Search results for: generalized Rosenau-RLW equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2670

Search results for: generalized Rosenau-RLW equation

2250 InfoMiracles in the Qur’an and a Mathematical Proof to the Existence of God

Authors: Mohammad Mahmoud Mandurah

Abstract:

The existence of InfoMiracles in scripture is evidence that the scripture has a divine origin. It is also evidence to the existence of God. An InfoMiracle is an information-based miracle. The basic component of an InfoMiracle is a piece of information that could not be obtained by a human except through a divine channel. The existence of a sufficient number of convincing InfoMiracles in a scripture necessitates the existence of the divine source to these InfoMiracles. A mathematical equation is developed to prove that the Qur’an has a divine origin, and hence, prove the existence of God. The equation depends on a single variable only, which is the number of InfoMiracles in the Qur’an. The Qur’an is rich with InfoMiracles. It is shown that the existence of less than 30 InfoMiracles in the Qur’an is sufficient proof to the existence of God and that the Qur’an is a revelation from God.

Keywords: InfoMiracle, God, mathematical proof, miracle, probability

Procedia PDF Downloads 218
2249 Lamb Waves Propagation in Elastic-Viscoelastic Three-Layer Adhesive Joints

Authors: Pezhman Taghipour Birgani, Mehdi Shekarzadeh

Abstract:

In this paper, the propagation of lamb waves in three-layer joints is investigated using global matrix method. Theoretical boundary value problem in three-layer adhesive joints with perfect bond and traction free boundary conditions on their outer surfaces is solved to find a combination of frequencies and modes with the lowest attenuation. The characteristic equation is derived by applying continuity and boundary conditions in three-layer joints using global matrix method. Attenuation and phase velocity dispersion curves are obtained with numerical solution of this equation by a computer code for a three-layer joint, including an aluminum repair patch bonded to the aircraft aluminum skin by a layer of viscoelastic epoxy adhesive. To validate the numerical solution results of the characteristic equation, wave structure curves are plotted for a special mode in two different frequencies in the adhesive joint. The purpose of present paper is to find a combination of frequencies and modes with minimum attenuation in high and low frequencies. These frequencies and modes are recognizable by transducers in inspections with Lamb waves because of low attenuation level.

Keywords: three-layer adhesive joints, viscoelastic, lamb waves, global matrix method

Procedia PDF Downloads 393
2248 The Effects of Different Parameters of Wood Floating Debris on Scour Rate Around Bridge Piers

Authors: Muhanad Al-Jubouri

Abstract:

A local scour is the most important of the several scours impacting bridge performance and security. Even though scour is widespread in bridges, especially during flood seasons, the experimental tests could not be applied to many standard highway bridges. A computational fluid dynamics numerical model was used to solve the problem of calculating local scouring and deposition for non-cohesive silt and clear water conditions near single and double cylindrical piers with the effect of floating debris. When FLOW-3D software is employed with the Rang turbulence model, the Nilsson bed-load transfer equation and fine mesh size are considered. The numerical findings of single cylindrical piers correspond pretty well with the physical model's results. Furthermore, after parameter effectiveness investigates the range of outcomes based on predicted user inputs such as the bed-load equation, mesh cell size, and turbulence model, the final numerical predictions are compared to experimental data. When the findings are compared, the error rate for the deepest point of the scour is equivalent to 3.8% for the single pier example.

Keywords: local scouring, non-cohesive, clear water, computational fluid dynamics, turbulence model, bed-load equation, debris

Procedia PDF Downloads 69
2247 Measures of Reliability and Transportation Quality on an Urban Rail Transit Network in Case of Links’ Capacities Loss

Authors: Jie Liu, Jinqu Cheng, Qiyuan Peng, Yong Yin

Abstract:

Urban rail transit (URT) plays a significant role in dealing with traffic congestion and environmental problems in cities. However, equipment failure and obstruction of links often lead to URT links’ capacities loss in daily operation. It affects the reliability and transport service quality of URT network seriously. In order to measure the influence of links’ capacities loss on reliability and transport service quality of URT network, passengers are divided into three categories in case of links’ capacities loss. Passengers in category 1 are less affected by the loss of links’ capacities. Their travel is reliable since their travel quality is not significantly reduced. Passengers in category 2 are affected by the loss of links’ capacities heavily. Their travel is not reliable since their travel quality is reduced seriously. However, passengers in category 2 still can travel on URT. Passengers in category 3 can not travel on URT because their travel paths’ passenger flow exceeds capacities. Their travel is not reliable. Thus, the proportion of passengers in category 1 whose travel is reliable is defined as reliability indicator of URT network. The transport service quality of URT network is related to passengers’ travel time, passengers’ transfer times and whether seats are available to passengers. The generalized travel cost is a comprehensive reflection of travel time, transfer times and travel comfort. Therefore, passengers’ average generalized travel cost is used as transport service quality indicator of URT network. The impact of links’ capacities loss on transport service quality of URT network is measured with passengers’ relative average generalized travel cost with and without links’ capacities loss. The proportion of the passengers affected by links and betweenness of links are used to determine the important links in URT network. The stochastic user equilibrium distribution model based on the improved logit model is used to determine passengers’ categories and calculate passengers’ generalized travel cost in case of links’ capacities loss, which is solved with method of successive weighted averages algorithm. The reliability and transport service quality indicators of URT network are calculated with the solution result. Taking Wuhan Metro as a case, the reliability and transport service quality of Wuhan metro network is measured with indicators and method proposed in this paper. The result shows that using the proportion of the passengers affected by links can identify important links effectively which have great influence on reliability and transport service quality of URT network; The important links are mostly connected to transfer stations and the passenger flow of important links is high; With the increase of number of failure links and the proportion of capacity loss, the reliability of the network keeps decreasing, the proportion of passengers in category 3 keeps increasing and the proportion of passengers in category 2 increases at first and then decreases; When the number of failure links and the proportion of capacity loss increased to a certain level, the decline of transport service quality is weakened.

Keywords: urban rail transit network, reliability, transport service quality, links’ capacities loss, important links

Procedia PDF Downloads 128
2246 Nonhomogeneous Linear Second Order Differential Equations and Resonance through Geogebra Program

Authors: F. Maass, P. Martin, J. Olivares

Abstract:

The aim of this work is the application of the program GeoGebra in teaching the study of nonhomogeneous linear second order differential equations with constant coefficients. Different kind of functions or forces will be considered in the right hand side of the differential equations, in particular, the emphasis will be placed in the case of trigonometrical functions producing the resonance phenomena. In order to obtain this, the frequencies of the trigonometrical functions will be changed. Once the resonances appear, these have to be correlationated with the roots of the second order algebraic equation determined by the coefficients of the differential equation. In this way, the physics and engineering students will understand resonance effects and its consequences in the simplest way. A large variety of examples will be shown, using different kind of functions for the nonhomogeneous part of the differential equations.

Keywords: education, geogebra, ordinary differential equations, resonance

Procedia PDF Downloads 245
2245 The Value of Store Choice Criteria on Perceived Patronage Intentions

Authors: Susana Marques

Abstract:

Research on how store environment cues influence consumers’ store choice decision criteria, such as store operations, product quality, monetary price, store image and sales promotion, is sparse. Especially absent research on the simultaneous impact of multiple store environment cues. The authors propose a comprehensive store choice model that includes: three types of store environment cues as exogenous constructs; various store choice criteria as possible mediating constructs, and store patronage intentions as an endogenous construct. On the basis of testing with a sample of 561 customers of hypermarkets, the model is partially supported. This study used structural equation modelling to test the proposed model.

Keywords: store choice, store patronage, structural equation modelling, retailing

Procedia PDF Downloads 272
2244 Basket Option Pricing under Jump Diffusion Models

Authors: Ali Safdari-Vaighani

Abstract:

Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.

Keywords: basket option, jump diffusion, ‎radial basis function, RBF-PUM

Procedia PDF Downloads 354
2243 Solution of Singularly Perturbed Differential Difference Equations Using Liouville Green Transformation

Authors: Y. N. Reddy

Abstract:

The class of differential-difference equations which have characteristics of both classes, i.e., delay/advance and singularly perturbed behaviour is known as singularly perturbed differential-difference equations. The expression ‘positive shift’ and ‘negative shift’ are also used for ‘advance’ and ‘delay’ respectively. In general, an ordinary differential equation in which the highest order derivative is multiplied by a small positive parameter and containing at least one delay/advance is known as singularly perturbed differential-difference equation. Singularly perturbed differential-difference equations arise in the modelling of various practical phenomena in bioscience, engineering, control theory, specifically in variational problems, in describing the human pupil-light reflex, in a variety of models for physiological processes or diseases and first exit time problems in the modelling of the determination of expected time for the generation of action potential in nerve cells by random synaptic inputs in dendrites. In this paper, we envisage the use of Liouville Green Transformation to find the solution of singularly perturbed differential difference equations. First, using Taylor series, the given singularly perturbed differential difference equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green Transformation is applied to get the solution. Several model examples are solved, and the results are compared with other methods. It is observed that the present method gives better approximate solutions.

Keywords: difference equations, differential equations, singular perturbations, boundary layer

Procedia PDF Downloads 199
2242 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study

Authors: Ana Serafimovic, Karthik Devarajan

Abstract:

Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.

Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence

Procedia PDF Downloads 246
2241 Free Vibration of Axially Functionally Graded Simply Supported Beams Using Differential Transformation Method

Authors: A. Selmi

Abstract:

Free vibration analysis of homogenous and axially functionally graded simply supported beams within the context of Euler-Bernoulli beam theory is presented in this paper. The material properties of the beams are assumed to obey the linear law distribution. The effective elastic modulus of the composite was predicted by using the rule of mixture. Here, the complexities which appear in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using a relatively new approach called the Differential Transformation Method. This technique is applied for solving differential equation of transverse vibration of axially functionally graded beams. Natural frequencies and corresponding normalized mode shapes are calculated for different Young’s modulus ratios. MATLAB code is designed to solve the transformed differential equation of the beam. Comparison of the present results with the exact solutions proves the effectiveness, the accuracy, the simplicity, and computational stability of the differential transformation method. The effect of the Young’s modulus ratio on the normalized natural frequencies and mode shapes is found to be very important.

Keywords: differential transformation method, functionally graded material, mode shape, natural frequency

Procedia PDF Downloads 309
2240 Matrix Valued Difference Equations with Spectral Singularities

Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov

Abstract:

In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.

Keywords: asymptotics, continuous spectrum, difference equations, eigenvalues, jost functions, spectral singularities

Procedia PDF Downloads 446
2239 Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model

Authors: Qijiao He

Abstract:

MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed.

Keywords: continuum and rarefied gas flows, discontinuous Galerkin method, generalized hydrodynamic equations, numerical simulation

Procedia PDF Downloads 172
2238 Physiological Action of Anthraquinone-Containing Preparations

Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina, Evgenii N. Kojaev

Abstract:

In review the generalized data about biological activity of anthraquinone-containing plants and specimens on their basis is presented. Data of traditional medicine, results of bioscreening and clinical researches of specimens are analyzed.

Keywords: anthraquinones, physiologically active substances, phytopreparation, Ramon

Procedia PDF Downloads 376
2237 Quintic Spline Solution of Fourth-Order Parabolic Equations Arising in Beam Theory

Authors: Reza Mohammadi, Mahdieh Sahebi

Abstract:

We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the derived method. Numerical comparison with other methods shows the superiority of presented scheme.

Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points

Procedia PDF Downloads 352
2236 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams

Authors: Babak Safaei, A. M. Fattahi

Abstract:

In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.

Keywords: nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ)

Procedia PDF Downloads 325
2235 A Fully Automated New-Fangled VESTAL to Label Vertebrae and Intervertebral Discs

Authors: R. Srinivas, K. V. Ramana

Abstract:

This paper presents a novel method called VESTAL to label vertebrae and inter vertebral discs. Each vertebra has certain statistical features properties. To label vertebrae and discs, a new equation to model the path of spinal cord is derived using statistical properties of the spinal canal. VESTAL uses this equation for labeling vertebrae and discs. For each vertebrae and inter vertebral discs both posterior, interior width, height are measured. The calculated values are compared with real values which are measured using venires calipers and the comparison produced 95% efficiency and accurate results. The VESTAL is applied on 50 patients 350 MR images and obtained 100% accuracy in labeling.

Keywords: spine, vertebrae, inter vertebral disc, labeling, statistics, texture, disc

Procedia PDF Downloads 363
2234 Efficiency of Grover’s Search Algorithm Implemented on Open Quantum System in the Presence of Drive-Induced Dissipation

Authors: Nilanjana Chanda, Rangeet Bhattacharyya

Abstract:

Grover’s search algorithm is the fastest possible quantum mechanical algorithm to search a certain element from an unstructured set of data of N items. The algorithm can determine the desired result in only O(√N) steps. It has been demonstrated theoretically and experimentally on two-qubit systems long ago. In this work, we investigate the fidelity of Grover’s search algorithm by implementing it on an open quantum system. In particular, we study with what accuracy one can estimate that the algorithm would deliver the searched state. In reality, every system has some influence on its environment. We include the environmental effects on the system dynamics by using a recently reported fluctuation-regulated quantum master equation (FRQME). We consider that the environment experiences thermal fluctuations, which leave its signature in the second-order term of the master equation through its appearance as a regulator. The FRQME indicates that in addition to the regular relaxation due to system-environment coupling, the applied drive also causes dissipation in the system dynamics. As a result, the fidelity is found to depend on both the drive-induced dissipative terms and the relaxation terms, and we find that there exists a competition between them, leading to an optimum drive amplitude for which the fidelity becomes maximum. For efficient implementation of the search algorithm, precise knowledge of this optimum drive amplitude is essential.

Keywords: dissipation, fidelity, quantum master equation, relaxation, system-environment coupling

Procedia PDF Downloads 106
2233 Identification of Switched Reluctance Motor Parameters Using Exponential Swept-Sine Signal

Authors: Abdelmalek Ouannou, Adil Brouri, Laila Kadi, Tarik

Abstract:

Switched reluctance motor (SRM) has a major interest in a large domain as in electric vehicle driving because of its wide range of speed operation, high performances, low cost, and robustness to run under degraded conditions. The purpose of the paper is to develop a new analytical approach for modeling SRM parameters. Then, an identification scheme is proposed to obtain the SRM parameters. Since the SRM is featured by a highly nonlinear behavior, modeling these devices is difficult. Then, it is convenient to develop an accurate model describing the SRM. Furthermore, it is always operated in the magnetically saturated mode to maximize the energy transfer. Accordingly, it is shown that the SRM can be accurately described by a generalized polynomial Hammerstein model, i.e., the parallel connection of several Hammerstein models having polynomial nonlinearity. Presently an analytical identification method is developed using a chirp excitation signal. Afterward, the parameters of the obtained model have been determined using Finite Element Method analysis. Finally, in order to show the effectiveness of the proposed method, a comparison between the true and estimate models has been performed. The obtained results show that the output responses are very close.

Keywords: switched reluctance motor, swept-sine signal, generalized Hammerstein model, nonlinear system

Procedia PDF Downloads 237
2232 A Proof of the N. Davydov Theorem for Douglis Algebra Valued Functions

Authors: Jean-Marie Vilaire, Ricardo Abreu-Blaya, Juan Bory-Reyes

Abstract:

The classical Beltrami system of elliptic equations generalizes the Cauchy Riemann equation in the complex plane and offers the possibility to consider homogeneous system with no terms of zero order. The theory of Douglis-valued functions, called Hyper-analytic functions, is special case of the above situation. In this note, we prove an analogue of the N. Davydov theorem in the framework of the theory of hyperanalytic functions. The used methodology contemplates characteristic methods of the hypercomplex analysis as well as the singular integral operators and elliptic systems of the partial differential equations theories.

Keywords: Beltrami equation, Douglis algebra-valued function, Hypercomplex Cauchy type integral, Sokhotski-Plemelj formulae

Procedia PDF Downloads 250
2231 A Survey on Routh-Hurwitz Stability Criterion

Authors: Mojtaba Hakimi-Moghaddam

Abstract:

Routh-Hurwitz stability criterion is a powerful approach to determine stability of linear time invariant systems. On the other hand, applying this criterion to characteristic equation of a system, whose stability or marginal stability can be determined. Although the command roots (.) of MATLAB software can be easily used to determine the roots of a polynomial, the characteristic equation of closed loop system usually includes parameters, so software cannot handle it; however, Routh-Hurwitz stability criterion results the region of parameter changes where the stability is guaranteed. Moreover, this criterion has been extended to characterize the stability of interval polynomials as well as fractional-order polynomials. Furthermore, it can help us to design stable and minimum-phase controllers. In this paper, theory and application of this criterion will be reviewed. Also, several illustrative examples are given.

Keywords: Hurwitz polynomials, Routh-Hurwitz stability criterion, continued fraction expansion, pure imaginary roots

Procedia PDF Downloads 329
2230 Total Controllability of the Second Order Nonlinear Differential Equation with Delay and Non-Instantaneous Impulses

Authors: Muslim Malik, Avadhesh Kumar

Abstract:

A stronger concept of exact controllability which is called Total Controllability is introduced in this manuscript. Sufficient conditions have been established for the total controllability of a control problem, governed by second order nonlinear differential equation with delay and non-instantaneous impulses in a Banach space X. The results are obtained using the strongly continuous cosine family and Banach fixed point theorem. Also, the total controllability of an integrodifferential problem is investigated. At the end, some numerical examples are provided to illustrate the analytical findings.

Keywords: Banach fixed point theorem, non-instantaneous impulses, strongly continuous cosine family, total controllability

Procedia PDF Downloads 298
2229 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models

Authors: Jihye Jeon

Abstract:

This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.

Keywords: multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon

Procedia PDF Downloads 653
2228 Effect of Particle Aspect Ratio and Shape Factor on Air Flow inside Pulmonary Region

Authors: Pratibha, Jyoti Kori

Abstract:

Particles in industry, harvesting, coal mines, etc. may not necessarily be spherical in shape. In general, it is difficult to find perfectly spherical particle. The prediction of movement and deposition of non spherical particle in distinct airway generation is much more difficult as compared to spherical particles. Moreover, there is extensive inflexibility in deposition between ducts of a particular generation and inside every alveolar duct since particle concentrations can be much bigger than the mean acinar concentration. Consequently, a large number of particles fail to be exhaled during expiration. This study presents a mathematical model for the movement and deposition of those non-spherical particles by using particle aspect ratio and shape factor. We analyse the pulsatile behavior underneath sinusoidal wall oscillation due to periodic breathing condition through a non-Darcian porous medium or inside pulmonary region. Since the fluid is viscous and Newtonian, the generalized Navier-Stokes equation in two-dimensional coordinate system (r, z) is used with boundary-layer theory. Results are obtained for various values of Reynolds number, Womersley number, Forchsheimer number, particle aspect ratio and shape factor. Numerical computation is done by using finite difference scheme for very fine mesh in MATLAB. It is found that the overall air velocity is significantly increased by changes in aerodynamic diameter, aspect ratio, alveoli size, Reynolds number and the pulse rate; while velocity is decreased by increasing Forchheimer number.

Keywords: deposition, interstitial lung diseases, non-Darcian medium, numerical simulation, shape factor

Procedia PDF Downloads 185
2227 Dynamics of Light Induced Current in 1D Coupled Quantum Dots

Authors: Tokuei Sako

Abstract:

Laser-induced current in a quasi-one-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to a pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation directly by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the lifetime of the quasi-bound states formed when the static bias voltage is applied.

Keywords: pulsed laser field, nanowire, electron wave packet, quantum dots, time-dependent Schrödinger equation

Procedia PDF Downloads 357
2226 Existence and Concentration of Solutions for a Class of Elliptic Partial Differential Equations Involving p-Biharmonic Operator

Authors: Debajyoti Choudhuri, Ratan Kumar Giri, Shesadev Pradhan

Abstract:

The perturbed nonlinear Schrodinger equation involving the p-biharmonic and the p-Laplacian operators involving a real valued parameter and a continuous real valued potential function defined over the N- dimensional Euclidean space has been considered. By the variational technique, an existence result pertaining to a nontrivial solution to this non-linear partial differential equation has been proposed. Further, by the Concentration lemma, the concentration of solutions to the same problem defined on the set consisting of those elements where the potential function vanishes as the real parameter approaches to infinity has been addressed.

Keywords: p-Laplacian, p-biharmonic, elliptic PDEs, Concentration lemma, Sobolev space

Procedia PDF Downloads 236
2225 Error Amount in Viscoelasticity Analysis Depending on Time Step Size and Method used in ANSYS

Authors: A. Fettahoglu

Abstract:

Theory of viscoelasticity is used by many researchers to represent behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain like pavements of bridges can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell elements and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Subsequently, a practical problem, which has an analytical solution given in literature, is used to verify the applicability of viscoelasticity tool embedded in ANSYS. Finally, amount of error in the results of ANSYS is compared with the analytical results to indicate the influence of used method and time step size.

Keywords: generalized Maxwell model, finite element method, prony series, time step size, viscoelasticity

Procedia PDF Downloads 369
2224 Decision Making Approach through Generalized Fuzzy Entropy Measure

Authors: H. D. Arora, Anjali Dhiman

Abstract:

Uncertainty is found everywhere and its understanding is central to decision making. Uncertainty emerges as one has less information than the total information required describing a system and its environment. Uncertainty and information are so closely associated that the information provided by an experiment for example, is equal to the amount of uncertainty removed. It may be pertinent to point out that uncertainty manifests itself in several forms and various kinds of uncertainties may arise from random fluctuations, incomplete information, imprecise perception, vagueness etc. For instance, one encounters uncertainty due to vagueness in communication through natural language. Uncertainty in this sense is represented by fuzziness resulting from imprecision of meaning of a concept expressed by linguistic terms. Fuzzy set concept provides an appropriate mathematical framework for dealing with the vagueness. Both information theory, proposed by Shannon (1948) and fuzzy set theory given by Zadeh (1965) plays an important role in human intelligence and various practical problems such as image segmentation, medical diagnosis etc. Numerous approaches and theories dealing with inaccuracy and uncertainty have been proposed by different researcher. In the present communication, we generalize fuzzy entropy proposed by De Luca and Termini (1972) corresponding to Shannon entropy(1948). Further, some of the basic properties of the proposed measure were examined. We also applied the proposed measure to the real life decision making problem.

Keywords: entropy, fuzzy sets, fuzzy entropy, generalized fuzzy entropy, decision making

Procedia PDF Downloads 450
2223 CFD Modeling of Insect Flight at Low Reynolds Numbers

Authors: Wu Di, Yeo Khoon Seng, Lim Tee Tai

Abstract:

The typical insects employ a flapping-wing mode of flight. The numerical simulations on free flight of a model fruit fly (Re=143) including hovering and are presented in this paper. Unsteady aerodynamics around a flapping insect is studied by solving the three-dimensional Newtonian dynamics of the flyer coupled with Navier-Stokes equations. A hybrid-grid scheme (Generalized Finite Difference Method) that combines great geometry flexibility and accuracy of moving boundary definition is employed for obtaining flow dynamics. The results show good points of agreement and consistency with the outcomes and analyses of other researchers, which validate the computational model and demonstrate the feasibility of this computational approach on analyzing fluid phenomena in insect flight. The present modeling approach also offers a promising route of investigation that could complement as well as overcome some of the limitations of physical experiments in the study of free flight aerodynamics of insects. The results are potentially useful for the design of biomimetic flapping-wing flyers.

Keywords: free hovering flight, flapping wings, fruit fly, insect aerodynamics, leading edge vortex (LEV), computational fluid dynamics (CFD), Navier-Stokes equations (N-S), fluid structure interaction (FSI), generalized finite-difference method (GFD)

Procedia PDF Downloads 410
2222 Spectral Domain Fast Multipole Method for Solving Integral Equations of One and Two Dimensional Wave Scattering

Authors: Mohammad Ahmad, Dayalan Kasilingam

Abstract:

In this paper, a spectral domain implementation of the fast multipole method is presented. It is shown that the aggregation, translation, and disaggregation stages of the fast multipole method (FMM) can be performed using the spectral domain (SD) analysis. The spectral domain fast multipole method (SD-FMM) has the advantage of eliminating the near field/far field classification used in conventional FMM formulation. The study focuses on the application of SD-FMM to one-dimensional (1D) and two-dimensional (2D) electric field integral equation (EFIE). The case of perfectly conducting strip, circular and square cylinders are numerically analyzed and compared with the results from the standard method of moments (MoM).

Keywords: electric field integral equation, fast multipole method, method of moments, wave scattering, spectral domain

Procedia PDF Downloads 406
2221 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.

Keywords: optimal control, nonlinear systems, state estimation, Kalman filter

Procedia PDF Downloads 202