Search results for: factor models
11122 Male Oreochromis mossambica as Indicator for Water Pollution with Trace Elements in Relation to Condition Factor from Pakistan
Authors: Muhammad Naeem, Syed M. Moeen-ud-Din Raheel, Muhammad Arshad, Muhammad Naeem Qaisar, Muhammad Khalid, Muhammad Zubair Ahmed, Muhammad Ashraf
Abstract:
Iron, Copper, Cadmium, Zinc, Manganese, Chromium levels were estimated to study the risk of trace elements on human consumption. The area of collection was Dera Ghazi Khan, Pakistan and was evaluated by means of flame atomic absorption spectrophotometer. The standards find in favor of the six heavy metals were in accordance with the threshold edge concentrations on behalf of fish meat obligatory by European and other international normative. Regressions were achieved for both size (length and weight) and condition factor with concentrations of metal present in the fish body.Keywords: Oreochromis mossambica, toxic analysis, body size, condition factor
Procedia PDF Downloads 58411121 Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis
Authors: Touila Ahmed, Elie Louis, Hamza Gharbi
Abstract:
State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular.Keywords: question answering, contract analysis, zero-shot, natural language processing, generative models, self-supervision
Procedia PDF Downloads 19411120 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five
Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz
Abstract:
Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.Keywords: hydroxyl, global model, model maintenance, near infrared, polyol
Procedia PDF Downloads 13511119 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 13211118 Text Similarity in Vector Space Models: A Comparative Study
Authors: Omid Shahmirzadi, Adam Lugowski, Kenneth Younge
Abstract:
Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context.Keywords: big data, patent, text embedding, text similarity, vector space model
Procedia PDF Downloads 17511117 Thermoelectrical Properties of Cs Doped BiCuSeO as Promising Oxide Materials for Thermoelectric Energy Converter
Authors: Abdenour Achour, Kan Chen, Mike Reece, Zhaorong Huang
Abstract:
Here we report the synthesis of pure and cost effective of BiCuSeO by a flux method in air, and the enhancement of the thermoelectric performance by Cs doping. The comparison between our synthesis and the usual vacuum furnace method has been studied for the pristine oxyselenides BiCuSeO. We report for very high Seebeck coefficients up to 516 μV K⁻¹ at room temperature with the electrical conductivity of 5.20 S cm⁻¹ which lead to a high power factor of 140 µWm⁻¹K⁻². We also report at the high temperatures the lowest thermal conductivity value of 0.42 µWm⁻¹K⁻¹. Upon doping with Cs, enhanced electrical conductivity coupled with a moderate Seebeck coefficient lead to a power factor of 338 µWm⁻¹K⁻² at 682 K. Moreover, it shows a very low thermal conductivity in the temperature range of 300 to 682 K (0.75 to 0.35 Wm⁻¹K⁻¹). By optimizing the power factor and reducing the thermal conductivity, this results in a high ZT of ~ 0.66 at 682 K for Bi0.995Cs0.005CuSeO.Keywords: BiCuSeO, Cs doping, thermoelectric, oxyselenide
Procedia PDF Downloads 29911116 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable
Authors: Xinyuan Y. Song, Kai Kang
Abstract:
Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data
Procedia PDF Downloads 14311115 Geographic Information System for District Level Energy Performance Simulations
Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck
Abstract:
The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.Keywords: CityGML, EnergyADE, energy performance simulation, GIS
Procedia PDF Downloads 16811114 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization
Authors: Himanshu Shekhar Maharana, S. K .Dash
Abstract:
Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution.Keywords: economic load dispatch (ELD), constriction factor based particle swarm optimization (CPSO), dispersed particle swarm optimization (DPSO), weight improved particle swarm optimization (WIPSO), ramp rate and constriction factor based particle swarm optimization (RRCPSO)
Procedia PDF Downloads 38211113 Knowledge Management Efficiency of Personnel in Rajamangala University of Technology Srivijaya Songkhla, Thailand
Authors: Nongyao Intasaso, Atchara Rattanama, Navarat Pewnual
Abstract:
This research is survey research purposed to study the factor affected to knowledge management efficiency of personnel in Rajamangala University of Technology Srivijaya, and study the problem of knowledge management affected to knowledge development of personnel in the university. The tool used in this study is structures questioner standardize rating scale in 5 levels. The sample selected by purposive sampling and there are 137 participation calculated in 25% of population. The result found that factor affected to knowledge management efficiency in the university included (1) result from the organization factor found that the university provided project or activity that according to strategy and mission of knowledge management affected to knowledge management efficiency in highest level (x̅ = 4.30) (2) result from personnel factor found that the personnel are eager for knowledge and active to learning to develop themselves and work (Personal Mastery) affected to knowledge management efficiency in high level (x̅ = 3.75) (3) result from technological factor found that the organization brought multimedia learning aid to facilitate learning process affected to knowledge management efficiency in high level (x̅ = 3.70) and (4) the result from learning factor found that the personnel communicated and sharing knowledge and opinion based on acceptance to each other affected to knowledge management efficiency in high level (x̅ = 3.78). The problem of knowledge management in the university included the personnel do not change their work behavior, insufficient of collaboration, lack of acceptance in knowledge and experience to each other, and limited budget. The solutions to solve these problems are the university should be support sufficient budget, the university should follow up and evaluate organization development based on knowledge using, the university should provide the activity emphasize to personnel development and assign the committee to process and report knowledge management procedure.Keywords: knowledge management, efficiency, personnel, learning process
Procedia PDF Downloads 30111112 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance
Authors: Yash Bingi, Yiqiao Yin
Abstract:
Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations
Procedia PDF Downloads 14411111 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity
Authors: Shaan Khosla, Jon Krohn
Abstract:
In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.Keywords: AI, machine learning, NLP, recruiting
Procedia PDF Downloads 8411110 Evidence on Scale Economies in National Bank of Pakistan
Authors: Sohail Zafar, Sardar Javaid Iqbal Khan
Abstract:
We use a parametric approach within a translog cost function framework to estimate the economies of scale in National Bank of Pakistan from 1997 to 2013. The results indicate significant economies of scale throughout the sample at aggregates and disaggregates taking in account size subject to stipulation ownership. The factor markets often produce scale inefficiencies in the banking of developing countries like Pakistan such inefficiencies are common due to distortion in factor markets leading to the use of inappropriate factor proportions. The findings suggest that National Bank of Pakistan diversify their asset portfolios that it has cost advantage, therefore, expansion in size should be encouraged under current technology because it appears to be cost effective. In addition, our findings support the implementation of universal banking model in Pakistan.Keywords: scale economies, cost function, disaggregates, aggregates
Procedia PDF Downloads 32511109 Bridging the Gap between Different Interfaces for Business Process Modeling
Authors: Katalina Grigorova, Kaloyan Mironov
Abstract:
The paper focuses on the benefits of business process modeling. Although this discipline is developing for many years, there is still necessity of creating new opportunities to meet the ever-increasing users’ needs. Because one of these needs is related to the conversion of business process models from one standard to another, the authors have developed a converter between BPMN and EPC standards using workflow patterns as intermediate tool. Nowadays there are too many systems for business process modeling. The variety of output formats is almost the same as the systems themselves. This diversity additionally hampers the conversion of the models. The presented study is aimed at discussing problems due to differences in the output formats of various modeling environments.Keywords: business process modeling, business process modeling standards, workflow patterns, converting models
Procedia PDF Downloads 58411108 A Study on the Influence of Planet Pin Parallelism Error to Load Sharing Factor
Authors: Kyung Min Kang, Peng Mou, Dong Xiang, Yong Yang, Gang Shen
Abstract:
In this paper, planet pin parallelism error, which is one of manufacturing error of planet carrier, is employed as a main variable to influence planet load sharing factor. This error is categorize two group: (i) pin parallelism error with rotation on the axis perpendicular to the tangent of base circle of gear(x axis rotation in this paper) (ii) pin parallelism error with rotation on the tangent axis of base circle of gear(y axis rotation in this paper). For this study, the planetary gear system in 1.5MW wind turbine is applied and pure torsional rigid body model of this planetary gear is built using Solidworks and MSC.ADAMS. Based on quantified parallelism error and simulation model, dynamics simulation of planetary gear is carried out to obtain dynamic mesh load results with each type of error and load sharing factor is calculated with mesh load results. Load sharing factor formula and the suggestion for planetary reliability design is proposed with the conclusion of this study.Keywords: planetary gears, planet load sharing, MSC. ADAMS, parallelism error
Procedia PDF Downloads 39911107 Hybrid Project Management Model Based on Lean and Agile Approach
Authors: Fatima-Zahra Eddoug, Jamal Benhra, Rajaa Benabbou
Abstract:
Several project management models exist in the literature and the most used ones are the hybrids for their multiple advantages. Our objective in this paper is to analyze the existing models, which are based on the Lean and Agile approaches and to propose a novel framework with the convenient tools that will allow efficient management of a general project. To create the desired framework, we were based essentially on 7 existing models. Only the Scrum tool among the agile tools was identified by several authors to be appropriate for project management. In contrast, multiple lean tools were proposed in different phases of the project.Keywords: agility, hybrid project management, lean, scrum
Procedia PDF Downloads 13811106 Amelioration of Over-Expression of bax, Nrf2 and NFК–β in Nano-Sized Titanium Dioxide-Intoxicated Mice by Potent Antioxidants
Authors: Maha Z. Rizk, Sami A. Fattah, Heba M. Darwish, Sanaa A. Ali, Mai O. Kadry
Abstract:
The increasing use of nanomaterials in consumer and industrial products has aroused global concern regarding their fate in biological systems resulting in demand for parallel risk assessment. The objective of this study is investigating either the effect of individual or combined doses of idebenone, carnosine and vitamin E on amelioration of some biochemical indices of nano sized titanium dioxide (TiO2 NPS) induced metabolic disorders in mice liver. TiO2-NPS was administered in an oral dose of 150 mg/kg for consecutive 14 days followed by oral daily doses of the aforementioned antioxidants for 1 month. TiO2-NPS induced a significant elevation in serum level of ALT and AST, hepatic inflammatory markers (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)) and increased the percent of DNA damage which was assessed by COMET assay in addition to the apoptotic marker Caspase-3. Moreover, mRNA gene expression observed by RT-PCR showed a significant overexpression in nuclear factor relation-2 (Nrf2), nuclear factor kappa beta (NF-Kβ) and the apoptotic factor (bax), and a significant down-regulation in the antiapoptotic factor (bcl2) level. In conclusion, idebenone, carnosine and vitamin E ameliorated the deviated parameters with a variable degree with the most pronounced role in alleviating the hazardous effect of TiO2 NPS toxicity following the combination regimen.Keywords: idebenone, carnosine, vitamin E, TiO2 NPS, caspase-3, NrF2, NF-KB
Procedia PDF Downloads 38611105 Variation of Base Width of a Typical Concrete Gravity Dam under Different Seismic Conditions Using Static Seismic Loading
Authors: Prasanna Kumar Khaund, Sukanya Talukdar
Abstract:
A concrete gravity dam is a major hydraulic structure and it is very essential to consider the earthquake forces, to get a proper design base width, so that the entire weight of the dam resists the overturning moment due to earthquake and other forces. The main objective of this study is to obtain the design base width of a dam for different seismic conditions by varying the earthquake coefficients in both vertical and horizontal directions. This shall be done by equating the factor of safety against overturning, factor of safety against sliding and factor of safety against shear friction factor for a dam with their limiting values, under both tail water and no tail water condition. The shape of the Mettur dam in India is considered for the study. The study has been done taking a constant head of water at the reservoir, which is the maximum reservoir water level and a constant height of tail water. Using linear approximation method of Newton Raphson, the obtained equations against different factors of safety under different earthquake conditions are solved using a programme in C++ to get different values of base width of dam for varying earthquake conditions.Keywords: design base width, horizontal earthquake coefficient, tail water, vertical earthquake coefficient
Procedia PDF Downloads 28211104 PhD Students’ Challenges with Impact-Factor in Kazakhstan
Authors: Duishon Shamatov
Abstract:
This presentation is about Kazakhstan’s PhD students’ experiences with impact-factor publication requirement. Since the break-up of the USSR, Kazakhstan has been attempting to improve its higher education system at undergraduate and graduate levels. From March, 2010 Kazakhstan joined Bologna process and entered European space of higher education. To align with the European system of higher education, three level of preparation of specialists (undergraduate, master and PhD) was adopted to replace the Soviet system. The changes were aimed at promoting high quality higher education that meets the demands of labor market and growing needs of the industrial-innovative development of the country, and meeting the international standards. The shift to the European system has brought many benefits, but there are also some serious challenges. One of those challenges is related to the requirements for the PhD candidates to publish in national and international journals. Thus, a PhD candidate should have 7 publications in total, out of which one has to be in an international impact factor journal. A qualitative research was conducted to explore the PhD students’ views of their experiences with impact-factor publications. With the help of purposeful sampling, 30 PhD students from seven universities across Kazakhstan were selected for individual and focus group interviews. The key findings of the study are as follows. While the Kazakh PhD students have no difficulties in publishing in local journals, they face great challenges in attempting to publish in impact-factor journals for a range of reasons. They include but not limited to lack of research and publication skills, poorer knowledge of academic English, not familiarity with the peer review publication processes and expectations, and very short time to get published due to their PhD programme requirements. This situation is pushing some these young scholars explore alternative ways to get published in impact factor journals and they seek to publish by any means and often by any costs (which means even paying large sum of money for a publication). This in turn, creates a myth in the scholars’ circles in Kazakhstan, that to get published in impact factor journals, one should necessarily pay much money. This paper offers some policy recommendations on how to improve preparation of future PhD candidates in Kazakhstan.Keywords: Bologna process, impact-factor publications, post-graduate education, Kazakhstan
Procedia PDF Downloads 37911103 Evaluation of Research in the Field of Energy Efficiency and MCA Methods Using Publications Databases
Authors: Juan Sepúlveda
Abstract:
Energy is a fundamental component in sustainability, the access and use of this resource is related with economic growth, social improvements, and environmental impacts. In this sense, energy efficiency has been studied as a factor that enhances the positive impacts of energy in communities; however, the implementation of efficiency requires strong policy and strategies that usually rely on individual measures focused in independent dimensions. In this paper, the problem of energy efficiency as a multi-objective problem is studied, using scientometric analysis to discover trends and patterns that allow to identify the main variables and study approximations related with a further development of models to integrate energy efficiency and MCA into policy making for small communities.Keywords: energy efficiency, MCA, scientometric, trends
Procedia PDF Downloads 37011102 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 47411101 Sensitivity of Credit Default Swaps Premium to Global Risk Factor: Evidence from Emerging Markets
Authors: Oguzhan Cepni, Doruk Kucuksarac, M. Hasan Yilmaz
Abstract:
Risk premium of emerging markets are moving altogether depending on the momentum and shifts in the global risk appetite. However, the magnitudes of these changes in the risk premium of emerging market economies might vary. In this paper, we focus on how global risk factor affects credit default swaps (CDS) premiums of emerging markets using principal component analysis (PCA) and rolling regressions. PCA results indicate that the first common component accounts for almost 76% of common variation in CDS premiums of emerging markets. Additionally, the explanatory power of the first factor seems to be high over sample period. However, the sensitivity to the global risk factor tends to change over time and across countries. In this regard, fixed effects panel regressions are employed to identify the macroeconomic factors driving the heterogeneity across emerging markets. There are two main macroeconomic variables that affect the sensitivity; government debt to GDP and international reserves to GDP. The countries with lower government debt and higher reserves tend to be less subject to the variations in the global risk appetite.Keywords: emerging markets, principal component analysis, credit default swaps, sovereign risk
Procedia PDF Downloads 38111100 Multiple Linear Regression for Rapid Estimation of Subsurface Resistivity from Apparent Resistivity Measurements
Authors: Sabiu Bala Muhammad, Rosli Saad
Abstract:
Multiple linear regression (MLR) models for fast estimation of true subsurface resistivity from apparent resistivity field measurements are developed and assessed in this study. The parameters investigated were apparent resistivity (ρₐ), horizontal location (X) and depth (Z) of measurement as the independent variables; and true resistivity (ρₜ) as the dependent variable. To achieve linearity in both resistivity variables, datasets were first transformed into logarithmic domain following diagnostic checks of normality of the dependent variable and heteroscedasticity to ensure accurate models. Four MLR models were developed based on hierarchical combination of the independent variables. The generated MLR coefficients were applied to another data set to estimate ρₜ values for validation. Contours of the estimated ρₜ values were plotted and compared to the observed data plots at the colour scale and blanking for visual assessment. The accuracy of the models was assessed using coefficient of determination (R²), standard error (SE) and weighted mean absolute percentage error (wMAPE). It is concluded that the MLR models can estimate ρₜ for with high level of accuracy.Keywords: apparent resistivity, depth, horizontal location, multiple linear regression, true resistivity
Procedia PDF Downloads 27611099 Developing a Multidimensional Adjustment Scale
Authors: Nadereh Sohrabi Shegefti, Siamak Samani
Abstract:
Level of adjustment is the first index to check mental health. The aim of this study was developing a valid and reliable Multidimensional Adjustment Scale (MAS). The sample consisted of 150 college students. Multidimensional adjustment scale and Depression, Anxiety, and stress scale (DASS) were used in this study. Principle factor analysis, Pearson correlation coefficient, and Cornbach's Alpha were used to check the validity and reliability of the MAS. Principle component factor analysis showed a 5 factor solution for the MAS. Alpha coefficients for the MAS sub scales were ranged between .69 to .83. Test-retest reliability for MAS was .88 and the mean of sub scales- total score correlation was .88. All these indexes revealed an acceptable reliability and validity for the MAS. The MAS is a short assessment instrument with good acceptable psychometric properties to use in clinical filed.Keywords: psychological adjustment, psychometric properties, validity, Pearson correlation
Procedia PDF Downloads 63411098 Analyzing Current Transformers Saturation Characteristics for Different Connected Burden Using LabVIEW Data Acquisition Tool
Authors: D. Subedi, S. Pradhan
Abstract:
Current transformers are an integral part of power system because it provides a proportional safe amount of current for protection and measurement applications. However when the power system experiences an abnormal situation leading to huge current flow, then this huge current is proportionally injected to the protection and metering circuit. Since the protection and metering equipment’s are designed to withstand only certain amount of current with respect to time, these high currents pose a risk to man and equipment. Therefore during such instances, the CT saturation characteristics have a huge influence on the safety of both man and equipment and also on the reliability of the protection and metering system. This paper shows the effect of burden on the Accuracy Limiting factor/ Instrument security factor of current transformers and also the change in saturation characteristics of the CT’s. The response of the CT to varying levels of overcurrent at different connected burden will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer saturation characteristics with changes in burden will be discussed.Keywords: accuracy limiting factor, burden, current transformer, instrument security factor, saturation characteristics
Procedia PDF Downloads 41511097 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve
Authors: Y. J. Wang, C. Q. Ru
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 51311096 Numerical Investigation of the Effect of Geometrical Shape of Plate Heat Exchangers on Heat Transfer Efficiency
Authors: Hamed Sanei, Mohammad Bagher Ayani
Abstract:
Optimizations of Plate Heat Exchangers (PHS) have received great attention in the past decade. In this study, heat transfer and pressure drop coefficients are compared for rectangular and circular PHS employing numerical simulations. Plates are designed to have equivalent areas. Simulations were implemented to investigate the efficiency of PHSs considering heat transfer, friction factor and pressure drop. Amount of heat transfer and pressure drop was obtained for different range of Reynolds numbers. These two parameters were compared with aim of F "weighting factor correlation". In this comparison, the minimum amount of F indicates higher efficiency. Results reveal that the F value for rectangular shape is less than circular plate, and hence using rectangular shape of PHS is more efficient than circular one. It was observed that, the amount of friction factor is correlated to the Reynolds numbers, such that friction factor decreased in both rectangular and circular plates with an increase in Reynolds number. Furthermore, such simulations revealed that the amount of heat transfer in rectangular plate is more than circular plate for different range of Reynolds numbers. The difference is more distinct for higher Reynolds number. However, amount of pressure drop in circular plate is less than rectangular plate for the same range of Reynolds numbers which is considered as a negative point for rectangular plate efficiency. It can be concluded that, while rectangular PHSs occupy more space than circular plate, the efficiency of rectangular plate is higher.Keywords: Chevron corrugated plate heat exchanger, heat transfer, friction factor, Reynolds numbers
Procedia PDF Downloads 30011095 The Perception of ‘School’ as a Positive Support Factor
Authors: Yeliz Yazıcı, Alev Erenler
Abstract:
School is an institution designed to provide learning, teaching places and environments under guidance of selected teachers. School is not just a place or institution but it is a place where complex and living structures are alive and always changing. It is also an undeniable fact that schools have shaped the ideas, future, society as well as the students and their lives. While this is the situation, schools having academic excellence is considered as successful ones. Academic excellence is a composition of excellence in teachers, management and physical environment, also. This is the general perception of the authorities and parents when the excellence is the point but the school is a developing and supporting organism. In this concept, the main aim of this study is to compare student and teacher perceptions of school as a ‘positive support factor’. The study is designed as a quantitative and qualitative design and a questionnaire is applied to both teachers and students via online and face to face meetings. It is aimed to define the perceptions of the participants related to the school as a positive support factor. It means the role of school in establishing self-efficacy, shaping and acquiring the behavior etc. Gathered data is analyzed via SPSS program and the detailed discussion is carried in the frame of the related literature.Keywords: positive support factor, education, school, student teacher perception
Procedia PDF Downloads 17311094 A Cohort and Empirical Based Multivariate Mortality Model
Authors: Jeffrey Tzu-Hao Tsai, Yi-Shan Wong
Abstract:
This article proposes a cohort-age-period (CAP) model to characterize multi-population mortality processes using cohort, age, and period variables. Distinct from the factor-based Lee-Carter-type decomposition mortality model, this approach is empirically based and includes the age, period, and cohort variables into the equation system. The model not only provides a fruitful intuition for explaining multivariate mortality change rates but also has a better performance in forecasting future patterns. Using the US and the UK mortality data and performing ten-year out-of-sample tests, our approach shows smaller mean square errors in both countries compared to the models in the literature.Keywords: longevity risk, stochastic mortality model, multivariate mortality rate, risk management
Procedia PDF Downloads 5311093 Estimating Lost Digital Video Frames Using Unidirectional and Bidirectional Estimation Based on Autoregressive Time Model
Authors: Navid Daryasafar, Nima Farshidfar
Abstract:
In this article, we make attempt to hide error in video with an emphasis on the time-wise use of autoregressive (AR) models. To resolve this problem, we assume that all information in one or more video frames is lost. Then, lost frames are estimated using analogous Pixels time information in successive frames. Accordingly, after presenting autoregressive models and how they are applied to estimate lost frames, two general methods are presented for using these models. The first method which is the same standard method of autoregressive models estimates lost frame in unidirectional form. Usually, in such condition, previous frames information is used for estimating lost frame. Yet, in the second method, information from the previous and next frames is used for estimating the lost frame. As a result, this method is known as bidirectional estimation. Then, carrying out a series of tests, performance of each method is assessed in different modes. And, results are compared.Keywords: error steganography, unidirectional estimation, bidirectional estimation, AR linear estimation
Procedia PDF Downloads 538