Search results for: extremely low frequency electromagnetic fields
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7174

Search results for: extremely low frequency electromagnetic fields

6754 Meditation, Mental States, Quantum Mechanics and Enlightenment

Authors: Ven. Bhikkhu Ananda

Abstract:

Mind emerged from the quantum field. The practice of mediation can take one to the state of enlightenment. During meditation, the change in the very behaviour of electrons, protons, and photons and their fields, known to be quantum fields, create mental states. This could well be expressed in the mathematical language of quantum mechanics. This paper qualifies and quantifies mental states created during meditation and is explained by quantum mechanics. In meditation, phenomenology can be seen as the process of enlightenment. In this process, the emptiness shown in Buddhist philosophy and the emptiness of quantum fields is compared. The methodologies used here are mindfulness meditation and metta mediation (compassion meditation ). The research findings suggest not only quantumness and change are consciousness, but well-founded behaviour of an individual in the society, which can amplify the positive behaviour caused by mental states, and that emptiness and impermanence of phenomenon are based on dependent arisings. The presence of quantum coherence indicates that quantum mechanics has a role in the evolution of the pure mind and the phenomenology created thereof in mediation.

Keywords: meditation, mental states, quantum mechanics, enlightenment

Procedia PDF Downloads 56
6753 Working Children and Adolescents and the Vicious Circle of Poverty from the Perspective of Gunnar Myrdal’s Theory of Circular Cumulative Causation: Analysis and Implementation of a Probit Model to Brazil

Authors: J. Leige Lopes, L. Aparecida Bastos, R. Monteiro da Silva

Abstract:

The objective of this paper is to study the work of children and adolescents and the vicious circle of poverty from the perspective of Guinar Myrdal’s Theory of Circular Cumulative Causation. The objective is to show that if a person starts working in the juvenile phase of life they will be classified as poor or extremely poor when they are adult, which can to be observed in the case of Brazil, more specifically in the north and northeast. To do this, the methodology used was statistical and econometric analysis by applying a probit model. The main results show that: if people reside in the northeastern region of Brazil, and if they have a low educational level and if they start their professional life before the age 18, they will increase the likelihood that they will be poor or extremely poor. There is a consensus in the literature that one of the causes of the intergenerational transmission of poverty is related to child labor, this because when one starts their professional life while still in the toddler or adolescence stages of life, they end up sacrificing their studies. Because of their low level of education, children or adolescents are forced to perform low-paid functions and abandon school, becoming in the future, people who will be classified as poor or extremely poor. As a result of poverty, parents may be forced to send their children out to work when they are young, so that in the future they will also become poor adults, a process that is characterized as the "vicious circle of poverty."

Keywords: children, adolescents, Gunnar Myrdal, poverty, vicious circle

Procedia PDF Downloads 268
6752 An Analysis of the Results of Trial Blasting of Site Development Project in the Volcanic Island

Authors: Dong Wook Lee, Seung Hyun Kim

Abstract:

Trial blasting is conducted to identify the characteristics of the blasting of the applicable ground before production blasting and to investigate various problems posed by blasting. The methods and pattern of production blasting are determined based on an analysis of the results of trial blasting. The bedrock in Jeju Island, South Korea is formed through the volcanic activities unlike the inland areas, composed of porous basalt. Trial blasting showed that the blast vibration frequency of sedimentary and metamorphic rocks in the inland areas is in a high frequency band of about 80 Hz while the blast vibration frequency of Jeju Island is in a low frequency band of 10~25 Hz. The frequency band is analyzed to be low due to the large cycle of blasting pattern as blast vibration passes through the layered structured ground layer where the rock formation and clickers irregularly repeat. In addition, the blast vibration equation derived from trial blasting was R: 0.885, S.E: 0.216 when applying the square root scaled distance (SRSD) relatively suitable for long distance, estimated at the confidence level of 95%.

Keywords: attenuation index, basaltic ground, blast vibration constant, blast vibration equation, clinker layer

Procedia PDF Downloads 272
6751 Stability of Power System with High Penetration of Wind Energy: A Comprehensive Review

Authors: Jignesh Patel, Satish K. Joshi

Abstract:

This paper presents the literature review on the works done so far in the area of stability of power system with high penetration of Wind Power with other conventional power sources. Out of many problems, the voltage and frequency stability is of prime concern as it is directly related with the stable operation of power system. In this paper, different aspects of stability of power system, particularly voltage and frequency, Optimization of FACTS-Energy Storage devices is discussed.

Keywords: small singal stability, voltage stability, frequency stability, LVRT, wind power, FACTS

Procedia PDF Downloads 478
6750 Improving Load Frequency Control of Multi-Area Power System by Considering Uncertainty by Using Optimized Type 2 Fuzzy Pid Controller with the Harmony Search Algorithm

Authors: Mehrdad Mahmudizad, Roya Ahmadi Ahangar

Abstract:

This paper presents the method of designing the type 2 fuzzy PID controllers in order to solve the problem of Load Frequency Control (LFC). The Harmony Search (HS) algorithm is used to regulate the measurement factors and the effect of uncertainty of membership functions of Interval Type 2 Fuzzy Proportional Integral Differential (IT2FPID) controllers in order to reduce the frequency deviation resulted from the load oscillations. The simulation results implicitly show that the performance of the proposed IT2FPID LFC in terms of error, settling time and resistance against different load oscillations is more appropriate and preferred than PID and Type 1 Fuzzy Proportional Integral Differential (T1FPID) controllers.

Keywords: load frequency control, fuzzy-pid controller, type 2 fuzzy system, harmony search algorithm

Procedia PDF Downloads 261
6749 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.

Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret

Procedia PDF Downloads 654
6748 Dual-use UAVs in Armed Conflicts: Opportunities and Risks for Cyber and Electronic Warfare

Authors: Piret Pernik

Abstract:

Based on strategic, operational, and technical analysis of the ongoing armed conflict in Ukraine, this paper will examine the opportunities and risks of using small commercial drones (dual-use unmanned aerial vehicles, UAV) for military purposes. The paper discusses the opportunities and risks in the information domain, encompassing both cyber and electromagnetic interference and attacks. The paper will draw conclusions on a possible strategic impact to the battlefield outcomes in the modern armed conflicts by the widespread use of dual-use UAVs. This article will contribute to filling the gap in the literature by examining based on empirical data cyberattacks and electromagnetic interference. Today, more than one hundred states and non-state actors possess UAVs ranging from low cost commodity models, widely are dual-use, available and affordable to anyone, to high-cost combat UAVs (UCAV) with lethal kinetic strike capabilities, which can be enhanced with Artificial Intelligence (AI) and Machine Learning (ML). Dual-use UAVs have been used by various actors for intelligence, reconnaissance, surveillance, situational awareness, geolocation, and kinetic targeting. Thus they function as force multipliers enabling kinetic and electronic warfare attacks and provide comparative and asymmetric operational and tactical advances. Some go as far as argue that automated (or semi-automated) systems can change the character of warfare, while others observe that the use of small drones has not changed the balance of power or battlefield outcomes. UAVs give considerable opportunities for commanders, for example, because they can be operated without GPS navigation, makes them less vulnerable and dependent on satellite communications. They can and have been used to conduct cyberattacks, electromagnetic interference, and kinetic attacks. However, they are highly vulnerable to those attacks themselves. So far, strategic studies, literature, and expert commentary have overlooked cybersecurity and electronic interference dimension of the use of dual use UAVs. The studies that link technical analysis of opportunities and risks with strategic battlefield outcomes is missing. It is expected that dual use commercial UAV proliferation in armed and hybrid conflicts will continue and accelerate in the future. Therefore, it is important to understand specific opportunities and risks related to the crowdsourced use of dual-use UAVs, which can have kinetic effects. Technical countermeasures to protect UAVs differ depending on a type of UAV (small, midsize, large, stealth combat), and this paper will offer a unique analysis of small UAVs both from the view of opportunities and risks for commanders and other actors in armed conflict.

Keywords: dual-use technology, cyber attacks, electromagnetic warfare, case studies of cyberattacks in armed conflicts

Procedia PDF Downloads 92
6747 Modeling of Strong Motion Generation Areas of the 2011 Tohoku, Japan Earthquake Using Modified Semi-Empirical Technique Incorporating Frequency Dependent Radiation Pattern Model

Authors: Sandeep, A. Joshi, Kamal, Piu Dhibar, Parveen Kumar

Abstract:

In the present work strong ground motion has been simulated using a modified semi-empirical technique (MSET), with frequency dependent radiation pattern model. Joshi et al. (2014) have modified the semi-empirical technique to incorporate the modeling of strong motion generation areas (SMGAs). A frequency dependent radiation pattern model is applied to simulate high frequency ground motion more precisely. Identified SMGAs (Kurahashi and Irikura 2012) of the 2011 Tohoku earthquake (Mw 9.0) were modeled using this modified technique. Records are simulated for both frequency dependent and constant radiation pattern function. Simulated records for both cases are compared with observed records in terms of peak ground acceleration and pseudo acceleration response spectra at different stations. Comparison of simulated and observed records in terms of root mean square error suggests that the method is capable of simulating record which matches in a wide frequency range for this earthquake and bears realistic appearance in terms of shape and strong motion parameters. The results confirm the efficacy and suitability of rupture model defined by five SMGAs for the developed modified technique.

Keywords: strong ground motion, semi-empirical, strong motion generation area, frequency dependent radiation pattern, 2011 Tohoku Earthquake

Procedia PDF Downloads 527
6746 Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice

Authors: Chiling Chen, Chiaoying Chou, Siyang Wu

Abstract:

Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring.

Keywords: Monsoon, supervised classification, Pix4D, 3D point clouds, discriminate accuracy

Procedia PDF Downloads 295
6745 The Correlation between of Medicine and Postural Orthostatic Tachycardia Syndrome (POTS)

Authors: Dian Ariyawati, Romi Sukoco, Sinung Agung Joko

Abstract:

Background: Postural Orthostatic Tachycardia Syndrome (POTS) is a form of orthostatic intolerance caused by autonomic dysfunction. POTS predominantly occurs in young women. Regular exercise has proven to improve the organ system functions, including autonomous systems. The aim of this research was to determine the correlation between exercise frequency and POTS in young women. Method: 510 young women (16-23 years of age) were screened. They were obtained by interview and physical examination. The diagnosis of POTS was performed with Active Stand Test (AST) and heart rate measurement using a pulsemeter. There were 29 young women who suffered from POTS. The exercise frequency was obtained by interview. Data was statistically analyzed using Spearman Correlation test. Result: The subjects’, who tested positive for POTS didn’t perform regular exercise. The Spearman correlation test showed there was a moderate negative correlation between exercise frequency and POTS in young women (r = -0.487, p < 0.00). Conclusion: There is a moderate reverse correlation between exercise frequency and POTS in young women. Further studies are suggested to develop an exercise program for young who suffered from POTS.

Keywords: POTS, autonomic dysfunction, exercise frequency, young woman

Procedia PDF Downloads 547
6744 Weak Electric Fields Enhance Growth and Nutritional Quality of Kale

Authors: So-Ra Lee, Myung-Min Oh

Abstract:

Generally, plants growing on the earth are under the influence of natural electric fields and may even require exposure of the electric field to survive. Electric signals have been observed within plants and seem to play an important role on various metabolic processes, but their role is not fully understood. In this study, we attempted to explore the response of plants under external electric fields in kale (Brassica oleracea var. acephala). The plants were hydroponically grown for 28 days in a plant factory. Electric currents at 10, 50 and 100 mA were supplied to nutrient solution for 3 weeks. Additionally, some of the plants were cultivated in a Faraday cage to remove the natural electric field. Kale plants exposed to electric fields had higher fresh weight than the control and plants in Faraday cage. Absence of electric field caused a significant decrease in shoot dry weight and root growth. Leaf area also showed a similar response with shoot fresh weight. Supplying weak electric stimulation enhanced nutritional quality including total phenolic content and antioxidant capacity. This work provides basic information on the effects of electric fields on plants and is a meaningful attempt for developing a new economical technology to increase crop productivity and quality by applying an electric field. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Research Center Support Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (717001-07-02-HD240).

Keywords: electroculture, electric signal, faraday cage, electric field

Procedia PDF Downloads 284
6743 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model

Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus

Abstract:

This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.

Keywords: transformer, parametrical model of transformer, fault, sweep frequency response analysis, finite element method

Procedia PDF Downloads 474
6742 Perception of the Frequency and Importance of Peer Social Support by Students with Special Educational Needs in Inclusive Education

Authors: Lucia Hrebeňárová, Jarmila Žolnová, Veronika Palková

Abstract:

Inclusive education of students with special educational needs has been on the increase in the Slovak Republic, facing many challenges. Preparedness of teachers for inclusive education is one of the most frequent issues; teachers lack skills when it comes to the use of effective instruction depending on the individual needs of students, improvement of classroom management and social skills, and support of inclusion within the classroom. Social support is crucial for the school success of students within inclusive settings. The aim of the paper is to analyse perception of the frequency and importance of peer social support by students with special educational needs in inclusive education. The data collection tool used was the Child and Adolescent Social Support Scale (CASSS). The research sample consisted of 953 fourth grade students – 141 students with special educational needs educated in an inclusive setting and 812 students of the standard population. No significant differences were found between the students with special educational needs and the students without special educational needs in an inclusive setting when it comes to the perception of frequency and importance of social support of schoolmates and friends. However, the perception of frequency and importance of a friend’s social support was higher than the perception of frequency and importance of a classmate’s social support in both groups of students.

Keywords: inclusive education, peer social support, peer, student with special eEducational needs

Procedia PDF Downloads 412
6741 Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results

Authors: Jiri Brozovsky

Abstract:

Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew.

Keywords: calcium silicate brick, ultrasonic pulse method, ultrasonic pulse velocity, dynamic modulus of elasticity

Procedia PDF Downloads 409
6740 The Analysis of Swales Model (Cars Model) in the UMT Final Year Engineering Students

Authors: Kais Amir Kadhim

Abstract:

Context: The study focuses on the rhetorical structure of chapters in engineering final year projects, specifically the Introduction chapter, written by UMT (University of Marine Technology) engineering students. Existing research has explored the use of genre-based approaches to analyze the writing of final year projects in various disciplines. Research Aim: The aim of this study is to investigate the rhetorical structure of Introduction chapters in engineering final year projects by UMT students. The study aims to identify the frequency of communicative moves and their constituent steps within the Introduction chapters, as well as understand how students justify their research projects. Methodology: The research design will utilize a mixed method approach, combining both quantitative and qualitative methods. Forty Introduction chapters from two different fields in UMT engineering undergraduate programs will be selected for analysis. Findings: The study intends to identify the types of moves present in the Introduction chapters of engineering final year projects by UMT students. Additionally, it aims to determine if these moves and steps are obligatory, conventional, or optional. Theoretical Importance: The study draws upon Bunton's modified CARS (Creating a Research Space) model, which is a conceptual framework used for analyzing the introduction sections of theses. By applying this model, the study contributes to the understanding of the rhetorical structure of Introduction chapters in engineering final year projects. Data Collection: The study will collect data from forty Introduction chapters of engineering final year projects written by UMT engineering students. These chapters will be selected from two different fields within UMT's engineering undergraduate programs. Analysis Procedures: The analysis will involve identifying and categorizing the communicative moves and their constituent steps within the Introduction chapters. The study will utilize both quantitative and qualitative analysis methods to examine the frequency and nature of these moves. Question Addressed: The study aims to address the question of how UMT engineering students structure and justify their research projects within the Introduction chapters of their final year projects. Conclusion: The study aims to contribute to the knowledge of rhetorical structure in engineering final year projects by investigating the Introduction chapters written by UMT engineering students. By using a mixed method research design and applying the modified CARS model, the study intends to identify the types of moves and steps employed by students and explore their justifications for their research projects. The findings have the potential to enhance the understanding of effective academic writing in engineering disciplines.

Keywords: cohesive markers, learning, meaning, students

Procedia PDF Downloads 67
6739 Enhancement of Mass Transport and Separations of Species in a Electroosmotic Flow by Distinct Oscillatory Signals

Authors: Carlos Teodoro, Oscar Bautista

Abstract:

In this work, we analyze theoretically the mass transport in a time-periodic electroosmotic flow through a parallel flat plate microchannel under different periodic functions of the applied external electric field. The microchannel connects two reservoirs having different constant concentrations of an electro-neutral solute, and the zeta potential of the microchannel walls are assumed to be uniform. The governing equations that allow determining the mass transport in the microchannel are given by the Poisson-Boltzmann equation, the modified Navier-Stokes equations, where the Debye-Hückel approximation is considered (the zeta potential is less than 25 mV), and the species conservation. These equations are nondimensionalized and four dimensionless parameters appear which control the mass transport phenomenon. In this sense, these parameters are an angular Reynolds, the Schmidt and the Péclet numbers, and an electrokinetic parameter representing the ratio of the half-height of the microchannel to the Debye length. To solve the mathematical model, first, the electric potential is determined from the Poisson-Boltzmann equation, which allows determining the electric force for various periodic functions of the external electric field expressed as Fourier series. In particular, three different excitation wave forms of the external electric field are assumed, a) sawteeth, b) step, and c) a periodic irregular functions. The periodic electric forces are substituted in the modified Navier-Stokes equations, and the hydrodynamic field is derived for each case of the electric force. From the obtained velocity fields, the species conservation equation is solved and the concentration fields are found. Numerical calculations were done by considering several binary systems where two dilute species are transported in the presence of a carrier. It is observed that there are different angular frequencies of the imposed external electric signal where the total mass transport of each species is the same, independently of the molecular diffusion coefficient. These frequencies are called crossover frequencies and are obtained graphically at the intersection when the total mass transport is plotted against the imposed frequency. The crossover frequencies are different depending on the Schmidt number, the electrokinetic parameter, the angular Reynolds number, and on the type of signal of the external electric field. It is demonstrated that the mass transport through the microchannel is strongly dependent on the modulation frequency of the applied particular alternating electric field. Possible extensions of the analysis to more complicated pulsation profiles are also outlined.

Keywords: electroosmotic flow, mass transport, oscillatory flow, species separation

Procedia PDF Downloads 210
6738 In situ Biodegradation of Endosulfan, Imidacloprid, and Carbendazim Using Indigenous Bacterial Cultures of Agriculture Fields of Uttarakhand, India

Authors: Geeta Negi, Pankaj, Anjana Srivastava, Anita Sharma

Abstract:

In the present study, the presence of endosulfan, imidacloprid, carbendazim, in the soil /vegetables/cereals and water samples was observed in agriculture fields of Uttarakhand. In view of biodegradation of these pesticides, nine bacterial isolates were recovered from the soil samples of the fields which tolerated endosulfan, imidacloprid, carbendazim from 100 to 200 µg/ml. Three bacterial consortia used for in vitro bioremediation experiments were three bacterial isolates for carbendazim, imidacloprid and endosulfan, respectively. Maximum degradation (87 and 83%) of α and β endosulfan respectively was observed in soil slurry by consortium. Degradation of Imidacloprid and carbendazim under similar conditions was 88.4 and 77.5% respectively. FT-IR analysis of biodegraded samples of pesticides in liquid media showed stretching of various bonds. GC-MS of biodegraded endosulfan sample in soil slurry showed the presence of non-toxic intermediates. A pot trial with Bacterial treatments lowered down the uptake of pesticides in onion plants.

Keywords: biodegradation, carbendazim, consortium, endosulfan

Procedia PDF Downloads 362
6737 Steady State Rolling and Dynamic Response of a Tire at Low Frequency

Authors: Md Monir Hossain, Anne Staples, Kuya Takami, Tomonari Furukawa

Abstract:

Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.

Keywords: natural frequency, rotational motion, steady state rolling, subspace-based steady state dynamic analysis

Procedia PDF Downloads 360
6736 Synthesis, Characterization of Pd Nanoparticle Supported on Amine-Functionalized Graphene and Its Catalytic Activity for Suzuki Coupling Reaction

Authors: Surjyakanta Rana, Sreekantha B. Jonnalagadda

Abstract:

Synthesis of well distributed Pd nanoparticles (3 – 7 nm) on organo amine-functionalized graphene is reported, which demonstrated excellent catalytic activity towards Suzuki coupling reaction. The active material was characterized by X-ray diffraction (XRD), BET surface area, X-ray photoelectron spectra (XPS), Fourier-transfer infrared spectroscopy (FTIR), Raman spectra, Scanning electron microscope (SEM), Transmittance electron microscopy (TEM) analysis and HRTEM. FT-IR revealed that the organic amine functional group was successfully grafted onto the graphene oxide surface. The formation of palladium nanoparticles was confirmed by XPS, TEM and HRTEM techniques. The catalytic activity in the coupling reaction was superb with 100% conversion and 98 % yield and also activity remained almost unaltered up to six cycles. Typically, an extremely high turnover frequency of 185,078 h-1 is observed in the C-C Suzuki coupling reaction using organo di-amine functionalized graphene as catalyst.

Keywords: Di-amine, graphene, Pd nanoparticle, suzuki coupling

Procedia PDF Downloads 364
6735 Overview on Effectiveness of Learning Contract in Architecture Design Studios

Authors: Badiossadat Hassanpour, Reza Sirjani, Nangkuala Utaberta

Abstract:

The avant-garde educational systems are striving to find a life long learning methods. Different fields and majors have test variety of proposed models, and found their difficulties and strengths. Architecture as a critical stage of education due to its characteristics which are learning by doing and critique based education and evaluation is out of this study procedure. Learning contracts is a new alternative form of evaluation of students’ achievements, while it acts as agreement about learning goals. Obtained results from studies in different fields which confirm its positive impact on students' learning in those fields and positively affected students' motivation and confidence in meeting their own learning needs, prompted us to implement this model in architecture design studio. In this implemented contract to the studio, students were asked to use the existing possibility of contract to have self assessment and examine their professional development to identify whether they are deficient or they would like to develop more expertise. The evidences of this research as well indicate that students feel positive about the learning contract and see it accommodating their individual learning needs.

Keywords: contract (LC), architecture design studio, education, student-centered learning

Procedia PDF Downloads 432
6734 Visitors’ Attitude towards the Service Marketing Mix and Frequency of Visits to Bangpu Recreation Centre, Thailand

Authors: Siri-Orn Champatong

Abstract:

This research paper was aimed to examine the relationship between visitors’ attitude towards the service marketing mix and visitors’ frequency of visit to Bangpu Recreation Centre. Based on a large and uncalculated population, the number of samples was calculated according to the formula to obtain a total of 385 samples. In collecting the samples, systematic random sampling was applied and by using of a Likert five-scale questionnaire for, a total of 21 days to collect the needed information. Mean, Standard Deviation, and Pearson’s basic statistical correlations were utilized in analyzing the data. This study discovered a high level of visitors’ attitude product and service of Bangpu Recreation Centre, price, place, promotional activities, people who provided service and physical evidence of the centre. The attitude towards process of service was discovered to be at a medium level. Additionally, the finding of an examination of a relationship between visitors’ attitude towards service marketing mix and visitors’ frequency of visit to Bangpu Recreation Centre presented that product and service, people, physical evidence and process of service provision showed a relationship with the visitors’ frequency of visit to the centre per year.

Keywords: frequency of visit, visitor, service marketing mix, Bangpu Recreation Centre

Procedia PDF Downloads 359
6733 Gestalt in Music and Brain: A Non-Linear Chaos Based Study with Detrended/Adaptive Fractal Analysis

Authors: Shankha Sanyal, Archi Banerjee, Sayan Biswas, Sourya Sengupta, Sayan Nag, Ranjan Sengupta, Dipak Ghosh

Abstract:

The term ‘gestalt’ has been widely used in the field of psychology which defined the perception of human mind to group any object not in part but as a 'unified' whole. Music, in general, is polyphonic - i.e. a combination of a number of pure tones (frequencies) mixed together in a manner that sounds harmonious. The study of human brain response due to different frequency groups of the acoustic signal can give us an excellent insight regarding the neural and functional architecture of brain functions. Hence, the study of music cognition using neuro-biosensors is becoming a rapidly emerging field of research. In this work, we have tried to analyze the effect of different frequency bands of music on the various frequency rhythms of human brain obtained from EEG data. Four widely popular Rabindrasangeet clips were subjected to Wavelet Transform method for extracting five resonant frequency bands from the original music signal. These frequency bands were initially analyzed with Detrended/Adaptive Fractal analysis (DFA/AFA) methods. A listening test was conducted on a pool of 100 respondents to assess the frequency band in which the music becomes non-recognizable. Next, these resonant frequency bands were presented to 20 subjects as auditory stimulus and EEG signals recorded simultaneously in 19 different locations of the brain. The recorded EEG signals were noise cleaned and subjected again to DFA/AFA technique on the alpha, theta and gamma frequency range. Thus, we obtained the scaling exponents from the two methods in alpha, theta and gamma EEG rhythms corresponding to different frequency bands of music. From the analysis of music signal, it is seen that loss of recognition is proportional to the loss of long range correlation in the signal. From the EEG signal analysis, we obtain frequency specific arousal based response in different lobes of brain as well as in specific EEG bands corresponding to musical stimuli. In this way, we look to identify a specific frequency band beyond which the music becomes non-recognizable and below which in spite of the absence of other bands the music is perceivable to the audience. This revelation can be of immense importance when it comes to the field of cognitive music therapy and researchers of creativity.

Keywords: AFA, DFA, EEG, gestalt in music, Hurst exponent

Procedia PDF Downloads 322
6732 Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios

Authors: Pedro Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes, Nerea del-Rey-Maestre, María-Pilar Jarabo-Amores, David Mata-Moya

Abstract:

A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one.

Keywords: bistatic radar cross section, passive radar, propagation losses, radar coverage

Procedia PDF Downloads 325
6731 Comparative Investigation of Miniaturized Antennas Based on Chiral Slotted Ground Plane

Authors: Oussema Tabbabi, Mondher Laabidi, Fethi Choubani, J. David

Abstract:

This study presents a miniaturized antenna based on chiral metamaterials slotted ground plane. To decrease resonant frequency while keeping the antennas physical dimensions the same, we propose a two novel patch antennas with double Z and cross slots on the ground plane. The length of the each type of slot are also altered to investigate the effect on miniaturization performance. Resonance frequency reduction has been achieved nearly to 30% and 23% as well as size reduction of almost 28% and 22% for the double Z and the cross shape respectively.

Keywords: chiral metamaterials, miniaturized antenna, miniaturization, resonance frequency

Procedia PDF Downloads 449
6730 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating

Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho

Abstract:

Both numerical and experimental investigation of the temperature distribution and electric field in a natural rubber glove (NRG) during microwave heating are studied. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.

Keywords: electric field, finite element method, microwave energy, natural rubber glove

Procedia PDF Downloads 254
6729 Amrita Bose-Einstein Condensate Solution Formed by Gold Nanoparticles Laser Fusion and Atmospheric Water Generation

Authors: Montree Bunruanses, Preecha Yupapin

Abstract:

In this work, the quantum material called Amrita (elixir) is made from top-down gold into nanometer particles by fusing 99% gold with a laser and mixing it with drinking water using the atmospheric water (AWG) production system, which is made of water with air. The high energy laser power destroyed the four natural force bindings from gravity-weak-electromagnetic and strong coupling forces, where finally it was the purified Bose-Einstein condensate (BEC) states. With this method, gold atoms in the form of spherical single crystals with a diameter of 30-50 nanometers are obtained and used. They were modulated (activated) with a frequency generator into various matrix structures mixed with AWG water to be used in the upstream conversion (quantum reversible) process, which can be applied on humans both internally or externally by drinking or applying on the treated surfaces. Doing both space (body) and time (mind) will go back to the origin and start again from the coupling of space-time on both sides of time at fusion (strong coupling force) and push out (Big Bang) at the equilibrium point (singularity) occurs as strings and DNA with neutrinos as coupling energy. There is no distortion (purification), which is the point where time and space have not yet been determined, and there is infinite energy. Therefore, the upstream conversion is performed. It is reforming DNA to make it be purified. The use of Amrita is a method used for people who cannot meditate (quantum meditation). Various cases were applied, where the results show that the Amrita can make the body and the mind return to their pure origins and begin the downstream process with the Big Bang movement, quantum communication in all dimensions, DNA reformation, frequency filtering, crystal body forming, broadband quantum communication networks, black hole forming, quantum consciousness, body and mind healing, etc.

Keywords: quantum materials, quantum meditation, quantum reversible, Bose-Einstein condensate

Procedia PDF Downloads 61
6728 Fabricating an Infrared-Radar Compatible Stealth Surface with Frequency Selective Surface and Structured Radar-Absorbing Material

Authors: Qingtao Yu, Guojia Ma

Abstract:

Approaches to microwave absorption and low infrared emissivity are often conflicting, as the low-emissivity layer, usually consisting of metals, increases the reflection of microwaves, especially in high frequency. In this study, an infrared-radar compatible stealth surface was fabricated by first depositing a layer of low-emissivity metal film on the surface of a layer of radar-absorbing material. Then, ultrafast laser was used to generate patterns on the metal film, forming a frequency selective surface. With proper pattern design, while the majority of the frequency selective surface is covered by the metal film, it has relatively little influence on the reflection of microwaves between 2 to 18 GHz. At last, structures on the radar-absorbing layer were fabricated by ultra-fast laser to further improve the absorbing bandwidth of the microwave. This study demonstrates that the compatibility between microwave absorption and low infrared emissivity can be achieved by properly designing patterns and structures on the metal film and the radar-absorbing layer accordingly.

Keywords: frequency selective surface, infrared-radar compatible, low infrared emissivity, radar-absorbing material, patterns, structures

Procedia PDF Downloads 120
6727 European Electromagnetic Compatibility Directive Applied to Astronomical Observatories

Authors: Oibar Martinez, Clara Oliver

Abstract:

The Cherenkov Telescope Array Project (CTA) aims to build two different observatories of Cherenkov Telescopes, located in Cerro del Paranal, Chile, and La Palma, Spain. These facilities are used in this paper as a case study to investigate how to apply standard Directives on Electromagnetic Compatibility to astronomical observatories. Cherenkov Telescopes are able to provide valuable information from both Galactic and Extragalactic sources by measuring Cherenkov radiation, which is produced by particles which travel faster than light in the atmosphere. The construction requirements demand compliance with the European Electromagnetic Compatibility Directive. The largest telescopes of these observatories, called Large Scale Telescopes (LSTs), are high precision instruments with advanced photomultipliers able to detect the faint sub-nanosecond blue light pulses produced by Cherenkov Radiation. They have a 23-meter parabolic reflective surface. This surface focuses the radiation on a camera composed of an array of high-speed photosensors which are highly sensitive to the radio spectrum pollution. The camera has a field of view of about 4.5 degrees and has been designed for maximum compactness and lowest weight, cost and power consumption. Each pixel incorporates a photo-sensor able to discriminate single photons and the corresponding readout electronics. The first LST is already commissioned and intends to be operated as a service to Scientific Community. Because of this, it must comply with a series of reliability and functional requirements and must have a Conformité Européen (CE) marking. This demands compliance with Directive 2014/30/EU on electromagnetic compatibility. The main difficulty of accomplishing this goal resides on the fact that Conformité Européen marking setups and procedures were implemented for industrial products, whereas no clear protocols have been defined for scientific installations. In this paper, we aim to give an answer to the question on how the directive should be applied to our installation to guarantee the fulfillment of all the requirements and the proper functioning of the telescope itself. Experts in Optics and Electromagnetism were both needed to make these kinds of decisions and match tests which were designed to be made over the equipment of limited dimensions on large scientific plants. An analysis of the elements and configurations most likely to be affected by external interferences and those that are most likely to cause the maximum disturbances was also performed. Obtaining the Conformité Européen mark requires knowing what the harmonized standards are and how the elaboration of the specific requirement is defined. For this type of large installations, one needs to adapt and develop the tests to be carried out. In addition, throughout this process, certification entities and notified bodies play a key role in preparing and agreeing the required technical documentation. We have focused our attention mostly on the technical aspects of each point. We believe that this contribution will be of interest for other scientists involved in applying industrial quality assurance standards to large scientific plant.

Keywords: CE marking, electromagnetic compatibility, european directive, scientific installations

Procedia PDF Downloads 103
6726 Temperature Effect on Changing of Electrical Impedance and Permittivity of Ouargla (Algeria) Dunes Sand at Different Frequencies

Authors: Naamane Remita, Mohammed laïd Mechri, Nouredine Zekri, Smaïl Chihi

Abstract:

The goal of this study is the estimation real and imaginary components of both electrical impedance and permittivity z', z'' and ε', ε'' respectively, in Ouargla dunes sand at different temperatures and different frequencies, with alternating current (AC) equal to 1 volt, using the impedance spectroscopy (IS). This method is simple and non-destructive. the results can frequently be correlated with a number of physical properties, dielectric properties and the impacts of the composition on the electrical conductivity of solids. The experimental results revealed that the real part of impedance is higher at higher temperature in the lower frequency region and gradually decreases with increasing frequency. As for the high frequencies, all the values of the real part of the impedance were positive. But at low frequency the values of the imaginary part were positive at all temperatures except for 1200 degrees which were negative. As for the medium frequencies, the reactance values were negative at temperatures 25, 400, 200 and 600 degrees, and then became positive at the rest of the temperatures. At high frequencies of the order of MHz, the values of the imaginary part of the electrical impedance were in contrast to what we recorded for the middle frequencies. The results showed that the electrical permittivity decreases with increasing frequency, at low frequency we recorded permittivity values of 10+ 11, and at medium frequencies it was 10+ 07, while at high frequencies it was 10+ 02. The values of the real part of the electrical permittivity were taken large values at the temperatures of 200 and 600 degrees Celsius and at the lowest frequency, while the smallest value for the permittivity was recorded at the temperature of 400 degrees Celsius at the highest frequency. The results showed that there are large values of the imaginary part of the electrical permittivity at the lowest frequency and then it starts decreasing as the latter increases (the higher the frequency the lower the values of the imaginary part of the electrical permittivity). The character of electrical impedance variation indicated an opportunity to realize the polarization of Ouargla dunes sand and acquaintance if this compound consumes or produces energy. It’s also possible to know the satisfactory of equivalent electric circuit, whether it’s miles induction or capacitance.

Keywords: electrical impedance, electrical permittivity, temperature, impedance spectroscopy, dunes sand ouargla

Procedia PDF Downloads 34
6725 Optimal Design of Submersible Permanent Magnet Linear Synchronous Motor Based Design of Experiment and Genetic Algorithm

Authors: Xiao Zhang, Wensheng Xiao, Junguo Cui, Hongmin Wang

Abstract:

Submersible permanent magnet linear synchronous motors (SPMLSMs) are electromagnetic devices, which can directly drive plunger pump to obtain the crude oil. Those motors have been gradually applied in oil fields due to high thrust force density and high efficiency. Since the force performance closely depends on the concrete structural parameters, the seven different structural parameters are investigated in detail. This paper presents an optimum design of an SPMLSM to minimize the detent force and maximize the thrust by using design of experiment (DOE) and genetic algorithm (GA). The three significant structural parameters (air-gap length, slot width, pole-arc coefficient) are separately screened using 27 1/16 fractional factorial design (FFD) to investigate the significant effect of seven parameters used in this research on the force performance. Response surface methodology (RSM) is well adapted to make analytical model of thrust and detent force with constraints of corresponding significant parameters and enable objective function to be easily created, respectively. GA is performed as a searching tool to search for the Pareto-optimal solutions. By finite element analysis, the proposed PMLSM shows merits in improving thrust and reducing the detent force dramatically.

Keywords: optimization, force performance, design of experiment (DOE), genetic algorithm (GA)

Procedia PDF Downloads 282