Search results for: auditory error recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3618

Search results for: auditory error recognition

3198 Low-Cost Reversible Logic Serial Multipliers with Error Detection Capability

Authors: Mojtaba Valinataj

Abstract:

Nowadays reversible logic has received many attentions as one of the new fields for reducing the power consumption. On the other hand, the processing systems have weaknesses against different external effects. In this paper, some error detecting reversible logic serial multipliers are proposed by incorporating the parity-preserving gates. This way, the new designs are presented for signed parity-preserving serial multipliers based on the Booth's algorithm by exploiting the new arrangements of existing gates. The experimental results show that the proposed 4×4 multipliers in this paper reach up to 20%, 35%, and 41% enhancements in the number of constant inputs, quantum cost, and gate count, respectively, as the reversible logic criteria, compared to previous designs. Furthermore, all the proposed designs have been generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: Booth’s algorithm, error detection, multiplication, parity-preserving gates, quantum computers, reversible logic

Procedia PDF Downloads 220
3197 Error Analysis in Academic Writing of EFL Learners: A Case Study for Undergraduate Students at Pathein University

Authors: Aye Pa Pa Myo

Abstract:

Writing in English is accounted as a complex process for English as a foreign language learners. Besides, committing errors in writing can be found as an inevitable part of language learners’ writing. Generally, academic writing is quite difficult for most of the students to manage for getting better scores. Students can commit common errors in their writings when they try to write academic writing. Error analysis deals with identifying and detecting the errors and also explains the reason for the occurrence of these errors. In this paper, the researcher has an attempt to examine the common errors of undergraduate students in their academic writings at Pathein University. The purpose of doing this research is to investigate the errors which students usually commit in academic writing and to find out the better ways for correcting these errors in EFL classrooms. In this research, fifty-third-year non-English specialization students attending Pathein University were selected as participants. This research took one month. It was conducted with a mixed methodology method. Two mini-tests were used as research tools. Data were collected with a quantitative research method. Findings from this research pointed that most of the students noticed their common errors after getting the necessary input, and they became more decreased committing these errors after taking mini-test; hence, all findings will be supportive for further researches related to error analysis in academic writing.

Keywords: academic writing, error analysis, EFL learners, mini-tests, mixed methodology

Procedia PDF Downloads 126
3196 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots

Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

Abstract:

Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.

Keywords: agricultural mobile robot, image processing, path recognition, hough transform

Procedia PDF Downloads 136
3195 Using the Bootstrap for Problems Statistics

Authors: Brahim Boukabcha, Amar Rebbouh

Abstract:

The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.

Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models

Procedia PDF Downloads 375
3194 Wind Power Forecast Error Simulation Model

Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus

Abstract:

One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.

Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation

Procedia PDF Downloads 475
3193 'Value-Based Re-Framing' in Identity-Based Conflicts: A Skill for Mediators in Multi-Cultural Societies

Authors: Hami-Ziniman Revital, Ashwall Rachelly

Abstract:

The conflict resolution realm has developed tremendously during the last half-decade. Three main approaches should be mentioned: an Alternative Dispute Resolution (ADR) suggesting processes such as Arbitration or Interests-based Negotiation was developed as an answer to obligations and rights-based conflicts. The Pragmatic mediation approach focuses on the gap between interests and needs of disputants. The Transformative mediation approach focusses on relations and suits identity-based conflicts. In the current study, we examine the conflictual relations between religious and non-religious Jews in Israel and the impact of three transformative mechanisms: Inter-group recognition, In-group empowerment and Value-based reframing on the relations between the participants. The research was conducted during four facilitated joint mediation classes. A unique finding was found. Using both transformative mechanisms and the Contact Hypothesis criteria, we identify transformation in participants’ relations and a considerable change from anger, alienation, and suspiciousness to an increased understanding, affection and interpersonal concern towards the out-group members. Intergroup Recognition, In-group empowerment, and Values-based reframing were the skills discovered as the main enablers of the change in the relations and the research participants’ fostered mutual recognition of the out-group values and identity-based issues. We conclude this transformation was possible due to a constant intergroup contact, based on the Contact Hypothesis criteria. In addition, as Interests-based mediation uses “Reframing” as a skill to acknowledge both mutual and opposite needs of the disputants, we suggest the use of “Value-based Reframing” in intergroup identity-based conflicts, as a skill contributes to the empowerment and the recognition of both mutual and different out-group values. We offer to implement those insights and skills to assist conflict resolution facilitators in various intergroup identity-based conflicts resolution efforts and to establish further research and knowledge.

Keywords: empowerment, identity-based conflict, intergroup recognition, intergroup relations, mediation skills, multi-cultural society, reframing, value-based recognition

Procedia PDF Downloads 334
3192 Co-Integration Model for Predicting Inflation Movement in Nigeria

Authors: Salako Rotimi, Oshungade Stephen, Ojewoye Opeyemi

Abstract:

The maintenance of price stability is one of the macroeconomic challenges facing Nigeria as a nation. This paper attempts to build a co-integration multivariate time series model for inflation movement in Nigeria using data extracted from the abstract of statistics of the Central Bank of Nigeria (CBN) from 2008 to 2017. The Johansen cointegration test suggests at least one co-integration vector describing the long run relationship between Consumer Price Index (CPI), Food Price Index (FPI) and Non-Food Price Index (NFPI). All three series show increasing pattern, which indicates a sign of non-stationary in each of the series. Furthermore, model predictability was established with root-mean-square-error, mean absolute error, mean average percentage error, and Theil’s unbiased statistics for n-step forecasting. The result depicts that the long run coefficient of a consumer price index (CPI) has a positive long-run relationship with the food price index (FPI) and non-food price index (NFPI).

Keywords: economic, inflation, model, series

Procedia PDF Downloads 236
3191 Bit Error Rate (BER) Performance of Coherent Homodyne BPSK-OCDMA Network for Multimedia Applications

Authors: Morsy Ahmed Morsy Ismail

Abstract:

In this paper, the structure of a coherent homodyne receiver for the Binary Phase Shift Keying (BPSK) Optical Code Division Multiple Access (OCDMA) network is introduced based on the Multi-Length Weighted Modified Prime Code (ML-WMPC) for multimedia applications. The Bit Error Rate (BER) of this homodyne detection is evaluated as a function of the number of active users and the signal to noise ratio for different code lengths according to the multimedia application such as audio, voice, and video. Besides, the Mach-Zehnder interferometer is used as an external phase modulator in homodyne detection. Furthermore, the Multiple Access Interference (MAI) and the receiver noise in a shot-noise limited regime are taken into consideration in the BER calculations.

Keywords: OCDMA networks, bit error rate, multiple access interference, binary phase-shift keying, multimedia

Procedia PDF Downloads 163
3190 Facial Recognition Technology in Institutions of Higher Learning: Exploring the Use in Kenya

Authors: Samuel Mwangi, Josephine K. Mule

Abstract:

Access control as a security technique regulates who or what can access resources. It is a fundamental concept in security that minimizes risks to the institutions that use access control. Regulating access to institutions of higher learning is key to ensure only authorized personnel and students are allowed into the institutions. The use of biometrics has been criticized due to the setup and maintenance costs, hygiene concerns, and trepidations regarding data privacy, among other apprehensions. Facial recognition is arguably a fast and accurate way of validating identity in order to guard protected areas. It guarantees that only authorized individuals gain access to secure locations while requiring far less personal information whilst providing an additional layer of security beyond keys, fobs, or identity cards. This exploratory study sought to investigate the use of facial recognition in controlling access in institutions of higher learning in Kenya. The sample population was drawn from both private and public higher learning institutions. The data is based on responses from staff and students. Questionnaires were used for data collection and follow up interviews conducted to understand responses from the questionnaires. 80% of the sampled population indicated that there were many security breaches by unauthorized people, with some resulting in terror attacks. These security breaches were attributed to stolen identity cases, where staff or student identity cards were stolen and used by criminals to access the institutions. These unauthorized accesses have resulted in losses to the institutions, including reputational damages. The findings indicate that security breaches are a major problem in institutions of higher learning in Kenya. Consequently, access control would be beneficial if employed to curb security breaches. We suggest the use of facial recognition technology, given its uniqueness in identifying users and its non-repudiation capabilities.

Keywords: facial recognition, access control, technology, learning

Procedia PDF Downloads 117
3189 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines

Authors: S. O. Oyamakin, A. U. Chukwu

Abstract:

Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.

Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic

Procedia PDF Downloads 471
3188 Face Recognition Using Eigen Faces Algorithm

Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale

Abstract:

Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.

Keywords: face detection, face recognition, eigen faces, algorithm

Procedia PDF Downloads 347
3187 Formulating a Flexible-Spread Fuzzy Regression Model Based on Dissemblance Index

Authors: Shih-Pin Chen, Shih-Syuan You

Abstract:

This study proposes a regression model with flexible spreads for fuzzy input-output data to cope with the situation that the existing measures cannot reflect the actual estimation error. The main idea is that a dissemblance index (DI) is carefully identified and defined for precisely measuring the actual estimation error. Moreover, the graded mean integration (GMI) representation is adopted for determining more representative numeric regression coefficients. Notably, to comprehensively compare the performance of the proposed model with other ones, three different criteria are adopted. The results from commonly used test numerical examples and an application to Taiwan's business monitoring indicator illustrate that the proposed dissemblance index method not only produces valid fuzzy regression models for fuzzy input-output data, but also has satisfactory and stable performance in terms of the total estimation error based on these three criteria.

Keywords: dissemblance index, forecasting, fuzzy sets, linear regression

Procedia PDF Downloads 347
3186 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems

Authors: Nikolaos Georgoulopoulos, Alkis Hatzopoulos, Konstantinos Karamitsios, Konstantinos Kotrotsios, Alexandros I. Metsai

Abstract:

In modern server systems, business critical applications run in different types of infrastructure, such as cloud systems, physical machines and virtualization. Often, due to high load and over time, various hardware faults occur in servers that translate to errors, resulting to malfunction or even server breakdown. CPU, RAM and hard drive (HDD) are the hardware parts that concern server administrators the most regarding errors. In this work, selected RAM, HDD and CPU errors, that have been observed or can be simulated in kernel ring buffer log files from two groups of Linux servers, are investigated. Moreover, a severity characterization is given for each error type. Better understanding of such errors can lead to more efficient analysis of kernel logs that are usually exploited for fault diagnosis and prediction. In addition, this work summarizes ways of simulating hardware errors in RAM and HDD, in order to test the error detection and correction mechanisms of a Linux server.

Keywords: hardware errors, Kernel logs, Linux servers, RAM, hard disk, CPU

Procedia PDF Downloads 147
3185 The Role of Bone Marrow Stem Cells Transplantation in the Repair of Damaged Inner Ear in Albino Rats

Authors: Ahmed Gaber Abdel Raheem, Nashwa Ahmed Mohamed

Abstract:

Introduction: Sensorineural hearing loss (SNHL) is largely caused by the degeneration of the cochlea. Therapeutic options for SNHL are limited to hearing aids and cochlear implants. The cell transplantation approach to the regeneration of hair cells has gained considerable attention because stem cells are believed to accumulate in the damaged sites and have the potential for the repair of damaged tissues. The aim of the work: was to assess the use of bone marrow transplantation in repair of damaged inner ear hair cells in rats after the damage had been inflicted by Amikacin injection. Material and Methods: Thirty albino rats were used in this study. They were divided into three groups. Each group ten rats. Group I: used as control. Group II: Were given Amikacin- intratympanic injection till complete loss of hearing function. This could be assessed by Distortion product Otoacoustic Emission (DPOAEs) and / or auditory brain stem evoked potential (ABR). GroupIII: were given intra-peritoneal injection of bone marrow stem cell after complete loss of hearing caused by Amikacin. Clinical assessment was done using DPOAEs and / or auditory brain stem evoked potential (ABR), before and after bone marrow injection. Histological assessment of the inner ear was done by light and electron microscope. Also, Detection of stem cells in the inner ear by immunohistochemistry. Results: Histological examination of the specimens showed promising improvement in the structure of cochlea that may be responsible for the improvement of hearing function in rats detected by DPOAEs and / or ABR. Conclusion: Bone marrow stem cells transplantation might be useful for the treatment of SNHL.

Keywords: amikacin, hair cells, sensorineural hearing loss, stem cells

Procedia PDF Downloads 444
3184 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 331
3183 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission

Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong

Abstract:

Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.

Keywords: medical image watermarking, e-health system, error correction, Hamming code, GPU

Procedia PDF Downloads 279
3182 An Alternative Richards’ Growth Model Based on Hyperbolic Sine Function

Authors: Samuel Oluwafemi Oyamakin, Angela Unna Chukwu

Abstract:

Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards nonlinear growth models better than the classical Richards growth model.

Keywords: height, diameter at breast height, DBH, hyperbolic sine function, Pinus caribaea, Richards' growth model

Procedia PDF Downloads 381
3181 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses

Authors: El Sayed A. Sharara, A. Tsuji, K. Terada

Abstract:

Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.

Keywords: call center agents, fatigue, skin color detection, face recognition

Procedia PDF Downloads 289
3180 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 97
3179 Freedom of Information and Freedom of Expression

Authors: Amin Pashaye Amiri

Abstract:

Freedom of information, according to which the public has a right to have access to government-held information, is largely considered as a tool for improving transparency and accountability in governments, and as a requirement of self-governance and good governance. So far, more than ninety countries have recognized citizens’ right to have access to public information. This recognition often took place through the adoption of an act referred to as “freedom of information act”, “access to public records act”, and so on. A freedom of information act typically imposes a positive obligation on a government to initially and regularly release certain public information, and also obliges it to provide individuals with information they request. Such an act usually allows governmental bodies to withhold information only when it falls within a limited number of exemptions enumerated in the act such as exemptions for protecting privacy of individuals and protecting national security. Some steps have been taken at the national and international level towards the recognition of freedom of information as a human right. Freedom of information was recognized in a few countries as a part of freedom of expression, and therefore, as a human right. Freedom of information was also recognized by some international bodies as a human right. The Inter-American Court of Human Rights ruled in 2006 that Article 13 of the American Convention on Human Rights, which concerns the human right to freedom of expression, protects the right of all people to request access to government information. The European Court of Human Rights has recently taken a considerable step towards recognizing freedom of information as a human right. However, in spite of the measures that have been taken, public access to government information is not yet widely accepted as an international human right. The paper will consider the degree to which freedom of information has been recognized as a human right, and study the possibility of widespread recognition of such a human right in the future. It will also examine the possible benefits of such recognition for the development of the human right to free expression.

Keywords: freedom of information, freedom of expression, human rights, government information

Procedia PDF Downloads 542
3178 Performance Analysis of Multichannel OCDMA-FSO Network under Different Pervasive Conditions

Authors: Saru Arora, Anurag Sharma, Harsukhpreet Singh

Abstract:

To meet the growing need of high data rate and bandwidth, various efforts has been made nowadays for the efficient communication systems. Optical Code Division Multiple Access over Free space optics communication system seems an effective role for providing transmission at high data rate with low bit error rate and low amount of multiple access interference. This paper demonstrates the OCDMA over FSO communication system up to the range of 7000 m at a data rate of 5 Gbps. Initially, the 8 user OCDMA-FSO system is simulated and pseudo orthogonal codes are used for encoding. Also, the simulative analysis of various performance parameters like power and core effective area that are having an effect on the Bit error rate (BER) of the system is carried out. The simulative analysis reveals that the length of the transmission is limited by the multi-access interference (MAI) effect which arises when the number of users increases in the system.

Keywords: FSO, PSO, bit error rate (BER), opti system simulation, multiple access interference (MAI), q-factor

Procedia PDF Downloads 360
3177 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 177
3176 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 89
3175 Different Motor Inhibition Processes in Action Selection Stage: A Study with Spatial Stroop Paradigm

Authors: German Galvez-Garcia, Javier Albayay, Javiera Peña, Marta Lavin, George A. Michael

Abstract:

The aim of this research was to investigate whether the selection of the actions needs different inhibition processes during the response selection stage. In Experiment 1, we compared the magnitude of the Spatial Stroop effect, which occurs in response selection stage, in two motor actions (lifting vs reaching) when the participants performed both actions in the same block or in different blocks (mixed block vs. pure blocks).Within pure blocks, we obtained faster latencies when lifting actions were performed, but no differences in the magnitude of the Spatial Stroop effect were observed. Within mixed block, we obtained faster latencies as well as bigger-magnitude for Spatial Stroop effect when reaching actions were performed. We concluded that when no action selection is required (the pure blocks condition), inhibition works as a unitary system, whereas in the mixed block condition, where action selection is required, different inhibitory processes take place within a common processing stage. In Experiment 2, we investigated this common processing stage in depth by limiting participants’ available resources, requiring them to engage in a concurrent auditory task within a mixed block condition. The Spatial Stroop effect interacted with Movement as it did in Experiment 1, but it did not significantly interact with available resources (Auditory task x Spatial Stroop effect x Movement interaction). Thus, we concluded that available resources are distributed equally to both inhibition processes; this reinforces the likelihood of there being a common processing stage in which the different inhibitory processes take place.

Keywords: inhibition process, motor processes, selective inhibition, dual task

Procedia PDF Downloads 383
3174 Frequency Recognition Models for Steady State Visual Evoked Potential Based Brain Computer Interfaces (BCIs)

Authors: Zeki Oralhan, Mahmut Tokmakçı

Abstract:

SSVEP based brain computer interface (BCI) systems have been preferred, because of high information transfer rate (ITR) and practical use. ITR is the parameter of BCI overall performance. For high ITR value, one of specification BCI system is that has high accuracy. In this study, we investigated to recognize SSVEP with shorter time and lower error rate. In the experiment, there were 8 flickers on light crystal display (LCD). Participants gazed to flicker which had 12 Hz frequency and 50% duty cycle ratio on the LCD during 10 seconds. During the experiment, EEG signals were acquired via EEG device. The EEG data was filtered in preprocessing session. After that Canonical Correlation Analysis (CCA), Multiset CCA (MsetCCA), phase constrained CCA (PCCA), and Multiway CCA (MwayCCA) methods were applied on data. The highest average accuracy value was reached when MsetCCA was applied.

Keywords: brain computer interface, canonical correlation analysis, human computer interaction, SSVEP

Procedia PDF Downloads 257
3173 Experimental Characterization of the Color Quality and Error Rate for an Red, Green, and Blue-Based Light Emission Diode-Fixture Used in Visible Light Communications

Authors: Juan F. Gutierrez, Jesus M. Quintero, Diego Sandoval

Abstract:

An important feature of LED technology is the fast on-off commutation, which allows data transmission. Visible Light Communication (VLC) is a wireless method to transmit data with visible light. Modulation formats such as On-Off Keying (OOK) and Color Shift Keying (CSK) are used in VLC. Since CSK is based on three color bands uses red, green, and blue monochromatic LED (RGB-LED) to define a pattern of chromaticities. This type of CSK provides poor color quality in the illuminated area. This work presents the design and implementation of a VLC system using RGB-based CSK with 16, 8, and 4 color points, mixing with a steady baseline of a phosphor white-LED, to improve the color quality of the LED-Fixture. The experimental system was assessed in terms of the Color Rendering Index (CRI) and the Symbol Error Rate (SER). Good color quality performance of the LED-Fixture was obtained with an acceptable SER. The laboratory setup used to characterize and calibrate an LED-Fixture is described.

Keywords: VLC, indoor lighting, color quality, symbol error rate, color shift keying

Procedia PDF Downloads 91
3172 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 142
3171 Promoting Academic and Social-Emotional Growth of Students with Learning Differences Through Differentiated Instruction

Authors: Jolanta Jonak

Abstract:

Traditional classrooms are challenging for many students, but especially for students that learn differently due to cognitive makeup, learning preferences, or disability. These students often require different teaching approaches and learning opportunities to benefit from learning. Teachers frequently divert to using one teaching approach, the one that matches their own learning style. For instance, teachers that are auditory learners, likely default to providing auditory learning opportunities. However, if a student is a visual learner, he/she may not fully benefit from that teaching style. Based on research, students and their parents’ feedback, large numbers of students are not provided the type of education and types of supports they need in order to be successful in an academic environment. This eventually leads to not learning at an appropriate rate and ultimately leading to skill deficiencies and deficits. Providing varied learning approaches promote high academic and social-emotional growth of all students and it will prevent inaccurate Special Education referrals. Varied learning opportunities can be delivered for all students by providing Differentiated Instruction (DI). This type of instruction allows each student to learn in the most optimal way regardless of learning preferences and cognitive learning profiles. Using Differentiated Instruction will lead to a high level of student engagement and learning. In addition, experiencing success in the classroom, will contribute to increased social emotional wellbeing. Being cognizant of how teaching approaches impact student's learning, school staff can avoid inaccurate perceptions about the students’ learning abilities, unnecessary referrals for special education evaluations, and inaccurate decisions about the presence of a disability. This presentation will illustrate learning differences due to various factors, how to recognize them, and how to address them through Differentiated Instruction.

Keywords: special education, disability, differences, differentiated instruction, social emotional wellbeing

Procedia PDF Downloads 42
3170 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 109
3169 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 206