Search results for: gravity structures
4164 Investigations on Enhancement of Fly Ash in Cement Manufacturing through Optimization of Clinker Quality and Fly Ash Fineness
Authors: Suresh Vanguri, Suresh Palla, K. V. Kalyani, S. K. Chaturvedi, B. N. Mohapatra
Abstract:
Enhancing the fly ash utilization in the manufacture of cement is identified as one of the key areas to mitigate the Green House Gas emissions from the cement industry. Though increasing the fly ash content in cement has economic and environmental benefits, it results in a decrease in the compressive strength values, particularly at early ages. Quality of clinker and fly ash were identified as predominant factors that govern the extent of absorption of fly ash in the manufacturing of cement. This paper presents systematic investigations on the effect of clinker and fly ash quality on the properties of resultant cement. Since mechanical activation alters the physicochemical properties such as particle size distribution, surface area, phase morphology, understanding the variation of these properties with activation is required for its applications. The effect of mechanical activation on fly ash surface area, specific gravity, flow properties, lime reactivity, comparative compressive strength (CCS), reactive silica and mineralogical properties were also studied. The fineness of fly ash was determined by Blaine’s method, specific gravity, lime reactivity, CCS were determined as per the method IS 1727-1967. The phase composition of fly ash was studied using the X-ray Diffraction technique. The changes in the microstructure and morphology with activation were examined using the scanning electron microscope. The studies presented in this paper also include evaluation of Portland Pozzolana Cement (PPC), prepared using high volume fly ash. Studies are being carried out using clinker from cement plants located in different regions/clusters in India. Blends of PPC containing higher contents of activated fly ash have been prepared and investigated for their chemical and physical properties, as per Indian Standard procedures. Changes in the microstructure of fly ash with activation and mechanical properties of resultant cement containing high volumes of fly ash indicated the significance of optimization of the quality of clinker and fly ash fineness for better techno-economical benefits.Keywords: flow properties, fly ash enhancement, lime reactivity, microstructure, mineralogy
Procedia PDF Downloads 4664163 From Equations to Structures: Linking Abstract Algebra and High-School Algebra for Secondary School Teachers
Authors: J. Shamash
Abstract:
The high-school curriculum in algebra deals mainly with the solution of different types of equations. However, modern algebra has a completely different viewpoint and is concerned with algebraic structures and operations. A question then arises: What might be the relevance and contribution of an abstract algebra course for developing expertise and mathematical perspective in secondary school mathematics instruction? This is the focus of this paper. The course Algebra: From Equations to Structures is a carefully designed abstract algebra course for Israeli secondary school mathematics teachers. The course provides an introduction to algebraic structures and modern abstract algebra, and links abstract algebra to the high-school curriculum in algebra. It follows the historical attempts of mathematicians to solve polynomial equations of higher degrees, attempts which resulted in the development of group theory and field theory by Galois and Abel. In other words, algebraic structures grew out of a need to solve certain problems, and proved to be a much more fruitful way of viewing them. This theorems in both group theory and field theory. Along the historical ‘journey’, many other major results in algebra in the past 150 years are introduced, and recent directions that current research in algebra is taking are highlighted. This course is part of a unique master’s program – the Rothschild-Weizmann Program – offered by the Weizmann Institute of Science, especially designed for practicing Israeli secondary school teachers. A major component of the program comprises mathematical studies tailored for the students at the program. The rationale and structure of the course Algebra: From Equations to Structures are described, and its relevance to teaching school algebra is examined by analyzing three kinds of data sources. The first are position papers written by the participating teachers regarding the relevance of advanced mathematics studies to expertise in classroom instruction. The second data source are didactic materials designed by the participating teachers in which they connected the mathematics learned in the mathematics courses to the school curriculum and teaching. The third date source are final projects carried out by the teachers based on material learned in the course.Keywords: abstract algebra , linking abstract algebra and school mathematics, school algebra, secondary school mathematics, teacher professional development
Procedia PDF Downloads 1464162 Analysis of Steel Beam-Column Joints Under Seismic Loads
Authors: Mizam Doğan
Abstract:
Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details.Keywords: column-beam connection, seismic analysis, seismic load, steel structure
Procedia PDF Downloads 2774161 Novel CFRP Adhesive Joints and Structures for Offshore Application
Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa
Abstract:
Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: One is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.Keywords: adhesive joints, CFRP, VARTM, resin transfer molding
Procedia PDF Downloads 4374160 Computational Fluid Dynamics Simulation of Floating Body Motion Interacting with Focused Waves
Authors: Seul-Ki Park, Jong-Chun Park, Gyu-Mok Jeon, Dae-Kyung Ock, Seung-Gyu Jeong
Abstract:
Rogue waves cause frequent accidents of ships and offshore structures, which can result in severe damage to the structures. The Rogue waves, which are also known as big waves, freak waves, extreme waves, monster waves, focused waves, giant waves and abnormal waves, are unexpected and suddenly appearing, and can have a breaking force to destroy the structure even though modern structures are designed to tolerate a breaking wave. In the present study, a series of focused waves are numerically reproduced by concentrating nonlinear multi-directional waves into a target point using a commercial CFD software, Star-CCM+. A flow analysis for investigating the physical characteristics of the focused waves is performed using the Star-CCM+, while it has several difficulties to examine the inner properties of the waves in existing potential theory and experiments. Additionally, the 6-DOF (Degree of Freedom) motion of a floating body interacting with the focused waves are simulated, and the dynamic response of the body are discussed.Keywords: multidirectional waves, focused waves, rogue waves, wave-structure interaction, numerical wave tank, computational fluid dynamics
Procedia PDF Downloads 2524159 Poly (3,4-Ethylenedioxythiophene) Prepared by Vapor Phase Polymerization for Stimuli-Responsive Ion-Exchange Drug Delivery
Authors: M. Naveed Yasin, Robert Brooke, Andrew Chan, Geoffrey I. N. Waterhouse, Drew Evans, Darren Svirskis, Ilva D. Rupenthal
Abstract:
Poly(3,4-ethylenedioxythiophene) (PEDOT) is a robust conducting polymer (CP) exhibiting high conductivity and environmental stability. It can be synthesized by either chemical, electrochemical or vapour phase polymerization (VPP). Dexamethasone sodium phosphate (dexP) is an anionic drug molecule which has previously been loaded onto PEDOT as a dopant via electrochemical polymerisation; however this technique requires conductive surfaces from which polymerization is initiated. On the other hand, VPP produces highly organized biocompatible CP structures while polymerization can be achieved onto a range of surfaces with a relatively straight forward scale-up process. Following VPP of PEDOT, dexP can be loaded and subsequently released via ion-exchange. This study aimed at preparing and characterising both non-porous and porous VPP PEDOT structures including examining drug loading and release via ion-exchange. Porous PEDOT structures were prepared by first depositing a sacrificial polystyrene (PS) colloidal template on a substrate, heat curing this deposition and then spin coating it with the oxidant solution (iron tosylate) at 1500 rpm for 20 sec. VPP of both porous and non-porous PEDOT was achieved by exposing to monomer vapours in a vacuum oven at 40 mbar and 40 °C for 3 hrs. Non-porous structures were prepared similarly on the same substrate but without any sacrificial template. Surface morphology, compositions and behaviour were then characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) respectively. Drug loading was achieved by 50 CV cycles in a 0.1 M dexP aqueous solution. For drug release, each sample was exposed to 20 mL of phosphate buffer saline (PBS) placed in a water bath operating at 37 °C and 100 rpm. Film was stimulated (continuous pulse of ± 1 V at 0.5 Hz for 17 mins) while immersed into PBS. Samples were collected at 1, 2, 6, 23, 24, 26 and 27 hrs and were analysed for dexP by high performance liquid chromatography (HPLC Agilent 1200 series). AFM and SEM revealed the honey comb nature of prepared porous structures. XPS data showed the elemental composition of the dexP loaded film surface, which related well with that of PEDOT and also showed that one dexP molecule was present per almost three EDOT monomer units. The reproducible electroactive nature was shown by several cycles of reduction and oxidation via CV. Drug release revealed success in drug loading via ion-exchange, with stimulated porous and non-porous structures exhibiting a proof of concept burst release upon application of an electrical stimulus. A similar drug release pattern was observed for porous and non-porous structures without any significant statistical difference, possibly due to the thin nature of these structures. To our knowledge, this is the first report to explore the potential of VPP prepared PEDOT for stimuli-responsive drug delivery via ion-exchange. The produced porous structures were ordered and highly porous as indicated by AFM and SEM. These porous structures exhibited good electroactivity as shown by CV. Future work will investigate porous structures as nano-reservoirs to increase drug loading while sealing these structures to minimize spontaneous drug leakage.Keywords: PEDOT for ion-exchange drug delivery, stimuli-responsive drug delivery, template based porous PEDOT structures, vapour phase polymerization of PEDOT
Procedia PDF Downloads 2314158 Study of Corrosion in Structures due to Chloride Infiltration
Authors: Sukrit Ghorai, Akku Aby Mathews
Abstract:
Corrosion in reinforcing steel is the leading cause for deterioration in concrete structures. It is an electrochemical process which leads to volumetric change in concrete and causes cracking, delamination and spalling. The objective of the study is to provide a rational method to estimate the probable chloride concentration at the reinforcement level for a known surface chloride concentration. The paper derives the formulation of design charts to aid engineers for quick calculation of the chloride concentration. Furthermore, the paper focuses on comparison of durability design against corrosion with American, European and Indian design standards.Keywords: chloride infiltration, concrete, corrosion, design charts
Procedia PDF Downloads 4124157 Movement Optimization of Robotic Arm Movement Using Soft Computing
Authors: V. K. Banga
Abstract:
Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic
Procedia PDF Downloads 2984156 Theoretical and Experimental Investigations of Binary Systems for Hydrogen Storage
Authors: Gauthier Lefevre, Holger Kohlmann, Sebastien Saitzek, Rachel Desfeux, Adlane Sayede
Abstract:
Hydrogen is a promising energy carrier, compatible with the sustainable energy concept. In this context, solid-state hydrogen-storage is the key challenge in developing hydrogen economy. The capability of absorption of large quantities of hydrogen makes intermetallic systems of particular interest. In this study, efforts have been devoted to the theoretical investigation of binary systems with constraints consideration. On the one hand, besides considering hydrogen-storage, a reinvestigation of crystal structures of the palladium-arsenic system shows, with experimental validations, that binary systems could still currently present new or unknown relevant structures. On the other hand, various binary Mg-based systems were theoretically scrutinized in order to find new interesting alloys for hydrogen storage. Taking the effect of pressure into account reveals a wide range of alternative structures, changing radically the stable compounds of studied binary systems. Similar constraints, induced by Pulsed Laser Deposition, have been applied to binary systems, and results are presented.Keywords: binary systems, evolutionary algorithm, first principles study, pulsed laser deposition
Procedia PDF Downloads 2734155 Models and Metamodels for Computer-Assisted Natural Language Grammar Learning
Authors: Evgeny Pyshkin, Maxim Mozgovoy, Vladislav Volkov
Abstract:
The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert.Keywords: computer-assisted instruction, language learning, natural language grammar models, HCI
Procedia PDF Downloads 5214154 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-based Nanocomposite Hollow Sphere Structures
Authors: Mostafa Amirjan
Abstract:
In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength and energy absorption. It was found that as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400µm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.Keywords: hollow sphere structure foam, nanocomposite, thickness and diameter (t/D ), powder metallurgy
Procedia PDF Downloads 4534153 E4D-MP: Time-Lapse Multiphysics Simulation and Joint Inversion Toolset for Large-Scale Subsurface Imaging
Authors: Zhuanfang Fred Zhang, Tim C. Johnson, Yilin Fang, Chris E. Strickland
Abstract:
A variety of geophysical techniques are available to image the opaque subsurface with little or no contact with the soil. It is common to conduct time-lapse surveys of different types for a given site for improved results of subsurface imaging. Regardless of the chosen survey methods, it is often a challenge to process the massive amount of survey data. The currently available software applications are generally based on the one-dimensional assumption for a desktop personal computer. Hence, they are usually incapable of imaging the three-dimensional (3D) processes/variables in the subsurface of reasonable spatial scales; the maximum amount of data that can be inverted simultaneously is often very small due to the capability limitation of personal computers. Presently, high-performance or integrating software that enables real-time integration of multi-process geophysical methods is needed. E4D-MP enables the integration and inversion of time-lapsed large-scale data surveys from geophysical methods. Using the supercomputing capability and parallel computation algorithm, E4D-MP is capable of processing data across vast spatiotemporal scales and in near real time. The main code and the modules of E4D-MP for inverting individual or combined data sets of time-lapse 3D electrical resistivity, spectral induced polarization, and gravity surveys have been developed and demonstrated for sub-surface imaging. E4D-MP provides capability of imaging the processes (e.g., liquid or gas flow, solute transport, cavity development) and subsurface properties (e.g., rock/soil density, conductivity) critical for successful control of environmental engineering related efforts such as environmental remediation, carbon sequestration, geothermal exploration, and mine land reclamation, among others.Keywords: gravity survey, high-performance computing, sub-surface monitoring, electrical resistivity tomography
Procedia PDF Downloads 1584152 Linguistic Analysis of Argumentation Structures in Georgian Political Speeches
Authors: Mariam Matiashvili
Abstract:
Argumentation is an integral part of our daily communications - formal or informal. Argumentative reasoning, techniques, and language tools are used both in personal conversations and in the business environment. Verbalization of the opinions requires the use of extraordinary syntactic-pragmatic structural quantities - arguments that add credibility to the statement. The study of argumentative structures allows us to identify the linguistic features that make the text argumentative. Knowing what elements make up an argumentative text in a particular language helps the users of that language improve their skills. Also, natural language processing (NLP) has become especially relevant recently. In this context, one of the main emphases is on the computational processing of argumentative texts, which will enable the automatic recognition and analysis of large volumes of textual data. The research deals with the linguistic analysis of the argumentative structures of Georgian political speeches - particularly the linguistic structure, characteristics, and functions of the parts of the argumentative text - claims, support, and attack statements. The research aims to describe the linguistic cues that give the sentence a judgmental/controversial character and helps to identify reasoning parts of the argumentative text. The empirical data comes from the Georgian Political Corpus, particularly TV debates. Consequently, the texts are of a dialogical nature, representing a discussion between two or more people (most often between a journalist and a politician). The research uses the following approaches to identify and analyze the argumentative structures Lexical Classification & Analysis - Identify lexical items that are relevant in argumentative texts creating process - Creating the lexicon of argumentation (presents groups of words gathered from a semantic point of view); Grammatical Analysis and Classification - means grammatical analysis of the words and phrases identified based on the arguing lexicon. Argumentation Schemas - Describe and identify the Argumentation Schemes that are most likely used in Georgian Political Speeches. As a final step, we analyzed the relations between the above mentioned components. For example, If an identified argument scheme is “Argument from Analogy”, identified lexical items semantically express analogy too, and they are most likely adverbs in Georgian. As a result, we created the lexicon with the words that play a significant role in creating Georgian argumentative structures. Linguistic analysis has shown that verbs play a crucial role in creating argumentative structures.Keywords: georgian, argumentation schemas, argumentation structures, argumentation lexicon
Procedia PDF Downloads 744151 Fragility Analysis of a Soft First-Story Building in Mexico City
Authors: Rene Jimenez, Sonia E. Ruiz, Miguel A. Orellana
Abstract:
On 09/19/2017, a Mw = 7.1 intraslab earthquake occurred in Mexico causing the collapse of about 40 buildings. Many of these were 5- or 6-story buildings with soft first story; so, it is desirable to perform a structural fragility analysis of typical structures representative of those buildings and to propose a reliable structural solution. Here, a typical 5-story building constituted by regular R/C moment-resisting frames in the first story and confined masonry walls in the upper levels, similar to the collapsed structures on the 09/19/2017 Mexico earthquake, is analyzed. Three different structural solutions of the 5-story building are considered: S1) it is designed in accordance with the Mexico City Building Code-2004; S2) then, the column dimensions of the first story corresponding to S1 are reduced, and S3) viscous dampers are added at the first story of solution S2. A number of dynamic incremental analyses are performed for each structural solution, using a 3D structural model. The hysteretic behavior model of the masonry was calibrated with experiments performed at the Laboratory of Structures at UNAM. Ten seismic ground motions are used to excite the structures; they correspond to ground motions recorded in intermediate soil of Mexico City with a dominant period around 1s, where the structures are located. The fragility curves of the buildings are obtained for different values of the maximum inter-story drift demands. Results show that solutions S1 and S3 give place to similar probabilities of exceedance of a given value of inter-story drift for the same seismic intensity, and that solution S2 presents a higher probability of exceedance for the same seismic intensity and inter-story drift demand. Therefore, it is concluded that solution S3 (which corresponds to the building with soft first story and energy dissipation devices) can be a reliable solution from the structural point of view.Keywords: demand hazard analysis, fragility curves, incremental dynamic analyzes, soft-first story, structural capacity
Procedia PDF Downloads 1784150 The Effect of Metal Transfer Modes on Mechanical Properties of 3CR12 Stainless Steel
Authors: Abdullah Kaymakci, Daniel M. Madyira, Ntokozo Nkwanyana
Abstract:
The effect of metal transfer modes on mechanical properties of welded 3CR12 stainless steel were investigated. This was achieved by butt welding 10 mm thick plates of 3CR12 in different positions while varying the welding positions for different metal transfer modes. The ASME IX: 2010 (Welding and Brazing Qualifications) code was used as a basis for welding variables. The material and the thickness of the base metal were kept constant together with the filler metal, shielding gas and joint types. The effect of the metal transfer modes on the microstructure and the mechanical properties of the 3CR12 steel was then investigated as it was hypothesized that the change in welding positions will affect the transfer modes partly due to the effect of gravity. The microscopic examination revealed that the substrate was characterized by dual phase microstructure, that is, alpha phase and beta phase grain structures. Using the spectroscopic examination results and the ferritic factor calculation had shown that the microstructure was expected to be ferritic-martensitic during air cooling process. The tested tensile strength and Charpy impact energy were measured to be 498 MPa and 102 J which were in line with mechanical properties given in the material certificate. The heat input in the material was observed to be greater than 1 kJ/mm which is the limiting factor for grain growth during the welding process. Grain growths were observed in the heat affected zone of the welded materials. Ferritic-martensitic microstructure was observed in the microstructure during the microscopic examination. The grain growth altered the mechanical properties of the test material. Globular down hand had higher mechanical properties than spray down hand. Globular vertical up had better mechanical properties than globular vertical down.Keywords: welding, metal transfer modes, stainless steel, microstructure, hardness, tensile strength
Procedia PDF Downloads 2534149 Capability of Intelligent Techniques for Friction Factor Simulation in Water Channels
Authors: Kiyoumars Roushangar, Shabnam Mirheidarian
Abstract:
This study proposes metamodel approaches as a new intelligent technique for the explicit formulation of friction factors of water conveyance structures. For this purpose, experimental data of a movable bed flume with dune bed form were used. Analyzing the result clears the high capability of metamodel approaches (MNE= 0.05, R= 0.92) as a powerful tool for optimizing and explicit simulation of Manning's roughness coefficients of water conveyance structures compared to other nonlinear approaches.Keywords: intelligent techniques, explicit simulation, roughness coefficient, water conveyance structure
Procedia PDF Downloads 4784148 3D Numerical Analysis of Stone Columns Reinforced with Horizontal and Vertical Geosynthetic Materials
Authors: R. Ziaie Moayed, A. Khalili
Abstract:
Improvement and reinforcement of soils with poor strength and engineering properties for constructing low height structures or structures such as liquid storage tanks, bridge columns, and heavy structures have necessitated applying particular techniques. Stone columns are among the well-known methods applied in such soils. This method provides an economically justified way for improving engineering properties of soft clay and loose sandy soils. Stone column implementation in these soils increases their bearing capacity and reduces the settlement of foundation build on them. In the present study, the finite difference based FLAC3D software was used to investigate the performance and effect of soil reinforcement through stone columns without lining and those with geosynthetic lining with different levels of stiffness in horizontal and vertical modes in clayey soils. The results showed that soil improvement using stone columns with lining in vertical and horizontal modes results in improvement of bearing capacity and foundation settlement.Keywords: bearing capacity, FLAC3D, geosynthetic, settlement, stone column
Procedia PDF Downloads 1744147 Effects of Wind Load on the Tank Structures with Various Shapes and Aspect Ratios
Authors: Doo Byong Bae, Jae Jun Yoo, Il Gyu Park, Choi Seowon, Oh Chang Kook
Abstract:
There are several wind load provisions to evaluate the wind response on tank structures such as API, Euro-code, etc. the assessment of wind action applying these provisions is made by performing the finite element analysis using both linear bifurcation analysis and geometrically nonlinear analysis. By comparing the pressure patterns obtained from the analysis with the results of wind tunnel test, most appropriate wind load criteria will be recommended.Keywords: wind load, finite element analysis, linear bifurcation analysis, geometrically nonlinear analysis
Procedia PDF Downloads 6394146 Operational Challenges of Marine Fiber Reinforced Polymer Composite Structures Coupled with Piezoelectric Transducers
Authors: H. Ucar, U. Aridogan
Abstract:
Composite structures become intriguing for the design of aerospace, automotive and marine applications due to weight reduction, corrosion resistance and radar signature reduction demands and requirements. Studies on piezoelectric ceramic transducers (PZT) for diagnostics and health monitoring have gained attention for their sensing capabilities, however PZT structures are prone to fail in case of heavy operational loads. In this paper, we develop a piezo-based Glass Fiber Reinforced Polymer (GFRP) composite finite element (FE) model, validate with experimental setup, and identify the applicability and limitations of PZTs for a marine application. A case study is conducted to assess the piezo-based sensing capabilities in a representative marine composite structure. A FE model of the composite structure combined with PZT patches is developed, afterwards the response and functionality are investigated according to the sea conditions. Results of this study clearly indicate the blockers and critical aspects towards industrialization and wide-range use of PZTs for marine composite applications.Keywords: FRP composite, operational challenges, piezoelectric transducers, FE modeling
Procedia PDF Downloads 1744145 Geosynthetic Tubes in Coastal Structures a Better Substitute for Shorter Planning Horizon: A Case Study
Authors: A. Pietro Rimoldi, B. Anilkumar Gopinath, C. Minimol Korulla
Abstract:
Coastal engineering structure is conventionally designed for a shorter planning horizon usually 20 years. These structures are subjected to different offshore climatic externalities like waves, tides, tsunamis etc. during the design life period. The probability of occurrence of these different offshore climatic externalities varies. The impact frequently caused by these externalities on the structures is of concern because it has a significant bearing on the capital /operating cost of the project. There can also be repeated short time occurrence of these externalities in the assumed planning horizon which can cause heavy damage to the conventional coastal structure which are mainly made of rock. A replacement of the damaged portion to prevent complete collapse is time consuming and expensive when dealing with hard rock structures. But if coastal structures are made of Geo-synthetic containment systems such replacement is quickly possible in the time period between two successive occurrences. In order to have a better knowledge and to enhance the predictive capacity of these occurrences, this study estimates risk of encounter within the design life period of various externalities based on the concept of exponential distribution. This gives an idea of the frequency of occurrences which in turn gives an indication of whether replacement is necessary and if so at what time interval such replacements have to be effected. To validate this theoretical finding, a pilot project has been taken up in the field so that the impact of the externalities can be studied both for a hard rock and a Geosynthetic tube structure. The paper brings out the salient feature of a case study which pertains to a project in which Geosynthetic tubes have been used for reformation of a seawall adjacent to a conventional rock structure in Alappuzha coast, Kerala, India. The effectiveness of the Geosystem in combatting the impact of the short-term externalities has been brought out.Keywords: climatic externalities, exponential distribution, geosystems, planning horizon
Procedia PDF Downloads 2294144 Evaluating the Methods of Retrofitting and Renovating the Masonry Schools of Ahvaz City
Authors: Navid Khayat, Babak Mombeni
Abstract:
This study investigates the retrofitting of schools in Ahvaz City. Three schools, namely, Enghelab, Sherafat, and Golchehreh, in Ahvaz City, are initially examined through Schmidt hammer and ultrasonic tests. Given the tests and controls on the structures of these schools, the methods are presented for their reconstruction. The plan is presented for each school by estimating the cost and generally the feasibility and estimated the duration of project reconstruction. After reconstruction, the mentioned tests are re-performed for rebuilt parts and the results indicate a significant improvement in performance of structure because of reconstruction. According to the results, despite the fact that the use of fiber reinforced polymers (FRP) for structure retrofitting is costly, due to the low executive costs and also other benefits of FRP, it is generally considered as one of the most effective ways of retrofitting. Building the concrete coating on walls is another effective method in retrofitting the buildings. According to this method, a grid of horizontal and vertical bars is installed on the wall and then the concrete is poured on it. The use of concrete coating on the concrete and brick structures leads to the useful results and the experience indicates that the poured concrete filled the joints well and provides the appropriate bonding and adhesion.Keywords: renovation, retrofitting, masonry structures, concrete coating
Procedia PDF Downloads 4574143 Nanoarchitectures Cu2S Functions as Effective Surface-Enhanced Raman Scattering Substrates for Molecular Detection Application
Authors: Yu-Kuei Hsu, Ying-Chu Chen, Yan-Gu Lin
Abstract:
The hierarchical Cu2S nano structural film is successfully fabricated via an electroplated ZnO nanorod array as a template and subsequently chemical solution process for the growth of Cu2S in the application of surface-enhanced Raman scattering (SERS) detection. The as-grown Cu2S nano structures were thermally treated at temperature of 150-300 oC under nitrogen atmosphere to improve the crystal quality and unexpectedly induce the Cu nano particles on surface of Cu2S. The structure and composition of thermally treated Cu2S nano structures were carefully analyzed by SEM, XRD, XPS, and XAS. Using 4-aminothiophenol (4-ATP) as probing molecules, the SERS experiments showed that the thermally treated Cu2S nano structures exhibit excellent detecting performance, which could be used as active and cost-effective SERS substrate for ultra sensitive detecting. Additionally, this novel hierarchical SERS substrates show good reproducibility and a linear dependence between analyte concentrations and intensities, revealing the advantage of this method for easily scale-up production.Keywords: cuprous sulfide, copper, nanostructures, surface-enhanced raman scattering
Procedia PDF Downloads 4084142 Structural Reliability of Existing Structures: A Case Study
Authors: Z. Sakka, I. Assakkaf, T. Al-Yaqoub, J. Parol
Abstract:
A reliability-based methodology for the analysis assessment and evaluation of reinforced concrete structural elements of concrete structures is presented herein. The results of the reliability analysis and assessment for structural elements are verified by the results obtained from the deterministic methods. The analysis outcomes of reliability-based analysis are compared against the safety limits of the required reliability index β according to international standards and codes. The methodology is based on probabilistic analysis using reliability concepts and statistics of the main random variables that are relevant to the subject matter, and for which they are to be used in the performance-function equation(s) related to the structural elements under study. These methodology techniques can result in reliability index β, which is commonly known as the reliability index or reliability measure value that can be utilized to assess and evaluate the safety, human risk, and functionality of the structural component. Also, these methods can result in revised partial safety factor values for certain target reliability indices that can be used for the purpose of redesigning the reinforced concrete elements of the building and in which they could assist in considering some other remedial actions to improve the safety and functionality of the member.Keywords: structural reliability, concrete structures, FORM, Monte Carlo simulation
Procedia PDF Downloads 5184141 Methodologies for Stability Assessment of Existing and Newly Designed Reinforced Concrete Bridges
Authors: Marija Vitanovа, Igor Gjorgjiev, Viktor Hristovski, Vlado Micov
Abstract:
Evaluation of stability is very important in the process of definition of optimal structural measures for maintenance of bridge structures and their strengthening. To define optimal measures for their repair and strengthening, it is necessary to evaluate their static and seismic stability. Presented in this paper are methodologies for evaluation of the seismic stability of existing reinforced concrete bridges designed without consideration of seismic effects and checking of structural justification of newly designed bridge structures. All bridges are located in the territory of the Republic of North Macedonia. A total of 26 existing bridges of different structural systems have been analyzed. Visual inspection has been carried out for all bridges, along with the definition of three main damage categories according to which structures have been categorized in respect to the need for their repair and strengthening. Investigations involving testing the quality of the built-in materials have been carried out, and dynamic tests pointing to the dynamic characteristics of the structures have been conducted by use of non-destructive methods of ambient vibration measurements. The conclusions drawn from the performed measurements and tests have been used for the development of accurate mathematical models that have been analyzed for static and dynamic loads. Based on the geometrical characteristics of the cross-sections and the physical characteristics of the built-in materials, interaction diagrams have been constructed. These diagrams along with the obtained section quantities under seismic effects, have been used to obtain the bearing capacity of the cross-sections. The results obtained from the conducted analyses point to the need for the repair of certain structural parts of the bridge structures. They indicate that the stability of the superstructure elements is not critical during a seismic effect, unlike the elements of the sub-structure, whose strengthening is necessary.Keywords: existing bridges, newly designed bridges, reinforced concrete bridges, stability assessment
Procedia PDF Downloads 1014140 Ductility Spectrum Method for the Design and Verification of Structures
Authors: B. Chikh, L. Moussa, H. Bechtoula, Y. Mehani, A. Zerzour
Abstract:
This study presents a new method, applicable to evaluation and design of structures has been developed and illustrated by comparison with the capacity spectrum method (CSM, ATC-40). This method uses inelastic spectra and gives peak responses consistent with those obtained when using the nonlinear time history analysis. Hereafter, the seismic demands assessment method is called in this paper DSM, Ductility Spectrum Method. It is used to estimate the seismic deformation of Single-Degree-Of-Freedom (SDOF) systems based on DDRS, Ductility Demand Response Spectrum, developed by the author.Keywords: seismic demand, capacity, inelastic spectra, design and structure
Procedia PDF Downloads 3974139 Life Cycle Cost Evaluation of Structures with Hysteretic Dampers
Authors: Jinkoo Kim, Hyungoo Kang, Hyungjun Shin
Abstract:
In this study, a hybrid energy dissipation device is developed by combining a steel slit plate and friction pads to be used for seismic retrofit of structures, and its effectiveness is investigated by comparing the life cycle costs of the structure before and after the retrofit. The seismic energy dissipation capability of the dampers is confirmed by cyclic loading tests. The probabilities of reaching various damage states are obtained by fragility analysis, and the life cycle costs of the model structures are computed using the PACT (Performance Assessment Calculation Tool) program based on FEMA P-58 methodology. The fragility analysis shows that the probabilities of reaching limit states are minimized by the seismic retrofit with hybrid dampers and increasing column size. The seismic retrofit with increasing column size and hybrid dampers results in the lowest repair cost and shortest repair time.Keywords: slit dampers, friction dampers, seismic retrofit, life cycle cost, FEMA P-58, PACT
Procedia PDF Downloads 3274138 Atomistic Study of Structural and Phases Transition of TmAs Semiconductor, Using the FPLMTO Method
Authors: Rekab Djabri Hamza, Daoud Salah
Abstract:
We report first-principles calculations of structural and magnetic properties of TmAs compound in zinc blende(B3) and CsCl(B2), structures employing the density functional theory (DFT) within the local density approximation (LDA). We use the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the LMTART-MINDLAB code (Calculation). Results are given for lattice parameters (a), bulk modulus (B), and its first derivatives(B’) in the different structures NaCl (B1) and CsCl (B2). The most important result in this work is the prediction of the possibility of transition; from cubic rocksalt (NaCl)→ CsCl (B2) (32.96GPa) for TmAs. These results use the LDA approximation.Keywords: LDA, phase transition, properties, DFT
Procedia PDF Downloads 1194137 Hybrid Energy Harvesting System with Energy Storage Management
Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia
Abstract:
In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.Keywords: supercapacitors, energy storage, electronic overvoltage protection, energy harvesting
Procedia PDF Downloads 864136 Optimum Design of Hybrid (Metal-Composite) Mechanical Power Transmission System under Uncertainty by Convex Modelling
Authors: Sfiso Radebe
Abstract:
The design models dealing with flawless composite structures are in abundance, where the mechanical properties of composite structures are assumed to be known a priori. However, if the worst case scenario is assumed, where material defects combined with processing anomalies in composite structures are expected, a different solution is attained. Furthermore, if the system being designed combines in series hybrid elements, individually affected by material constant variations, it implies that a different approach needs to be taken. In the body of literature, there is a compendium of research that investigates different modes of failure affecting hybrid metal-composite structures. It covers areas pertaining to the failure of the hybrid joints, structural deformation, transverse displacement, the suppression of vibration and noise. In the present study a system employing a combination of two or more hybrid power transmitting elements will be explored for the least favourable dynamic loads as well as weight minimization, subject to uncertain material properties. Elastic constants are assumed to be uncertain-but-bounded quantities varying slightly around their nominal values where the solution is determined using convex models of uncertainty. Convex analysis of the problem leads to the computation of the least favourable solution and ultimately to a robust design. This approach contrasts with a deterministic analysis where the average values of elastic constants are employed in the calculations, neglecting the variations in the material properties.Keywords: convex modelling, hybrid, metal-composite, robust design
Procedia PDF Downloads 2114135 Evaluation of Three Potato Cultivars for Processing (Crisp French Fries)
Authors: Hatim Bastawi
Abstract:
Three varieties of potatoes, namely Agria, Alpha and Diamant were evaluated for their suitability for industrial production of French fries. The evaluation was under taken after testing quality parameters of specific gravity, dry matter, peeling ratio, and defect after frying and panel test. The variety Agria ranked the best followed by Alpha with regard to the parameters tested. On the other hand, Diamant showed significantly higher defect percentage than the other cultivars. Also, it was significantly judged of low acceptance by panelists.Keywords: cultivars, crisps, French fries
Procedia PDF Downloads 261