Search results for: airway segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 527

Search results for: airway segmentation

107 A Comparison of qCON/qNOX to the Bispectral Index as Indices of Antinociception in Surgical Patients Undergoing General Anesthesia with Laryngeal Mask Airway

Authors: Roya Yumul, Ofelia Loani Elvir-Lazo, Sevan Komshian, Ruby Wang, Jun Tang

Abstract:

BACKGROUND: An objective means for monitoring the anti-nociceptive effects of perioperative medications has long been desired as a way to provide anesthesiologists information regarding a patient’s level of antinociception and preclude any untoward autonomic responses and reflexive muscular movements from painful stimuli intraoperatively. To this end, electroencephalogram (EEG) based tools including BIS and qCON were designed to provide information about the depth of sedation while qNOX was produced to inform on the degree of antinociception. The goal of this study was to compare the reliability of qCON/qNOX to BIS as specific indicators of response to nociceptive stimulation. METHODS: Sixty-two patients undergoing general anesthesia with LMA were included in this study. Institutional Review Board (IRB) approval was obtained, and informed consent was acquired prior to patient enrollment. Inclusion criteria included American Society of Anesthesiologists (ASA) class I-III, 18 to 80 years of age, and either gender. Exclusion criteria included the inability to consent. Withdrawal criteria included conversion to the endotracheal tube and EEG malfunction. BIS and qCON/qNOX electrodes were simultaneously placed on all patients prior to induction of anesthesia and were monitored throughout the case, along with other perioperative data, including patient response to noxious stimuli. All intraoperative decisions were made by the primary anesthesiologist without influence from qCON/qNOX. Student’s t-distribution, prediction probability (PK), and ANOVA were used to statistically compare the relative ability to detect nociceptive stimuli for each index. Twenty patients were included for the preliminary analysis. RESULTS: A comparison of overall intraoperative BIS, qCON and qNOX indices demonstrated no significant difference between the three measures (N=62, p> 0.05). Meanwhile, index values for qNOX (62±18) were significantly higher than those for BIS (46±14) and qCON (54±19) immediately preceding patient responses to nociceptive stimulation in a preliminary analysis (N=20, * p= 0.0408). Notably, certain hemodynamic measurements demonstrated a significant increase in response to painful stimuli (MAP increased from 74 ±13 mm Hg at baseline to 84 ± 18 mm Hg during noxious stimuli [p= 0.032] and HR from 76 ± 12 BPM at baseline to 80 ± 13 BPM during noxious stimuli [p=0.078] respectively). CONCLUSION: In this observational study, BIS and qCON/qNOX provided comparable information on patients’ level of sedation throughout the course of an anesthetic. Meanwhile, increases in qNOX values demonstrated a superior correlation to an imminent response to stimulation relative to all other indices

Keywords: antinociception, BIS, general anesthesia, LMA, qCON/qNOX

Procedia PDF Downloads 137
106 Characteristic Sentence Stems in Academic English Texts: Definition, Identification, and Extraction

Authors: Jingjie Li, Wenjie Hu

Abstract:

Phraseological units in academic English texts have been a central focus in recent corpus linguistic research. A wide variety of phraseological units have been explored, including collocations, chunks, lexical bundles, patterns, semantic sequences, etc. This paper describes a special category of clause-level phraseological units, namely, Characteristic Sentence Stems (CSSs), with a view to describing their defining criteria and extraction method. CSSs are contiguous lexico-grammatical sequences which contain a subject-predicate structure and which are frame expressions characteristic of academic writing. The extraction of CSSs consists of six steps: Part-of-speech tagging, n-gram segmentation, structure identification, significance of occurrence calculation, text range calculation, and overlapping sequence reduction. Significance of occurrence calculation is the crux of this study. It includes the computing of both the internal association and the boundary independence of a CSS and tests the occurring significance of the CSS from both inside and outside perspectives. A new normalization algorithm is also introduced into the calculation of LocalMaxs for reducing overlapping sequences. It is argued that many sentence stems are so recurrent in academic texts that the most typical of them have become the habitual ways of making meaning in academic writing. Therefore, studies of CSSs could have potential implications and reference value for academic discourse analysis, English for Academic Purposes (EAP) teaching and writing.

Keywords: characteristic sentence stem, extraction method, phraseological unit, the statistical measure

Procedia PDF Downloads 166
105 Understanding Indonesian Smallholder Dairy Farmers’ Decision to Adopt Multiple Farm: Level Innovations

Authors: Rida Akzar, Risti Permani, Wahida , Wendy Umberger

Abstract:

Adoption of farm innovations may increase farm productivity, and therefore improve market access and farm incomes. However, most studies that look at the level and drivers of innovation adoption only focus on a specific type of innovation. Farmers may consider multiple innovation options, and constraints such as budget, environment, scarcity of labour supply, and the cost of learning. There have been some studies proposing different methods to combine a broad variety of innovations into a single measurable index. However, little has been done to compare these methods and assess whether they provide similar information about farmer segmentation by their ‘innovativeness’. Using data from a recent survey of 220 dairy farm households in West Java, Indonesia, this study compares and considers different methods of deriving an innovation index, including expert-weighted innovation index; an index derived from the total number of adopted technologies; and an index of the extent of adoption of innovation taking into account both adoption and disadoption of multiple innovations. Second, it examines the distribution of different farming systems taking into account their innovativeness and farm characteristics. Results from this study will inform policy makers and stakeholders in the dairy industry on how to better design, target and deliver programs to improve and encourage farm innovation, and therefore improve farm productivity and the performance of the dairy industry in Indonesia.

Keywords: adoption, dairy, household survey, innovation index, Indonesia, multiple innovations dairy, West Java

Procedia PDF Downloads 336
104 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques

Authors: Tomas Trainys, Algimantas Venckauskas

Abstract:

Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.

Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.

Procedia PDF Downloads 150
103 The Impact of Neighborhood Effects on the Economic Mobility of the Inhabitants of Three Segregated Communities in Salvador (Brazil)

Authors: Stephan Treuke

Abstract:

The paper analyses the neighbourhood effects on the economic mobility of the inhabitants of three segregated communities of Salvador (Brazil), in other words, the socio-economic advantages and disadvantages affecting the lives of poor people due to their embeddedness in specific socio-residential contexts. Recent studies performed in Brazilian metropolis have concentrated on the structural dimensions of negative externalities in order to explain neighbourhood-level variations in a field of different phenomena (delinquency, violence, access to the labour market and education) in spatial isolated and socially homogeneous slum areas (favelas). However, major disagreement remains whether the contiguity between residents of poor neighbourhoods and higher-class condominio-dwellers provides structures of opportunities or whether it fosters socio-spatial stigmatization. Based on a set of interviews, investigating the variability of interpersonal networks and their activation in the struggle for economic inclusion, the study confirms that the proximity of Nordeste de Amaralina to middle-/upper-class communities affects positively the access to labour opportunities. Nevertheless, residential stigmatization, as well as structures of social segmentation, annihilate these potentials. The lack of exposition to individuals and groups extrapolating from the favela’s social, educational and cultural context restricts the structures of opportunities to local level. Therefore, residents´ interpersonal networks reveal a high degree of redundancy and localism, based on bonding ties connecting family and neighbourhood members. The resilience of segregational structures in Plataforma contributes to the naturalization of social distance patters. It’s embeddedness in a socially homogeneous residential area (Subúrbio Ferroviário), growing informally and beyond official urban politics, encourages the construction of isotopic patterns of sociability, sharing the same values, social preferences, perspectives and behaviour models. Whereas it’s spatial isolation correlates with the scarcity of economic opportunities, the social heterogeneity of Fazenda Grande II interviewees and the socialising effects of public institutions mitigate the negative repercussions of segregation. The networks’ composition admits a higher degree of heterophilia and a greater proportion of bridging ties accounting for the access to broader information actives and facilitating economic mobility. The variability observed within the three different scenarios urges to reflect about the responsability of urban politics when it comes to the prevention or consolidation of the social segregation process in Salvador. Instead of promoting the local development of the favela Plataforma, public housing programs priorize technocratic habitational solutions without providing the residents’ socio-economic integration. The impact of negative externalities related to the homogeneously poor neighbourhood is potencialized in peripheral areas, turning its’ inhabitants socially invisible, thus being isolated from other social groups. The example of Nordeste de Amaralina portrays the failing interest of urban politics to bridge the social distances structuring the brazilian society’s rigid stratification model, founded on mecanisms of segmentation (unequal access to labour market and education system, public transport, social security and law protection) and generating permanent conflicts between the two socioeconomically distant groups living in geographic contiguity. Finally, in the case of Fazenda Grande II, the public investments in both housing projects and complementary infrastructure (e.g. schools, hospitals, community center, police stations, recreation areas) contributes to the residents’ socio-economic inclusion.

Keywords: economic mobility, neighborhood effects, Salvador, segregation

Procedia PDF Downloads 279
102 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents

Authors: Subir Gupta, Subhas Ganguly

Abstract:

In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.

Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure

Procedia PDF Downloads 199
101 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: computer-aided system, detection, image segmentation, morphology

Procedia PDF Downloads 150
100 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory

Authors: Xu Jiaqiao

Abstract:

Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.

Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments

Procedia PDF Downloads 94
99 A Process of Forming a Single Competitive Factor in the Digital Camera Industry

Authors: Kiyohiro Yamazaki

Abstract:

This paper considers a forming process of a single competitive factor in the digital camera industry from the viewpoint of product platform. To make product development easier for companies and to increase product introduction ratios, development efforts concentrate on improving and strengthening certain product attributes, and it is born in the process that the product platform is formed continuously. It is pointed out that the formation of this product platform raises product development efficiency of individual companies, but on the other hand, it has a trade-off relationship of causing unification of competitive factors in the whole industry. This research tries to analyze product specification data which were collected from the web page of digital camera companies. Specifically, this research collected all product specification data released in Japan from 1995 to 2003 and analyzed the composition of image sensor and optical lens; and it identified product platforms shared by multiple products and discussed their application. As a result, this research found that the product platformation was born in the development of the standard product for major market segmentation. Every major company has made product platforms of image sensors and optical lenses, and as a result, this research found that the competitive factors were unified in the entire industry throughout product platformation. In other words, this product platformation brought product development efficiency of individual firms; however, it also caused industrial competition factors to be unified in the industry.

Keywords: digital camera industry, product evolution trajectory, product platform, unification of competitive factors

Procedia PDF Downloads 158
98 Recognising and Managing Haematoma Following Thyroid Surgery: Simulation Teaching is Effective

Authors: Emily Moore, Dora Amos, Tracy Ellimah, Natasha Parrott

Abstract:

Postoperative haematoma is a well-recognised complication of thyroid surgery with an incidence of 1-5%. Haematoma formation causes progressive airway obstruction, necessitating emergency bedside haematoma evacuation in up to ¼ of patients. ENT UK, BAETS and DAS have developed consensus guidelines to improve perioperative care, recommending that all healthcare staff interacting with patients undergoing thyroid surgery should be trained in managing post-thyroidectomy haematoma. The aim was to assess the effectiveness of a hybrid simulation model in improving clinician’s confidence in dealing with this surgical emergency. A hybrid simulation was designed, consisting of a standardised patient wearing a part-task trainer to mimic a post-thyroidectomy haematoma in a real patient. The part-task trainer was an adapted C-spine collar with layers of silicone representing the skin and strap muscles and thickened jelly representing the haematoma. Both the skin and strap muscle layers had to be opened in order to evacuate the haematoma. Boxes have been implemented into the appropriate post operative areas (recovery and surgical wards), which contain a printed algorithm designed to assist in remembering a sequence of steps for haematoma evacuation using the ‘SCOOP’ method (skin exposure, cut sutures, open skin, open muscles, pack wound) along with all the necessary equipment to open the front of the neck. Small-group teaching sessions were delivered by ENT and anaesthetic trainees to members of the multidisciplinary team normally involved in perioperative patient care, which included ENT surgeons, anaesthetists, recovery nurses, HCAs and ODPs. The DESATS acronym of signs and symptoms to recognise (difficulty swallowing, EWS score, swelling, anxiety, tachycardia, stridor) was highlighted. Then participants took part in the hybrid simulation in order to practice this ‘SCOOP’ method of haematoma evacuation. Participants were surveyed using a Likert scale to assess their level of confidence pre- and post teaching session. 30 clinicians took part. Confidence (agreed/strongly agreed) in recognition of post thyroidectomy haematoma improved from 58.6% to 96.5%. Confidence in management improved from 27.5% to 89.7%. All participants successfully decompressed the haematoma. All participants agreed/strongly agreed, that the sessions were useful for their learning. Multidisciplinary team simulation teaching is effective at significantly improving confidence in both the recognition and management of postoperative haematoma. Hybrid simulation sessions are useful and should be incorporated into training for clinicians.

Keywords: thyroid surgery, haematoma, teaching, hybrid simulation

Procedia PDF Downloads 96
97 Classifier for Liver Ultrasound Images

Authors: Soumya Sajjan

Abstract:

Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.

Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix

Procedia PDF Downloads 411
96 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model

Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou

Abstract:

The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.

Keywords: insurance, data science, modeling, monitoring, regulation, processes

Procedia PDF Downloads 76
95 Hypoglossal Nerve Stimulation (Baseline vs. 12 months) for Obstructive Sleep Apnea: A Meta-Analysis

Authors: Yasmeen Jamal Alabdallat, Almutazballlah Bassam Qablan, Hamza Al-Salhi, Salameh Alarood, Ibraheem Alkhawaldeh, Obada Abunar, Adam Abdallah

Abstract:

Obstructive sleep apnea (OSA) is a disorder caused by the repeated collapse of the upper airway during sleep. It is the most common cause of sleep-related breathing disorder, as OSA can cause loud snoring, daytime fatigue, or more severe problems such as high blood pressure, cardiovascular disease, coronary artery disease, insulin-resistant diabetes, and depression. The hypoglossal nerve stimulator (HNS) is an implantable medical device that reduces the occurrence of obstructive sleep apnea by electrically stimulating the hypoglossal nerve in rhythm with the patient's breathing, causing the tongue to move. This stimulation helps keep the patient's airways clear while they sleep. This systematic review and meta-analysis aimed to assess the clinical outcome of hypoglossal nerve stimulation as a treatment of obstructive sleep apnea. A computer literature search of PubMed, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials was conducted from inception until August 2022. Studies assessing the following clinical outcomes (Apnea-Hypopnea Index (AHI), Epworth Sleepiness Scale (ESS), Functional Outcomes of Sleep Questionnaire (FOSQ), Oxygen Desaturation Indices (ODI), (Oxygen Saturation (SaO2)) were pooled in the meta-analysis using Review Manager Software. We assessed the quality of studies according to the Cochrane risk-of-bias tool for randomized trials (RoB2), Risk of Bias In Non-randomized Studies - of Interventions (ROBINS-I), and a modified version of NOS for the non-comparative cohort studies.13 Studies (Six Clinical Trials and Seven prospective cohort studies) with a total of 817 patients were included in the meta-analysis. The results of AHI were reported in 11 studies examining OSA 696 patients. We found that there was a significant improvement in the AHI after 12 months of HNS (MD = 18.2 with 95% CI, (16.7 to 19.7; I2 = 0%); P < 0.00001). Further, 12 studies reported the results of ESS after 12 months of intervention with a significant improvement in the range of sleepiness among the examined 757 OSA patients (MD = 5.3 with 95% CI, (4.75 to 5.86; I2 = 65%); P < 0.0001). Moreover, nine studies involving 699 participants reported the results of FOSQ after 12 months of HNS with a significant reported improvement (MD = -3.09 with 95% CI, (-3.41 to 2.77; I2 = 0%); P < 0.00001). In addition, ten studies reported the results of ODI with a significant improvement after 12 months of HNS among the 817 examined patients (MD = 14.8 with 95% CI, (13.25 to 16.32; I2 = 0%); P < 000001). The Hypoglossal Nerve Stimulation showed a significant positive impact on obstructive sleep apnea patients after 12 months of therapy in terms of apnea-hypopnea index, oxygen desaturation indices, manifestations of the behavioral morbidity associated with obstructive sleep apnea, and functional status resulting from sleepiness.

Keywords: apnea, meta-analysis, hypoglossal, stimulation

Procedia PDF Downloads 115
94 Study of Growth Patterns of the Built-Up Area in Tourism Destinations in Relation to Sustainable Development

Authors: Tagore Sai Priya Nunna, Ankhi Banerjee

Abstract:

The rapid growth of the tourism industry in India in the last few years after the economic crisis in 2009 has been one of the significant causes that led to the Land Use Land Cover change (LULC) of most tourism destinations. The tourist regions are subjected to significant increase in built-up due to increased construction activities for developing accommodation facilities further boosting tourism demand. This research attempts to analyse the changing LULC and the growth pattern of the built-up area within tourist destinations. Four popular tourist destinations, which promises various types of tourism activity and which are significantly dependent on tourism for economic growth, are selected for the study. The study uses remotely sensed data for analysis of land use change through supervised segmentation into five broad classes. Further, the landuse map is reclassified into binary classes to extract the built-up area. The growth patterns of the built-up are analysed in terms of size, shape, direction and form of growth, through a set of spatial metrics. Additionally, a detailed analysis of the existing development pattern corresponding to planned development zones was performed to identify unplanned growth spots in the study regions. The findings of the study provide insights into how tourism has contributed to significant changes in LULC around tourist sites. Also, the study highlights the growth pattern of built-up areas with respect to the type of tourism activity and geographical characteristics. The research attempts to address the need of integrating spatial metrics for the development of sustainable tourism plans as part of the goals of sustainable development.

Keywords: built-up, growth, patterns, tourism, sustainable

Procedia PDF Downloads 115
93 How Digital Empowerment Affects Dissolution of Segmentation Effect and Construction of Opinion Leaders in Isolated Communities: Ethnographic Investigation of Leprosy Rehabilitation Groups

Authors: Lin Zhang

Abstract:

The fear of leprosy has been longstanding throughout the human history. In an era where isolation is practiced as a means of epidemic prevention, the leprosy rehabilitation group has itself become an isolated community with an entrenched metaphor. In the process of new mediatization of the leprosy isolation community, what are the relations among media literacy, the leprosy internalized stigma and social support? To address the question, the “portrait” of leprosy rehabilitation group is re-delineated through two field studies in the “post-leprosy age” in 2012 and 2020, respectively. Taking an isolation community on Si’an Leprosy Island in Dongguan City, Guangdong Province, China as the study object, it is found that new media promotes the dissolution of segregation effect of the leprosy isolation community and the cultivation of opinion leaders by breaking spatial, psychological and social segregation and by building a community of village affairs and public space in the following way: the cured patients with high new media literacy, especially those who use WeChat and other applications and largely rely on new media for information, have a low level of leprosy internalized stigma and a high level of social support, and they are often the opinion leaders inside their community; on the contrary, the cured patients with low new media literacy, a high level of leprosy internalized stigma and a low level of social support are often the followers inside their community. Such effects of dissolution and construction are reflected not only in the vertical differentiation of the same individual at different times, but also in the horizontal differentiation between different individuals at the same time.

Keywords: segregation, the leprosy rehabilitation group, new mediatization, digital empowerment, opinion leaders

Procedia PDF Downloads 177
92 Characterization of Main Phenolic Compounds in Eleusine indica L. (Poaceae) by HPLC-DAD and 1H NMR

Authors: E. M. Condori-Peñaloza, S. S. Costa

Abstract:

Eleusine indica L, known as goose-grass, is considered a troublesome weed that can cause important economic losses in the agriculture worldwide. However, this grass is used as a medicinal plant in some regions of Brazil to treat influenza and pneumonia. In Africa and Asia, it is used to treat malaria and as diuretic, anti-helminthic, among other uses. Despite its therapeutic potential, little is known about the chemical composition and bioactive compounds of E. indica. Hitherto, two major flavonoids, schaftoside and vitexin, were isolated from aerial part of the species and showed inhibitory activity on lung neutrophil influxes in mice, suggesting a beneficial effect on airway inflammation. Therefore, the aim of this study was to analyze the chemical profile of aqueous extracts from aerial parts of Eleusine indica specimens using high performance liquid chromatography (HPLC-DAD) and 1H nuclear magnetic resonance spectroscopy (NMR), with emphasis on phenolic compounds. Specimens of E. indica were collected in Minas Gerais state, Brazil. Aerial parts of fresh plants were extracted by decoction (10% p/v). After spontaneous precipitation of the aqueous extract at 10-12°C for 24 hours, the supernatant obtained was frozen and lyophilized. After that, 1 g of the extract was dissolved into 25 mL of water and fractionated on a reverse phase chromatography column (RP-2), eluted with a gradient of H2O/EtOH. Five fractions were obtained. The extract and fractions had their chemical profile analyzed by using HPLC-DAD (C-18 column: 20 μL, 256 -365 nm; gradient water 0.01% phosphoric acid/ acetonitrile. The extract was also analyzed by NMR (1H, 500 MHz, D2O) in order to access its global chemical composition. HPLC-DAD analyses of crude extract allowed the identification of ten phenolic compounds. Fraction 1, eluted with 100% water, was poor in phenolic compounds and no major peak was detected. In fraction 2, eluted with 100% water, it was possible to observe one major peak at retention time (RT) of 23.75 minutes compatible with flavonoid; fraction 3, also eluted with 100% water, showed four peaks at RT= 21.47, 23.52, 24.33 and 25.84 minutes, all of them compatible with flavonoid. In fraction 4, eluted with 50%/ethanol/50% water, it was possible to observe 3 peaks compatible with flavonoids at RT=24.65, 26.81, 27.49 minutes, and one peak (28.83 min) compatible with a phenolic acid derivative. Finally, in fraction 5, eluted with 100% ethanol, no phenolic substance was detected. The UV spectra of all flavonoids detected were compatible with the flavone subclass (λ= 320-345 nm). The 1H NMR spectra of aerial parts extract showed signals in three regions: δ 0.8-3.0 ppm (aliphatic compounds), δ 3.0-5.5 ppm corresponding to carbohydrates (signals most abundant and overlapped), and δ 6.0-8.5 ppm (aromatic compounds). Signals compatible with flavonoids (rings A and B) could also be detected in the crude extract spectra. These results suggest the presence of several flavonoids in E. indica, which reinforces their therapeutic potential. The pharmacological activities of Eleusine indica extracts and fractions will be further evaluated.

Keywords: flavonoids, HPLC, NMR, phenolic compounds

Procedia PDF Downloads 318
91 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 71
90 The Automatic Transliteration Model of Images of the Book Hamong Tani Using Statistical Approach

Authors: Agustinus Rudatyo Himamunanto, Anastasia Rita Widiarti

Abstract:

Transliteration using Javanese manuscripts is one of methods to preserve and legate the wealth of literature in the past for the present generation in Indonesia. The transliteration manual process commonly requires philologists and takes a relatively long time. The automatic transliteration process is expected to shorten the time so as to help the works of philologists. The preprocessing and segmentation stage firstly done is used to manage the document images, thus obtaining image script units that will compile input document images free from noise and have the similarity in properties in the thickness, size, and slope. The next stage of characteristic extraction is used to find unique characteristics that will distinguish each Javanese script image. One of characteristics that is used in this research is the number of black pixels in each image units. Each image of Java scripts contained in the data training will undergo the same process similar to the input characters. The system testing was performed with the data of the book Hamong Tani. The book Hamong Tani was selected due to its content, age and number of pages. Those were considered sufficient as a model experimental input. Based on the results of random page automatic transliteration process testing, it was determined that the maximum percentage correctness obtained was 81.53%. The percentage of success was obtained in 32x32 pixel input image size with the 5x5 image window. With regard to the results, it can be concluded that the automatic transliteration model offered is relatively good.

Keywords: Javanese script, character recognition, statistical, automatic transliteration

Procedia PDF Downloads 339
89 Implementation of Modern Information Technologies in Business to Customer Marketing Activity and the Implementation of Pro-Environmental Goals of Enterprises

Authors: M. Łęgowik-Małolepsza

Abstract:

The article discusses the problem related to the use of modern information technologies to achieve pro-environmental marketing goals in business-to-customer (B2C) relationships. The topic is important and topical due to the strong social need to implement the concept of sustainable development. The aim of the article is to understand and evaluate the possibilities of implementing modern information technologies, such as Customer Relationship Management platforms (CRM), in the area of implementing marketing activities of companies operating in the Business to Customer model. In B2C relations, marketing departments struggle with problems resulting from the need for quick customer segmentation and the fragmentation of data existing in many systems, which significantly hinders the achievement of the assumed marketing goals. Therefore, the article proposes the use of modern information technology solutions in the area of marketing activities of enterprises, taking into account their pro-environmental goals. The most important results of the research carried out include an in-depth understanding of the possibilities of implementing modern information technologies to achieve marketing goals in B2C relationships. Moreover, a better understanding of the coexistence of opportunities and threats related to the implementation of marketing activities, taking into account pro-environmental goals and modern technologies, allows for more effective implementation of sustainable development management in enterprises. The methods used to achieve the goal are literature studies, descriptive analysis, and case studies. The study contributes to the discussion on the scope of application of modern information technologies in the area of B2C marketing activity, taking into account the implementation of pro-environmental goals of enterprises.

Keywords: B2C marketing activity, implementation of technologies, modern information technologies, pro-environmental activities

Procedia PDF Downloads 104
88 IoT and Deep Learning approach for Growth Stage Segregation and Harvest Time Prediction of Aquaponic and Vermiponic Swiss Chards

Authors: Praveen Chandramenon, Andrew Gascoyne, Fideline Tchuenbou-Magaia

Abstract:

Aquaponics offers a simple conclusive solution to the food and environmental crisis of the world. This approach combines the idea of Aquaculture (growing fish) to Hydroponics (growing vegetables and plants in a soilless method). Smart Aquaponics explores the use of smart technology including artificial intelligence and IoT, to assist farmers with better decision making and online monitoring and control of the system. Identification of different growth stages of Swiss Chard plants and predicting its harvest time is found to be important in Aquaponic yield management. This paper brings out the comparative analysis of a standard Aquaponics with a Vermiponics (Aquaponics with worms), which was grown in the controlled environment, by implementing IoT and deep learning-based growth stage segregation and harvest time prediction of Swiss Chards before and after applying an optimal freshwater replenishment. Data collection, Growth stage classification and Harvest Time prediction has been performed with and without water replenishment. The paper discusses the experimental design, IoT and sensor communication with architecture, data collection process, image segmentation, various regression and classification models and error estimation used in the project. The paper concludes with the results comparison, including best models that performs growth stage segregation and harvest time prediction of the Aquaponic and Vermiponic testbed with and without freshwater replenishment.

Keywords: aquaponics, deep learning, internet of things, vermiponics

Procedia PDF Downloads 71
87 House Facades and Emotions: Exploring the Psychological Impact of Architectural Features

Authors: Nour Tawil, Sandra Weber, Kirsten K. Roessler, Martin Mau, Simone Kuhn

Abstract:

The link between “quality” residential environments and human health and well-being has long been proposed. While the physical properties of a sound environment have been fairly defined, little focus has been given to the psychological impact of architectural elements. Recently, studies have investigated the response to architectural parameters, using measures of physiology, brain activity, and emotion. Results showed different aspects of interest: detailed and open versus blank and closed facades, patterns in perceiving different elements, and a visual bias for capturing faces in buildings. However, in the absence of a consensus on methodologies, the available studies remain unsystematic and face many limitations regarding the underpinning psychological mechanisms. To bridge some of these gaps, an online study was launched to investigate design features that influence the aesthetic judgement and emotional evaluation of house facades, using a well-controlled stimulus set of Canadian houses. A methodical modelling of design features will be performed to extract both high and low level image properties, in addition to segmentation of layout-related features. 300 participants from Canada, Denmark, and Germany will rate the images on twelve psychological dimensions representing appealing aspects of a house. Subjective ratings are expected to correlate with specific architectural elements while controlling for typicality and familiarity, and other individual differences. With the lack of relevant studies, this research aims to identify architectural elements of beneficial qualities that can inform design strategies for optimized residential spaces.

Keywords: architectural elements, emotions, psychological response, residential facades.

Procedia PDF Downloads 230
86 Women's Employment Issues in Georgia and Solutions Based on European Experience

Authors: N. Damenia, E. Kharaishvili, N. Sagareishvili, M. Saghareishvili

Abstract:

Women's Employment is one of the most important issues in the global economy. The article discusses the stated topic in Georgia, through historical content, Soviet experience, and modern perspectives. The paper discusses segmentation insa terms of employment and related problems. Based on statistical analysis, women's unemployment rate and its factors are analyzed. The level of employment of women in Transcaucasia (Georgia, Armenia, and Azerbaijan) is discussed and is compared with Baltic countries (Lithuania, Latvia, and Estonia). The study analyzes women’s level of development, according to the average age of marriage and migration level. The focus is on Georgia's Association Agreement with the EU in 2014, which includes economic, social, trade and political issues. One part of it is gender equality at workplaces. According to the research, the average monthly remuneration of women managers in the financial and insurance sector equaled to 1044.6 Georgian Lari, while in overall business sector average monthly remuneration equaled to 961.1 GEL. Average salaries are increasing; however, the employment rate remains problematic. For example, in 2017, 74.6% of men and 50.8% of women were employed from a total workforce. It is also interesting that the proportion of men and women at managerial positions is 29% (women) to 71% (men). Based on the results, the main recommendation for government and civil society is to consider women as a part of the country’s economic development. In this aspect, the experience of developed countries should be considered. It is important to create additional jobs in urban or rural areas and help migrant women return and use their working resources properly.

Keywords: employment of women, segregation in terms of employment, women's employment level in Transcaucasia, migration level

Procedia PDF Downloads 116
85 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot

Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan

Abstract:

Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.

Keywords: ADAS, home zone parking pilot, object detection, visual SLAM

Procedia PDF Downloads 67
84 Subcutan Isosulfan Blue Administration May Interfere with Pulse Oximetry

Authors: Esra Yuksel, Dilek Duman, Levent Yeniay, Sezgin Ulukaya

Abstract:

Sentinel lymph node biopsy (SLNB) is a minimal invasive technique with lower morbidity in axillary staging of breast cancer. Isosulfan blue stain is frequently used in SLNB and regarded as safe. The present case report aimed to report severe decrement in SpO2 following isosulfan blue administration, as well as skin and urine signs and inconsistency with clinical picture in a 67-year-old ,77 kg, ASA II female case that underwent SLNB under general anesthesia. Ten minutes after subcutaneous administration of 10 ml 1% isosulfan blue by the surgeons into the patient, who were hemodynamically stable, SpO2 first reduced to 87% from 99%, and then to 75% in minutes despite 100% oxygen support. Meanwhile, blood pressure and EtCO2 monitoring was unremarkable. After specifying that anesthesia device worked normally, airway pressure did not increase and the endotracheal tube has been placed accurately, the blood sample was taken from the patient for arterial gas analysis. A severe increase was thought in MetHb concentration since SpO2 persisted to be 75% although the concentration of inspired oxygen was 100%, and solution of 2500 mg ascorbic acid in 500 ml 5% Dextrose was given to the patient via intravenous route until the results of arterial blood gas were obtained. However, arterial blood gas results were as follows: pH: 7.54, PaCO2: 23.3 mmHg, PaO2: 281 mmHg, SaO2: %99, and MetHb: %2.7. Biochemical analysis revealed a blood MetHb concentration of 2%.However, since arterial blood gas parameters were good, hemodynamics of the patient was stable and methemoglobin concentration was not so high, the patient was extubated after surgery when she was relaxed, cooperated and had adequate respiration. Despite the absence of respiratory or neurological distress, SpO2 value was increased only up to 85% within 2 hours with 5 L/min oxygen support via face mask in the surgery room as the patient was extubated. At that time, the skin of particularly the upper part of her body has turned into blue, more remarkable on the face. The color of plasma of the blood taken from the patient for biochemical analysis was blue. The color of urine coming throughout the urinary catheter placed in intensive care unit was also blue. Twelve hours after 5 L/min. oxygen inhalation via a mask, the SpO2 reached to 90%. During monitoring in intensive care unit on the postoperative 1st day, facial color and urine color of the patient was still blue, SpO2 was 92%, and arterial blood gas levels were as follows: pH: 7.44, PaO2: 76.1 mmHg, PaCO2: 38.2 mmHg, SaO2: 99%, and MetHb 1%. During monitoring in clinic on the postoperative 2nd day, SpO2 was 95% without oxygen support and her facial and urine color turned into normal. The patient was discharged on the 3rd day without any problem.In conclusion, SLNB is a less invasive alternative to axillary dissection. However, false pulse oximeter reading due to pigment interference is a rare complication of this procedure. Arterial blood gas analysis should be used to confirm any fall in SpO2 reading during monitoring.

Keywords: isosulfan blue, pulse oximetry, SLNB, methemoglobinemia

Procedia PDF Downloads 315
83 The Impact of Culture on Tourists’ Evaluation of Hotel Service Experiences

Authors: Eid Alotaibi

Abstract:

The purpose of this study is to investigate the impact of tourists’ culture on perception and evaluation of hotel service experience and behavioral intentions. Drawing on Hofested’s cultural dimensions, this study seeks to further contribute towards understanding the effect of culture on perception and evaluation of hotels’ services, and whether there are differences between Saudi and European tourists’ perceptions of hotel services evaluation. A descriptive cross-sectional design was used in this study. Data were collected from tourists staying in five-star hotels in Saudi Arabia using the self-completion technique. The findings show that evaluations of hotel services differ from one culture to another. T-test results reveal that Saudis were more tolerant and reported significantly higher levels of satisfaction, were more likely to return and recommend the hotel, and perceived the price for the hotel stay as being good value for money as compared to their European counterparts. The sample was relatively small and specific to only five-star hotel evaluations. As a result, findings cannot be generalized to the wider tourist population. The results of this research have important implications for management within the Saudi hospitality industry. The study contributes to the tourist cultural theory by emphasizing the relative importance of cultural dimensions in-service evaluation. The author argues that no studies could be identified that compare Saudis and Europeans in their evaluations of their experiences staying at hotels. Therefore, the current study would enhance understanding of the effects of cultural factors on service evaluations and provide valuable input for international market segmentation and resource allocation in the Saudi hotel industry.

Keywords: culture, tourist, service experience, hotel industry, Hofested’s cultural dimensions

Procedia PDF Downloads 118
82 Perception of Public Transport Quality of Service among Regular Private Vehicle Users in Five European Cities

Authors: Juan de Ona, Esperanza Estevez, Rocío de Ona

Abstract:

Urban traffic levels can be reduced by drawing travelers away from private vehicles over to using public transport. This modal change can be achieved by either introducing restrictions on private vehicles or by introducing measures which increase people’s satisfaction with public transport. For public transport users, quality of service affects customer satisfaction, which, in turn, influences the behavioral intentions towards the service. This paper intends to identify the main attributes which influence the perception private vehicle users have about the public transport services provided in five European cities: Berlin, Lisbon, London, Madrid and Rome. Ordinal logit models have been applied to an online panel survey with a sample size of 2,500 regular private vehicle users (approximately 500 inhabitants per city). To achieve a comprehensive analysis and to deal with heterogeneity in perceptions, 15 models have been developed for the entire sample and 14 user segments. The results show differences between the cities and among the segments. Madrid was taken as reference city and results indicate that the inhabitants are satisfied with public transport in Madrid and that the most important public transport service attributes for private vehicle users are frequency, speed and intermodality. Frequency is an important attribute for all the segments, while speed and intermodality are important for most of the segments. An analysis by segments has identified attributes which, although not important in most cases, are relevant for specific segments. This study also points out important differences between the five cities. Findings from this study can be used to develop policies and recommendations for persuading.

Keywords: service quality, satisfaction, public transportation, private vehicle users, car users, segmentation, ordered logit

Procedia PDF Downloads 117
81 Biomechanical Performance of the Synovial Capsule of the Glenohumeral Joint with a BANKART Lesion through Finite Element Analysis

Authors: Duvert A. Puentes T., Javier A. Maldonado E., Ivan Quintero., Diego F. Villegas

Abstract:

Mechanical Computation is a great tool to study the performance of complex models. An example of it is the study of the human body structure. This paper took advantage of different types of software to make a 3D model of the glenohumeral joint and apply a finite element analysis. The main objective was to study the change in the biomechanical properties of the joint when it presents an injury. Specifically, a BANKART lesion, which consists in the detachment of the anteroinferior labrum from the glenoid. Stress and strain distribution of the soft tissues were the focus of this study. First, a 3D model was made of a joint without any pathology, as a control sample, using segmentation software for the bones with the support of medical imagery and a cadaveric model to represent the soft tissue. The joint was built to simulate a compression and external rotation test using CAD to prepare the model in the adequate position. When the healthy model was finished, it was submitted to a finite element analysis and the results were validated with experimental model data. With the validated model, it was sensitized to obtain the best mesh measurement. Finally, the geometry of the 3D model was changed to imitate a BANKART lesion. Then, the contact zone of the glenoid with the labrum was slightly separated simulating a tissue detachment. With this new geometry, the finite element analysis was applied again, and the results were compared with the control sample created initially. With the data gathered, this study can be used to improve understanding of the labrum tears. Nevertheless, it is important to remember that the computational analysis are approximations and the initial data was taken from an in vitro assay.

Keywords: biomechanics, computational model, finite elements, glenohumeral joint, bankart lesion, labrum

Procedia PDF Downloads 161
80 Defect Correlation of Computed Tomography and Serial Sectioning in Additively Manufactured Ti-6Al-4V

Authors: Bryce R. Jolley, Michael Uchic

Abstract:

This study presents initial results toward the correlative characterization of inherent defects of Ti-6Al-4V additive manufacture (AM). X-Ray Computed Tomography (CT) defect data are compared and correlated with microscopic photographs obtained via automated serial sectioning. The metal AM specimen was manufactured out of Ti-6Al-4V virgin powder to specified dimensions. A post-contour was applied during the fabrication process with a speed of 1050 mm/s, power of 260 W, and a width of 140 µm. The specimen was stress relief heat-treated at 16°F for 3 hours. Microfocus CT imaging was accomplished on the specimen within a predetermined region of the build. Microfocus CT imaging was conducted with parameters optimized for Ti-6Al-4V additive manufacture. After CT imaging, a modified RoboMet. 3D version 2 was employed for serial sectioning and optical microscopy characterization of the same predetermined region. Automated montage capture with sub-micron resolution, bright-field reflection, 12-bit monochrome optical images were performed in an automated fashion. These optical images were post-processed to produce 2D and 3D data sets. This processing included thresholding and segmentation to improve visualization of defect features. The defects observed from optical imaging were compared and correlated with the defects observed from CT imaging over the same predetermined region of the specimen. Quantitative results of area fraction and equivalent pore diameters obtained via each method are presented for this correlation. It is shown that Microfocus CT imaging does not capture all inherent defects within this Ti-6Al-4V AM sample. Best practices for this correlative effort are also presented as well as the future direction of research resultant from this current study.

Keywords: additive manufacture, automated serial sectioning, computed tomography, nondestructive evaluation

Procedia PDF Downloads 141
79 Neural Network Approach For Clustering Host Community: Based on Perceptions Toward Tourism, Their Satisfaction Level and Demographic Attributes in Iran (Lahijan)

Authors: Nasibeh Mohammadpour, Ali Rajabzadeh, Adel Azar, Hamid Zargham Borujeni,

Abstract:

Generally, various industries development depends on their stakeholders and beneficiaries supports. One of the most important stakeholders in tourism industry ( which has become one of the most important lucrative and employment-generating activities at the international level these days) are host communities in tourist destination which are affected and effect on this industry development. Recognizing host community and its segmentations can be important to get their support for future decisions and policy making. In order to identify these segments, in this study, clustering of the residents has been done by using some tools that are designed to encounter human complexities and have ability to model and generalize complex systems without any needs for the initial clusters’ seeds like classic methods. Neural networks can help to meet these expectations. The research have been planned to design neural networks-based mathematical model for clustering the host community effectively according to multi criteria, and identifies differences among segments. In order to achieve this goal, the residents’ segmentation has been done by demographic characteristics, their attitude towards the tourism development, the level of satisfaction and the type of their support in this field. The applied method is self-organized neural networks and the results have compared with K-means. As the results show, the use of Self- Organized Map (SOM) method provides much better results by considering the Cophenetic correlation and between clusters variance coefficients. Based on these criteria, the host community is divided into five sections with unique and distinctive features, which are in the best condition (in comparison other modes) according to Cophenetic correlation coefficient of 0.8769 and between clusters variance of 0.1412.

Keywords: Artificial Nural Network, Clustering , Resident, SOM, Tourism

Procedia PDF Downloads 183
78 Monitoring of Cannabis Cultivation with High-Resolution Images

Authors: Levent Basayigit, Sinan Demir, Burhan Kara, Yusuf Ucar

Abstract:

Cannabis is mostly used for drug production. In some countries, an excessive amount of illegal cannabis is cultivated and sold. Most of the illegal cannabis cultivation occurs on the lands far from settlements. In farmlands, it is cultivated with other crops. In this method, cannabis is surrounded by tall plants like corn and sunflower. It is also cultivated with tall crops as the mixed culture. The common method of the determination of the illegal cultivation areas is to investigate the information obtained from people. This method is not sufficient for the determination of illegal cultivation in remote areas. For this reason, more effective methods are needed for the determination of illegal cultivation. Remote Sensing is one of the most important technologies to monitor the plant growth on the land. The aim of this study is to monitor cannabis cultivation area using satellite imagery. The main purpose of this study was to develop an applicable method for monitoring the cannabis cultivation. For this purpose, cannabis was grown as single or surrounded by the corn and sunflower in plots. The morphological characteristics of cannabis were recorded two times per month during the vegetation period. The spectral signature library was created with the spectroradiometer. The parcels were monitored with high-resolution satellite imagery. With the processing of satellite imagery, the cultivation areas of cannabis were classified. To separate the Cannabis plots from the other plants, the multiresolution segmentation algorithm was found to be the most successful for classification. WorldView Improved Vegetative Index (WV-VI) classification was the most accurate method for monitoring the plant density. As a result, an object-based classification method and vegetation indices were sufficient for monitoring the cannabis cultivation in multi-temporal Earthwiev images.

Keywords: Cannabis, drug, remote sensing, object-based classification

Procedia PDF Downloads 272