quality mapping of areas that until then were represented as homogeneous. The third and principal source of data comes from the integration of regional maps produced specifically for this project. These regional maps are carried out using all the bathymetric and sedimentary data of a region. This step makes it possible to produce a regional synthesis map, with the realization of generalizations in the case of over-precise data. 86 regional maps of the Atlantic Ocean, the Mediterranean Sea, and the Indian Ocean have been produced and integrated into the world sedimentary map. This work is permanent and permits a digital version every two years, with the integration of some new maps. This article describes the choices made in terms of sediment classification, the scale of source data and the zonation of the variability of the quality. This map is the final step in a system comprising the Shom Sedimentary Database, enriched by more than one million punctual and surface items of data, and four series of coastal seabed maps at 1:10,000, 1:50,000, 1:200,000 and 1:1,000,000. This step by step approach makes it possible to take into account the progresses in knowledge made in the field of seabed characterization during the last decades. Thus, the arrival of new classification systems for seafloor has improved the recent seabed maps, and the compilation of these new maps with those previously published allows a gradual enrichment of the world sedimentary map. But there is still a lot of work to enhance some regions, which are still based on data acquired more than half a century ago.

Keywords: marine sedimentology, seabed map, sediment classification, world ocean

Procedia PDF Downloads 232
27141 Access of Refugees in Rural Areas to Regular Medication during COVID-19 Era: International Organization for Migration, Jordan Experience

Authors: Rasha Shoumar

Abstract:

Background: Since the onset of the Syria crisis in 2011, Jordan has hosted many Syrian refugees, many of which are residing in urban and rural areas. Vulnerability of refugees has increased due to the COVID-19 pandemic, adding to their already existing challenge in access to medical services, rendering them vulnerable to the complications of untreated medical conditions and amplifying their risk for severe COVID-19 disease. To improve health outcomes and access to health care services in a COVID-19 context, IOM (The International Organization for Migration) provided health services including awareness raising, direct primary health care through mobile teams and referrals to secondary services were extended to the vulnerable populations of refugees. Method: 6 community health volunteers were trained and deployed to different governorates to provide COVID-19 and non-communicable disease awareness and collect data rated to non-communicable disease and access to medical health services. Primary health care services were extended to 7 governorates through a mobile medical team, providing medical management. The collected Data was reviewed and analyzed. Results: 2150 refugees in rural areas were reached out by community health volunteers, out of which 78 received their medications through the Ministry of Health, 121 received their medications through different non-governmental organizations, 665 patients couldn’t afford buying any medications, 1286 patients were occasionally buying their medications when they were able to afford it. 853 patients received medications and follow up through IOM mobile clinics, the most common conditions were hypertension, diabetes, hyperlipidemia, anemia, heart disease, thyroid disease, asthma, seizures, and psychiatric conditions. 709 of these patients had more than 3 of the comorbidities. Multiple cases were referred for secondary and tertiary lifesaving interventions. Conclusion: Non communicable diseases are highly prevalent among refugee population in Jordan, access to medical services have proven to be a challenge in rural areas especially during the COVID-19 era, many of the patients have multiple uncontrolled medical conditions placing them at risk for complications and risk for severe COVID-19 disease. Deployment of mobile clinics to rural areas plays an essential role in managing such medical conditions, thus improving the continuum of health care approach, physical and mental wellbeing of refugees and reducing the risk for severe COVID-19 disease among this group, taking us one step forward toward universal health access.

Keywords: COVID-19, refugees, mobile clinics, primary health care

Procedia PDF Downloads 142
27140 China's Health Diplomacy in Africa

Authors: Wanda Luen-Wun Siu, Xiaowen Zhang

Abstract:

The outbreak of the COVID-19 epidemic has caused great difficulties for South-South cooperation, but there are also opportunities. China’s health diplomacy has changed from dispatching medical teams, assisting in the construction of hospitals, and encouraging medical investment in the Africa health sector. This paper adopted a retrospective review of China’s health diplomacy in Africa from 1963 to 2020. Findings suggested that China has a preference for aiding Africa health infrastructure and sending medical teams to African countries. China’s health diplomacy in Africa is a success and has established secure diplomatic relations with African countries, thanks to the medical and health assistance to Africa over 60 years. This research contributes to the literature of health diplomacy and foreign relations and indicates that China’s health aid has fostered cooperation at the medical and diplomatic levels.

Keywords: Africa, china’s health diplomacy, COVID-19, bilateral relations

Procedia PDF Downloads 226
27139 Interacting with Multi-Scale Structures of Online Political Debates by Visualizing Phylomemies

Authors: Quentin Lobbe, David Chavalarias, Alexandre Delanoe

Abstract:

The ICT revolution has given birth to an unprecedented world of digital traces and has impacted a wide number of knowledge-driven domains such as science, education or policy making. Nowadays, we are daily fueled by unlimited flows of articles, blogs, messages, tweets, etc. The internet itself can thus be considered as an unsteady hyper-textual environment where websites emerge and expand every day. But there are structures inside knowledge. A given text can always be studied in relation to others or in light of a specific socio-cultural context. By way of their textual traces, human beings are calling each other out: hypertext citations, retweets, vocabulary similarity, etc. We are in fact the architects of a giant web of elements of knowledge whose structures and shapes convey their own information. The global shapes of these digital traces represent a source of collective knowledge and the question of their visualization remains an opened challenge. How can we explore, browse and interact with such shapes? In order to navigate across these growing constellations of words and texts, interdisciplinary innovations are emerging at the crossroad between fields of social and computational sciences. In particular, complex systems approaches make it now possible to reconstruct the hidden structures of textual knowledge by means of multi-scale objects of research such as semantic maps and phylomemies. The phylomemy reconstruction is a generic method related to the co-word analysis framework. Phylomemies aim to reveal the temporal dynamics of large corpora of textual contents by performing inter-temporal matching on extracted knowledge domains in order to identify their conceptual lineages. This study aims to address the question of visualizing the global shapes of online political discussions related to the French presidential and legislative elections of 2017. We aim to build phylomemies on top of a dedicated collection of thousands of French political tweets enriched with archived contemporary news web articles. Our goal is to reconstruct the temporal evolution of online debates fueled by each political community during the elections. To that end, we want to introduce an iterative data exploration methodology implemented and tested within the free software Gargantext. There we combine synchronic and diachronic axis of visualization to reveal the dynamics of our corpora of tweets and web pages as well as their inner syntagmatic and paradigmatic relationships. In doing so, we aim to provide researchers with innovative methodological means to explore online semantic landscapes in a collaborative and reflective way.

Keywords: online political debate, French election, hyper-text, phylomemy

Procedia PDF Downloads 186
27138 Health Literacy in Jordan: Obstacles for Doctors and Quality Patient Care

Authors: Etaf Alkhlaifat

Abstract:

This study drew conceptually on Communication Accommodation Theory to describe and analyze conversations between doctors and patients to examine the extent to which patients’ level of literacy represents one of the linguistic obstacles that may adversely influence the quality of healthcare services in Jordan. A thematic qualitative approach was employed to interpret the phenomena under study, which required direct observation and interviews with doctors (n=6) and patients (n=15) in natural Jordanian medical settings. This generated a comprehensive corpus of audio and videotaped data, which revealed that most doctors expressed dissatisfaction with patients’ ability to express themselves and comprehend them as a result of a lack of medical awareness and limited health education. The significance of this study rests on its detailed investigation of the impact of health literacy on patients’ health outcomes and while providing unique insights into how low health literacy could contribute to misunderstanding and potential ill-health.

Keywords: doctor-patient communication, health literacy, medical knowledge, communication accommodation theory, qualitative research

Procedia PDF Downloads 11
27137 A Clear Language Is Essential: A Qualitative Exploration of Doctor-Patient Health Interaction in Jordan

Authors: Etaf Khlaed Haroun Alkhlaifat

Abstract:

When doctors and patients do not share the same first language, language barriers may exist, which may have negative effects on the quality of communication and care provided. Doctors’ use of medical jargon and patients’ inability to fully express their illness, to a potential loss of relevant information can often create misunderstanding. This study sought to examine the extent to which a lack of “common” language represents one of the linguistic obstacles that may adversely influence the quality of healthcare services in Jordan. Communication Accommodation Theory (CAT) was used to interpret the phenomena under study. Doctors (n=9) and patients (n=18) were observed and interviewed in natural Jordanian medical settings. A thematic qualitative approach was employed to analyse the data. The preliminary findings of the study revealed that most doctors appeared to have a good sense of appropriate ways to break through communication barriers by changing medical terminologies or jargons into lay terms. However, for some, there were two main challenges: 1) the use of medical jargon in explaining medication and side effects and 2) the lack of patients’ knowledge in providing a full explanation about their illnesses. The study revealed that language barriers adversely affect health outcomes for patients with limited fluency in the English language. It argues that it is doctors’ responsibility to guarantee mutual understanding, educate patients on their condition and improve their health outcomes.

Keywords: communication accommodation theory, doctor-patient interaction, language barrier, medical jargon, misunderstanding

Procedia PDF Downloads 86
27136 Health Care Delivery Services at Subdistrict Health Promoting Hospitals on The Islands in Thailand

Authors: Tassana Boontong, Vilaivan Thongcharoen, Orapan Thosingha, Suphamon Chansakul, Anorut Jenwitheesuk, Chanin Chakkrapopyodhin, Isara Phiwchai, Mattika Chaichan, Rungnapha Khiewchaum

Abstract:

According to Thailand health policy, subdistrict health promoting hospitals (SHPHs) serve as forefront facilities for inclusive health care service. Those services include health promotion, disease prevention, primary medical care and rehabilitation. However, SHPHs residing in some distant area, such as SHPHs residing on the islands, would deliver different services relevant to health needs of the local people and the tourists. This research aimed to study health care delivery services at SHPHs on the islands in Thailand. Data were collected using questionnaires. The result revealed that in Thailand, there are 58 SHPHs on the islands. During data collection process, the researchers were not allowed to collect data in 5 SHPHs in the southern part due to Covid-19 pandemic. The report is based on 53 SHPHs on the islands. Numbers of health care personnel were 201, 72.14 % were female, with the ages ranged from 22 to 60 years (mean = 35.56 years). About 53% were community health personnel, while 26.08% were professional nurses. In regard to work experiences, the range of year varied from less than 1 year to 30 years, with the mean of 8.36 years. The majority of their responsibilities focused on providing primary medical care (86.34%), caring of people with chronic illnesses (85.30%) and providing medical care procedures for patients with chronic illnesses at home (84.36%). Nurses were main health care personnel in performing primary medical care. Due to difficulty transportation from the islands to the mainland, nurses had to provide prompt emergency medical care while the patients arrived with emergency and critical illnesses such as severe head trauma, stroke or coronary artery disease. Although some medical procedures were complex and not covered by nursing and midwifery license, they decided to protect patients from life- threatening conditions and make them stable before transportation. In SHPHs, the workload exceeded manpower, health care personnel had to work overtime almost every day. In the famous tourist islands, health care personnel had to carry 3-4 folds of their workload during the holidays because of the large crowds of foreign and Thai tourists. It is recommended that SHPHs on the islands should scale up the level of services to cover advanced medical care. Health care personnel, in particular, professional nurses, should be equipped with emergency and critical care skills. The expected outcomes of the services should emphasize on rescuing patients with emergency and life-threatening illnesses and providing comprehensive care for people living on or visiting the islands.

Keywords: distant area, islands, sub district health promoting hospital, heath care services, Thailand

Procedia PDF Downloads 79
27135 A Patient Passport Application for Adults with Cystic Fibrosis

Authors: Tamara Vagg, Cathy Shortt, Claire Hickey, Joseph A. Eustace, Barry J. Plant, Sabin Tabirca

Abstract:

Introduction: Paper-based patient passports have been used advantageously for older patients, patients with diabetes, and patients with learning difficulties. However, these passports can experience issues with data security, patients forgetting to bring the passport, patients being over encumbered, and uncertainty with who is responsible for entering and managing data in this passport. These issues could be resolved by transferring the paper-based system to a convenient platform such as a smartphone application (app). Background: Life expectancy for some Cystic Fibrosis (CF) patients are rising and as such new complications and procedures are predicted. Subsequently, there is a need for education and management interventions that can benefit CF adults. This research proposes a CF patient passport to record basic medical information through a smartphone app which will allow CF adults access to their basic medical information. Aim: To provide CF patients with their basic medical information via mobile multimedia so that they can receive care when traveling abroad or between CF centres. Moreover, by recording their basic medical information, CF patients may become more aware of their own condition and more active in their health care. Methods: This app is designed by a CF multidisciplinary team to be a lightweight reflection of a hospital patient file. The passport app is created using PhoneGap so that it can be deployed for both Android and iOS devices. Data entered into the app is encrypted and stored locally only. The app is password protected and includes the ability to set reminders and a graph to visualise weight and lung function over time. The app is introduced to seven participants as part of a stress test. The participants are asked to test the performance and usability of the app and report any issues identified. Results: Feedback and suggestions received via this testing include the ability to reorder the list of clinical appointments via date, an open format of recording dates (in the event specifics are unknown), and a drop down menu for data which is difficult to enter (such as bugs found in mucus). The app is found to be usable and accessible and is now being prepared for a pilot study with adult CF patients. Conclusions: It is anticipated that such an app will be beneficial to CF adult patients when travelling abroad and between CF centres.

Keywords: Cystic Fibrosis, digital patient passport, mHealth, self management

Procedia PDF Downloads 254