Search results for: Jun Long
5654 Revisiting the Impact of Oil Price on Trade Deficit of Pakistan: Evidence from Nonlinear Auto-Regressive Distributed Lag Model and Asymmetric Multipliers
Authors: Qaiser Munir, Hamid Hussain
Abstract:
Oil prices are believed to have a major impact on several economic indicators, leading to several instances where a comparison between oil prices and a trade deficit of oil-importing countries have been carried out. Building upon the narrative, this paper sheds light on the ongoing debate by inquiring upon the possibility of asymmetric linkages between oil prices, industrial production, exchange rate, whole price index, and trade deficit. The analytical tool used to further understand the complexities of a recent approach called nonlinear auto-regressive distributed lag model (NARDL) is utilised. Our results suggest that there are significant asymmetric effects among the main variables of interest. Further, our findings indicate that any variation in oil prices, industrial production, exchange rate, and whole price index on trade deficit tend to fluctuate in the long run. Moreover, the long-run picture denotes that increased oil price leads to a negative impact on the trade deficit, which, in its true essence, is a disproportionate impact. In addition to this, the Wald test simultaneously conducted concludes the absence of any significant evidence of the asymmetry in the oil prices impact on the trade balance in the short-run.Keywords: trade deficit, oil prices, developing economy, NARDL
Procedia PDF Downloads 1335653 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 1365652 Managing Truck Drivers’ Fatigue: A Critical Review of the Literature and Recommended Remedies
Authors: Mozhgan Aliakbari, Sara Moridpour
Abstract:
In recent years, much attention has been given to truck drivers’ fatigue management. Long working hours negatively influence truck drivers’ physiology, health, and safety. However, there is little empirical research in the heavy vehicle transport sector in Australia to identify the influence of working hours’ management on drivers’ fatigue and consequently, on the risk of crashes and injuries. There is no national legislation regulating the number of hours or kilometres travelled by truck drivers. Consequently, it is almost impossible to define a standard number of hours or kilometres for truck drivers in a safety management system. This paper reviews the existing studies concerning safe system interventions such as tachographs in relation to fatigue caused by long working hours. This paper also reviews the literature to identify the influence of frequency of rest breaks on the reduction of work-related road transport accidents involving trucks. A framework is presented to manage truck drivers’ fatigue, which may result in the reduction of injuries and fatalities involving heavy vehicles.Keywords: fatigue, time management, trucks, traffic safety
Procedia PDF Downloads 2885651 Long Term Evolution Multiple-Input Multiple-Output Network in Unmanned Air Vehicles Platform
Authors: Ashagrie Getnet Flattie
Abstract:
Line-of-sight (LOS) information, data rates, good quality, and flexible network service are limited by the fact that, for the duration of any given connection, they experience severe variation in signal strength due to fading and path loss. Wireless system faces major challenges in achieving wide coverage and capacity without affecting the system performance and to access data everywhere, all the time. In this paper, the cell coverage and edge rate of different Multiple-input multiple-output (MIMO) schemes in 20 MHz Long Term Evolution (LTE) system under Unmanned Air Vehicles (UAV) platform are investigated. After some background on the enormous potential of UAV, MIMO, and LTE in wireless links, the paper highlights the presented system model which attempts to realize the various benefits of MIMO being incorporated into UAV platform. The performances of the three MIMO LTE schemes are compared with the performance of 4x4 MIMO LTE in UAV scheme carried out to evaluate the improvement in cell radius, BER, and data throughput of the system in different morphology. The results show that significant performance gains such as bit error rate (BER), data rate, and coverage can be achieved by using the presented scenario.Keywords: LTE, MIMO, path loss, UAV
Procedia PDF Downloads 2795650 Social and Cognitive Stress Impact on Neuroscience and PTSD
Authors: Sadra Abbasi
Abstract:
The complex connection between psychological stress and the onset of different diseases has been an ongoing issue in the mental health field for a long time. Multiple studies have demonstrated that long-term stress can greatly heighten the likelihood of developing health issues like heart disease, cancer, arthritis, and severe depression. Recent research in cognitive science has provided insight into the intricate processes involved in posttraumatic stress disorder (PTSD), suggesting that distinct memory systems are accountable for both vivid reliving and normal autobiographical memories of traumatic incidents, as proposed by dual representation theory. This theory has important consequences for our comprehension of the neural mechanisms involved in fear and behavior related to threats, highlighting the amygdala-hippocampus-medial prefrontal cortex circuit as a crucial component in this process. This particular circuit, extensively researched in behavioral neuroscience, is essential for regulating the body's reactions to stress and trauma. This review will examine how incorporating a modern neuroscience viewpoint into an integrative case formulation offers a current way to comprehend the intricate connections among psychological stress, trauma, and disease.Keywords: social, cognitive, stress, neuroscience, behavior, PTSD
Procedia PDF Downloads 365649 Multi-Dimensional (Quantatative and Qualatative) Longitudinal Research Methods for Biomedical Research of Post-COVID-19 (“Long Covid”) Symptoms
Authors: Steven G. Sclan
Abstract:
Background: Since December 2019, the world has been afflicted by the spread of the Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), which is responsible for the condition referred to as Covid-19. The illness has had a cataclysmic impact on the political, social, economic, and overall well-being of the population of the entire globe. While Covid-19 has had a substantial universal fatality impact, it may have an even greater effect on the socioeconomic, medical well-being, and healthcare planning for remaining societies. Significance: As these numbers illustrate, many more persons survive the infection than die from it, and many of those patients have noted ongoing, persistent symptoms after successfully enduring the acute phase of the illness. Recognition and understanding of these symptoms are crucial for developing and arranging efficacious models of care for all patients (whether or not having been hospitalized) surviving acute covid illness and plagued by post-acute symptoms. Furthermore, regarding Covid infection in children (< 18 y/o), although it may be that Covid “+” children are not major vectors of infective transmission, it now appears that many more children than initially thought are carrying the virus without accompanying obvious symptomatic expression. It seems reasonable to wonder whether viral effects occur in children – those children who are Covid “+” and now asymptomatic – and if, over time, they might also experience similar symptoms. An even more significant question is whether Covid “+” asymptomatic children might manifest increased multiple health problems as they grow – i.e., developmental complications (e.g., physical/medical, metabolic, neurobehavioral, etc.) – in comparison to children who had been consistently Covid “ - ” during the pandemic. Topics Addressed and Theoretical Importance: This review is important because of the description of both quantitative and qualitative methods for clinical and biomedical research. Topics reviewed will consider the importance of well-designed, comprehensive (i.e., quantitative and qualitative methods) longitudinal studies of Post Covid-19 symptoms in both adults and children. Also reviewed will be general characteristics of longitudinal studies and a presentation of a model for a proposed study. Also discussed will be the benefit of longitudinal studies for the development of efficacious interventions and for the establishment of cogent, practical, and efficacious community healthcare service planning for post-acute covid patients. Conclusion: Results of multi-dimensional, longitudinal studies will have important theoretical implications. These studies will help to improve our understanding of the pathophysiology of long COVID and will aid in the identification of potential targets for treatment. Such studies can also provide valuable insights into the long-term impact of COVID-19 on public health and socioeconomics.Keywords: COVID-19, post-COVID-19, long COVID, longitudinal research, quantitative research, qualitative research
Procedia PDF Downloads 595648 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model
Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis
Abstract:
Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry
Procedia PDF Downloads 2255647 Characterization of Urban Ozone Pollution in Summer and Analysis of Influencing Factors
Authors: Gao Fangting
Abstract:
Ozone acts as an atmospheric shield, protecting organisms from ultraviolet radiation by absorbing it. Currently, a large amount of international environmental epidemiology has confirmed that short- and long-term exposure to ozone has significant effects on population health. Near-surface ozone, as a secondary pollutant in the atmosphere, not only negatively affects the production activities of living organisms but also damages ecosystems and affects climate change to some extent. In this paper, using the hour-by-hour ozone observations given by ground meteorological stations in four cities, namely Beijing, Kunming, Xining, and Guangzhou, from 2015 to 2017, the number of days of exceedance and the long-term change characteristics of ozone are analyzed by using the time series analysis method. On this basis, the effects of changes in meteorological conditions on ozone concentration were discussed in conjunction with the same period of meteorological data, and the similarities and differences of near-surface ozone in different cities were comparatively analyzed to establish a relevant quantitative model of near-surface ozone. This study found that ozone concentrations were highest during the summer months of the year, that ozone concentrations were strongly correlated with meteorological conditions, and that none of the four cities had ozone concentrations that reached the threshold for causing disease.Keywords: ozone, meteorological conditions, pollution, health
Procedia PDF Downloads 305646 An Ancient Rule for Constructing Dodecagonal Quasi-Periodic Formations
Authors: Rima A. Ajlouni
Abstract:
The discovery of quasi-periodic structures in material science is revealing an exciting new class of symmetries, which has never been explored before. Due to their unique structural and visual properties, these symmetries are drawing interest from many scientific and design disciplines. Especially, in art and architecture, these symmetries can provide a rich source of geometry for exploring new patterns, forms, systems, and structures. However, the structural systems of these complicated symmetries are still posing a perplexing challenge. While much of their local order has been explored, the global governing system is still unresolved. Understanding their unique global long-range order is essential to their generation and application. The recent discovery of dodecagonal quasi-periodic patterns in historical Islamic architecture is generating a renewed interest into understanding the mathematical principles of traditional Islamic geometry. Astonishingly, many centuries before its description in the modern science, ancient artists, by using the most primitive tools (a compass and a straight edge), were able to construct patterns with quasi-periodic formations. These ancient patterns can be found all over the ancient Islamic world, many of which exhibit formations with 5, 8, 10 and 12 quasi-periodic symmetries. Based on the examination of these historical patterns and derived from the generating principles of Islamic geometry, a global multi-level structural model is presented that is able to describe the global long-range order of dodecagonal quasi-periodic formations in Islamic Architecture. Furthermore, this method is used to construct new quasi-periodic tiling systems as well as generating their deflation and inflation rules. This method can be used as a general guiding principle for constructing infinite patches of dodecagon-based quasi-periodic formations, without the need for local strategies (tiling, matching, grid, substitution, etc.) or complicated mathematics; providing an easy tool for scientists, mathematicians, teachers, designers and artists, to generate and study a wide range of dodecagonal quasi-periodic formations.Keywords: dodecagonal, Islamic architecture, long-range order, quasi-periodi
Procedia PDF Downloads 4025645 Teleconnection between El Nino-Southern Oscillation and Seasonal Flow of the Surma River and Possibilities of Long Range Flood Forecasting
Authors: Monika Saha, A. T. M. Hasan Zobeyer, Nasreen Jahan
Abstract:
El Nino-Southern Oscillation (ENSO) is the interaction between atmosphere and ocean in tropical Pacific which causes inconsistent warm/cold weather in tropical central and eastern Pacific Ocean. Due to the impact of climate change, ENSO events are becoming stronger in recent times, and therefore it is very important to study the influence of ENSO in climate studies. Bangladesh, being in the low-lying deltaic floodplain, experiences the worst consequences due to flooding every year. To reduce the catastrophe of severe flooding events, non-structural measures such as flood forecasting can be helpful in taking adequate precautions and steps. Forecasting seasonal flood with a longer lead time of several months is a key component of flood damage control and water management. The objective of this research is to identify the possible strength of teleconnection between ENSO and river flow of Surma and examine the potential possibility of long lead flood forecasting in the wet season. Surma is one of the major rivers of Bangladesh and is a part of the Surma-Meghna river system. In this research, sea surface temperature (SST) has been considered as the ENSO index and the lead time is at least a few months which is greater than the basin response time. The teleconnection has been assessed by the correlation analysis between July-August-September (JAS) flow of Surma and SST of Nino 4 region of the corresponding months. Cumulative frequency distribution of standardized JAS flow of Surma has also been determined as part of assessing the possible teleconnection. Discharge data of Surma river from 1975 to 2015 is used in this analysis, and remarkable increased value of correlation coefficient between flow and ENSO has been observed from 1985. From the cumulative frequency distribution of the standardized JAS flow, it has been marked that in any year the JAS flow has approximately 50% probability of exceeding the long-term average JAS flow. During El Nino year (warm episode of ENSO) this probability of exceedance drops to 23% and while in La Nina year (cold episode of ENSO) it increases to 78%. Discriminant analysis which is known as 'Categoric Prediction' has been performed to identify the possibilities of long lead flood forecasting. It has helped to categorize the flow data (high, average and low) based on the classification of predicted SST (warm, normal and cold). From the discriminant analysis, it has been found that for Surma river, the probability of a high flood in the cold period is 75% and the probability of a low flood in the warm period is 33%. A synoptic parameter, forecasting index (FI) has also been calculated here to judge the forecast skill and to compare different forecasts. This study will help the concerned authorities and the stakeholders to take long-term water resources decisions and formulate policies on river basin management which will reduce possible damage of life, agriculture, and property.Keywords: El Nino-Southern Oscillation, sea surface temperature, surma river, teleconnection, cumulative frequency distribution, discriminant analysis, forecasting index
Procedia PDF Downloads 1545644 Diagnostic Clinical Skills in Cardiology: Improving Learning and Performance with Hybrid Simulation, Scripted Histories, Wearable Technology, and Quantitative Grading – The Assimilate Excellence Study
Authors: Daly M. J, Condron C, Mulhall C, Eppich W, O'Neill J.
Abstract:
Introduction: In contemporary clinical cardiology, comprehensive and holistic bedside evaluation including accurate cardiac auscultation is in decline despite having positive effects on patients and their outcomes. Methods: Scripted histories and scoring checklists for three clinical scenarios in cardiology were co-created and refined through iterative consensus by a panel of clinical experts; these were then paired with recordings of auscultatory findings from three actual patients with known valvular heart disease. A wearable vest with embedded pressure-sensitive panel speakers was developed to transmit these recordings when examined at the standard auscultation points. RCSI medical students volunteered for a series of three formative long case examinations in cardiology (LC1 – LC3) using this hybrid simulation. Participants were randomised into two groups: Group 1 received individual teaching from an expert trainer between LC1 and LC2; Group 2 received the same intervention between LC2 and LC3. Each participant’s long case examination performance was recorded and blindly scored by two peer participants and two RCSI examiners. Results: Sixty-eight participants were included in the study (age 27.6 ± 0.1 years; 74% female) and randomised into two groups; there were no significant differences in baseline characteristics between groups. Overall, the median total faculty examiner score was 39.8% (35.8 – 44.6%) in LC1 and increased to 63.3% (56.9 – 66.4%) in LC3, with those in Group 1 showing a greater improvement in LC2 total score than that observed in Group 2 (p < .001). Using the novel checklist, intraclass correlation coefficients (ICC) were excellent between examiners in all cases: ICC .994 – .997 (p < .001); correlation between peers and examiners improved in LC2 following peer grading of LC1 performances: ICC .857 – .867 (p < .001). Conclusion: Hybrid simulation and quantitative grading improve learning, standardisation of assessment, and direct comparisons of both performance and acumen in clinical cardiology.Keywords: cardiology, clinical skills, long case examination, hybrid simulation, checklist
Procedia PDF Downloads 1105643 Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification
Authors: Dharminder Singh, Sanjeev Yadav, Pravakar Mohanty
Abstract:
In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C).Keywords: air bubbling fluidized bed gasifier, bed temperature, charcoal heating, dolomite, flame temperature, rice husk
Procedia PDF Downloads 2785642 Changes in Foreign Direct Investment Policy of India and Its Impact on Economic Development
Authors: Kishor P. Kadam
Abstract:
Foreign direct investment policy (FDI) is defined as an investment involving a long term relationship and reflecting a long duration interest and control of a resident entity in the home country (foreign direct investor or parent firm) in the host country. India has been one of the most translucent and open-minded FDI regimes among the emerging and developing economies. There is clear cut mentioned about the sectoral caps for foreign investment. The policy problems that have been identified by time to time surveys as acting as additional hurdles for FDI are laws, regulatory systems and government monopolies that do not have contemporary relevance. Foreign investment policies in the post-reforms period have emphasized greater encouragement and mobilization of non-debt creating private inflows for plunging reliance on debt flows. This paper will focus on how foreign direct investment policy changed from 1990-91 up to now. A time series data of 25 years is used for analysing the policy changes. It is observed that India has more liberal policy. The growth in number of Greenfield investments in India has been more impressive than the number of M&A deals whereas equity capital for incorporated bodies FDI inflows has been increased continuously 2014-15. India has made major changes in FDI Policy, and it has positive impact on economic development.Keywords: FDI, India, economic development, government
Procedia PDF Downloads 3615641 Initial Settlers and Gender Norms: Evidence From the United States
Authors: Joanne Haddad
Abstract:
The distinctive traits of early settlers at initial stages of institutional development may be crucial for cultural formation. In 1973, the cultural geographer Wilbur Zelinsky postulated this in his doctrine of “first effective settlement”. There is however little empirical evidence supporting the role of early settlers in shaping culture over the long run. This paper tests this hypothesis by relating early settlers’ culture to within state variation in gender norms in the United States. Settlers’ culture is captured using past female labor force participation, women’s suffrage, and financial rights at their place of origin. The paper documents the distinctive characteristics of settlers’ populations and provide suggestive evidence in support of the transmission of gender norms across space and time. Results from this analysis show that women’s labor supply is higher, in both the short and long run, in U.S. counties that historically hosted a larger settler population originating from places with favorable gender attitudes. Findings from this study shed new light on the importance of the characteristics of immigrants and their place of origin for cultural formation in hosting societies.Keywords: female labor force participation, settlers, gender norms, cultural formation.
Procedia PDF Downloads 1095640 Impacts of Low-Density Polyethylene (Plastic Shopping Bags) on Structural Strength and Permeability of Hot-Mix-Asphalt Pavements
Authors: Chayanon Boonyuid
Abstract:
This paper experiments the effects of low-density polyethylene (LDPE) on the structural strength and permeability of hot-mix-asphalt (HMA) pavements. Different proportions of bitumen (4%, 4.5%, 5%, 5.5% and 6% of total aggregates) and plastic (5%, 10% and 15% of bitumen) contents in HMA mixtures were investigated to estimate the optimum mixture of bitumen and plastic in HMA pavement with long-term performance. Marshall Tests and Falling Head Tests were performed to experiment the structure strength and permeability of HMA mixtures with different percentages of plastic materials and bitumen. The laboratory results show that the optimum binder content was 5.5% by weight of aggregates with higher contents of plastic materials, increase structural stability, reduce permanent deformation, increase ductility, and improve fatigue life of HMA pavements. The use of recycled plastic shopping bags can reduce the use of bitumen content by 0.5% - 1% in HMA mixtures resulting in cheaper material costs with better long-term performance. The plastic materials increase the impermeability of HMA pavements. This study has two-fold contributions: optimum contents of both bitumen and plastic materials in HMA mixtures and the impacts of plastic materials on the permeability of HMA pavements.Keywords: plastic bags, bitumen, structural strength, permeability
Procedia PDF Downloads 1495639 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction
Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh
Abstract:
Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction
Procedia PDF Downloads 1715638 Cultural Event and Urban Regeneration: Lessons from Liverpool as the 2008 European Capital of Culture
Authors: Yi-De Liu
Abstract:
For many European cities, a key motivation in developing event strategies is to use event as a catalyst for urban regeneration. One type of event that is particularly used as a means of urban development is the European Capital of Culture (ECOC) initiative. Based on a case study of the 2008 ECOC Liverpool, this paper aims at conceptualising the significance of major event for a city’s economic, cultural and social regenerations. In terms of economic regeneration, the role of the ECOC is central in creating Liverpool’s visitor economy and reshaping city image. Liverpool planned different themes for eight consecutive years as a way to ensure economic sustainability. As far as cultural regeneration is concerned, the ECOC contributed to the cultural regeneration of Liverpool by stimulating cultural participation and interest from the demand side, as well as improving cultural provision and collaboration within the cultural sector from the supply side. So as to social regeneration, Liverpool treated access development as a policy guideline and considered the ECOC as an opportunity to enhance the sense of place. The most significant lesson learned from Liverpool is its long-term planning and efforts made to integrate the ECOC into the overall urban development strategy. As a result, a more balanced and long-term effect on urban regeneration could be achieved.Keywords: cultural event, urban regeneration, european capital of culture, Liverpool
Procedia PDF Downloads 2645637 Laboratory Model Tests on Encased Group Columns
Authors: Kausar Ali
Abstract:
There are several ground treatment techniques which may meet the twin objectives of increasing the bearing capacity with simultaneous reduction of settlements, but the use of stone columns is one of the most suited techniques for flexible structures such as embankments, oil storage tanks etc. that can tolerate some settlement and used worldwide. However, when the stone columns in very soft soils are loaded; stone columns undergo excessive settlement due to low lateral confinement provided by the soft soil, leading to the failure of the structure. The poor performance of stone columns under these conditions can be improved by encasing the columns with a suitable geosynthetic. In this study, the effect of reinforcement on bearing capacity of composite soil has been investigated by conducting laboratory model tests on floating and end bearing long stone columns with l/d ratio of 12. The columns were reinforced by providing geosynthetic encasement over varying column length (upper 25%, 50%, 75%, and 100% column length). In this study, a group of columns has been used instead of single column, because in the field, columns used for the purpose always remain in groups. The tests indicate that the encasement over the full column length gives higher failure stress as compared to the encasement over the partial column length for both floating and end bearing long columns. The performance of end-bearing columns was found much better than the floating columns.Keywords: geosynthetic, ground improvement, soft clay, stone column
Procedia PDF Downloads 4315636 Estimating Future Solar Potential in Evolving High-Density Urban Areas for the Mid-Latitude City of Mendoza, Argentina
Authors: Mariela Edith Arboit
Abstract:
The main goal of the project is to explore the evolution possibilities of the morphological indicators of the built environment, including those resulting from progressive soil occupation, due to the relentless growth of the city’s population and subsequent increase in building density and solar access reduction per built unit. Two alternative normative proposals, Conventional Proposal (CP) and Alternative Proposal (AP), are compared. In addition, temporal scenarios of the city’s evolution process are analyzed, starting from the reference situation of existing, high-density built-up areas, and simulating their possible morphological outcomes on theoretical medium (30 yr.) and long (60 yr.) terms, as a result of the massive implementation of either regulation in the long run. The results obtained demonstrate that the Alternative Proposal (AP) presents higher mean values of predicted solar potential expressed by the Volumetric Insolation Factor total (VIFtot) for both time periods and services. Regarding environmental aspects, the different impacts of either alternative on the urban landscape quality seem to favor the AP proposal. Its deserved detailed assessment is also presently being developed through a quanti-qualitative methodology.Keywords: building morphology, environmental quality, solar energy, urban sustainability
Procedia PDF Downloads 1575635 Myths of Thangal Origin from an Anthropological Perspective
Authors: Monoranjan Maibam, Arundhati Maibam, Bojen Akoijam
Abstract:
Myths may be understood as a special kind of literature though not found in written form. Through myths, anthropologists make attempts to describe a world which members of a literate society can barely imagine. Mythical stories about origin of numerous ethnic and tribal communities have helped in tracing their route of migration and the long journey undertaken before arriving at their present places of settlement. This study intends to highlight the myths associated with the origin of the Thangal tribe of Manipur from an anthropological perspective and interpret the stories in the context of evolution, migration and relationship with other neighbouring groups. Fieldwork was conducted using an interview guide to collect primary data and published literatures were consulted for secondary data. The result show two popular versions of origin myths are found among the Thangal- first is origin from a cave at Makhel located in the Maram area and second is the belief that the Thangal, the Tangkhul and the Meitei are brothers who emerged out of a cave long ago. In conclusion, the origin myths of the Thangal may be confirmed and established through archaeological findings in the form of artefacts. Mention of erection of memorial stones in the second version is a good clue to start an archaeological survey of the sites which are believed to have been once occupied by the people.Keywords: anthropology, migration, myth, Thangal
Procedia PDF Downloads 2445634 Attitudes Towards Immigrants: Evidence from Veterans of Colonial Wars in Africa
Authors: Margarida Matos, João Pereira dos Santos, José Tavares
Abstract:
Anti-minority discrimination is a persistent phenomenon with long-run effects. While there is a vast literature in economics and psychology that shows that personality and beliefs are not fixed and can be altered by experience, particularly in the so-called impressionable years in early adulthood, less is known about the long-lasting impacts of major events occurring during this time on minority attitudes. In this paper, we study the impact of serving in the military on long-term attitudes towards minorities. For many, military conscription and serving in war are unique life-shaping events. In the context of military service, individuals from different socioeconomic backgrounds interact and learn with each other, potentially changing their views and attitudes in a persistent manner. A prominent theory about the change of attitudes is the contact theory. It suggests that prejudice can be decreased if members of the groups interact with one another. The present paper adds to the literature by providing evidence from a more complicated setting involving the exposure to combat. We study the attitudes of veterans of the Portuguese Colonial War between 1961 and 1974, what was the latest war between African independence movements and Europeans. More than 70 percent of military age Portuguese men were drafted every year and sent to fight in Africa in the widest draft in post-World War II Western Europe. The contact between Portuguese and African soldiers was both cooperative as well as adversarial. Portuguese fought against but also alongside locally recruited African men, who represented half of the Portuguese contingent for substantial periods. We use data from the European Social Survey to identify Portuguese citizens likely to have been drafted and were send to fight in the former Portuguese colonies in Africa. We show that men likely to have fought in African wars are more accepting of immigrants than women of their same cohort, as well as than males from younger and older cohorts. The use of corresponding cohorts from Spain as placebo tests confirms our results. Our findings also hold in a regression discontinuity design setting.Keywords: attitudes, immigration, war in Africa, veterans, portugal
Procedia PDF Downloads 815633 Long Term Changes of Water Quality in Latvia
Authors: Maris Klavins, Valery Rodinov
Abstract:
The aim of this study was to analyze long term changes of surface water quality in Latvia, spatial variability of water chemical composition, possible impacts of different pollution sources as well as to analyze the measures to protect national water resources - river basin management. Within this study, the concentrations of major water ingredients and microelements in major rivers and lakes of Latvia have been determined. Metal concentrations in river and lake waters were compared with water chemical composition. The mean concentrations of trace metals in inland waters of Latvia are appreciably lower than the estimated world averages for river waters and close to or lower than background values, unless regional impacts determined by local geochemistry. This may be explained by a comparatively lower level of anthropogenic load. In the same time in several places, direct anthropogenic impacts are evident, regarding influences of point sources both transboundary transport impacts. Also, different processes related to pollution of surface waters in Latvia have been analyzed. At first the analysis of changes and composition of pollutant emissions in Latvia has been realized, and the obtained results were compared with actual composition of atmospheric precipitation and their changes in time.Keywords: water quality, trend analysis, pollution, human impact
Procedia PDF Downloads 2685632 Evaluation of Traumatic Spine by Magnetic Resonance Imaging
Authors: Sarita Magu, Deepak Singh
Abstract:
Study Design: This prospective study was conducted at the department of Radio Diagnosis, at Pt B.D. Sharma PGIMS, Rohtak in 57 patients of spine injury on radiographs or radiographically normal patients with neurological deficits presenting within 72 hours of injury. Aims: Evaluation of the role of Magnetic Resonance Imaging (MRI) in Spinal Trauma Patients and to compare MRI findings with clinical profile and neurological status of the patient and to correlate the MRI findings with neurological recovery of the patient and predict the outcome. Material and Methods: Neurological status of patients was assessed at the time of admission and discharge in all the patients and at long term interval of six months to one year in 27 patients as per American spine injury association classification (ASIA). On MRI cord injury was categorized into cord hemorrhage, cord contusion, cord edema only, and normal cord. Quantitative assessment of injury on MRI was done using mean canal compromise (MCC), mean spinal cord compression (MSCC) and lesion length. Neurological status at admission and neurological recovery at discharge and long term follow up was compared with various qualitative cord findings and quantitative parameters on MRI. Results: Cord edema and normal cord was associated with favorable neurological outcome. Cord contusion show lesser neurological recovery as compared to cord edema. Cord hemorrhage was associated with worst neurological status at admission and poor neurological recovery. Mean MCC, MSCC, and lesion length values were higher in patients presenting with ASIA A grade injury and showed decreasing trends towards ASIA E grade injury. Patients showing neurological recovery over the period of hospital stay and long term follow up had lower mean MCC, MSCC, and lesion length as compared to patients showing no neurological recovery. The data was statistically significant with p value <.05. Conclusion: Cord hemorrhage and higher MCC, MSCC and lesion length has poor prognostic value in spine injury patients.Keywords: spine injury, cord hemorrhage, cord contusion, MCC, MSCC, lesion length, ASIA grading
Procedia PDF Downloads 3555631 The Long – Term Effects of a Prevention Program on the Number of Critical Incidents and Sick Leave Days: A Decade Perspective
Authors: Valerie Isaak
Abstract:
Background: This study explores the effectiveness of refresher training sessions of an intervention program at reducing the employees’ risk of injury due to patient violence in a forensic psychiatric hospital. Methods: The original safety intervention program that consisted of a 3 days’ workshop was conducted in the maximum-security ward of a psychiatric hospital in Israel. Ever since the original intervention, annual refreshers were conducted, highlighting one of the safety elements covered in the original intervention. The study examines the effect of the intervention program along with the refreshers over a period of 10 years in four wards. Results: Analysis of the data demonstrates that beyond the initial reduction following the original intervention, refreshers seem to have an additional positive long-term effect, reducing both the number of violent incidents and the number of actual employee injuries in a forensic psychiatric hospital. Conclusions: We conclude that such an intervention program followed by refresher training would promote employees’ wellbeing. A healthy work environment is part of management’s commitment to improving employee wellbeing at the workplace.Keywords: wellbeing, violence at work, intervention program refreshers, public sector mental healthcare
Procedia PDF Downloads 1375630 The Term Spread Impact on Economic Activity for Transition Economies: Case of Georgia
Authors: L. Totladze
Abstract:
The role of financial sector in supporting economic growth and development is well acknowledged. The term spread (the difference between the yields on long-term and short-term Treasury securities) has been found useful for predicting economic variables as output growth, inflation, industrial production, consumption. The temp spread is one of the leading economic indicators according to NBER methodology. Leading economic indicators are widely used in forecasting of economic activity. Many empirical studies find that the term spread predicts future economic activity. The article shortly explains how the term spread might predict future economic activity. This paper analyses the dynamics of the spread between short and long-term interest rates in countries with transition economies. The research paper analyses term spread dynamics in Georgia and compare it with post-communist countries and transition economies spread dynamics. In Georgia, the banking sector plays an important and dominant role in the financial sector, especially with respect to the mobilization of savings and provision of credit and may impact on economic activity. For this purpose, we study the impact of the term spread on economic growth in Georgia.Keywords: forecasting, leading economic indicators, term spread, transition economies
Procedia PDF Downloads 1765629 Material Use and Life Cycle GHG Emissions of Different Electrification Options for Long-Haul Trucks
Authors: Nafisa Mahbub, Hajo Ribberink
Abstract:
Electrification of long-haul trucks has been in discussion as a potential strategy to decarbonization. These trucks will require large batteries because of their weight and long daily driving distances. Around 245 million battery electric vehicles are predicted to be on the road by the year 2035. This huge increase in the number of electric vehicles (EVs) will require intensive mining operations for metals and other materials to manufacture millions of batteries for the EVs. These operations will add significant environmental burdens and there is a significant risk that the mining sector will not be able to meet the demand for battery materials, leading to higher prices. Since the battery is the most expensive component in the EVs, technologies that can enable electrification with smaller batteries sizes have substantial potential to reduce the material usage and associated environmental and cost burdens. One of these technologies is an ‘electrified road’ (eroad), where vehicles receive power while they are driving, for instance through an overhead catenary (OC) wire (like trolleybuses and electric trains), through wireless (inductive) chargers embedded in the road, or by connecting to an electrified rail in or on the road surface. This study assessed the total material use and associated life cycle GHG emissions of two types of eroads (overhead catenary and in-road wireless charging) for long-haul trucks in Canada and compared them to electrification using stationary plug-in fast charging. As different electrification technologies require different amounts of materials for charging infrastructure and for the truck batteries, the study included the contributions of both for the total material use. The study developed a bottom-up approach model comparing the three different charging scenarios – plug in fast chargers, overhead catenary and in-road wireless charging. The investigated materials for charging technology and batteries were copper (Cu), steel (Fe), aluminium (Al), and lithium (Li). For the plug-in fast charging technology, different charging scenarios ranging from overnight charging (350 kW) to megawatt (MW) charging (2 MW) were investigated. A 500 km of highway (1 lane of in-road charging per direction) was considered to estimate the material use for the overhead catenary and inductive charging technologies. The study considered trucks needing an 800 kWh battery under the plug-in charger scenario but only a 200 kWh battery for the OC and inductive charging scenarios. Results showed that overall the inductive charging scenario has the lowest material use followed by OC and plug-in charger scenarios respectively. The materials use for the OC and plug-in charger scenarios were 50-70% higher than for the inductive charging scenarios for the overall system including the charging infrastructure and battery. The life cycle GHG emissions from the construction and installation of the charging technology material were also investigated.Keywords: charging technology, eroad, GHG emissions, material use, overhead catenary, plug in charger
Procedia PDF Downloads 515628 Drivers for Relationship Building in the Supply Chain: The Case of Luxury Food
Authors: Kateryna Merkulova, Alessio Castello, Maria Kreuzer
Abstract:
This research investigates the drivers of long-term relationship building between customers and suppliers within the luxury food supply chain, a topic that remains largely unexplored in the current state of academic literature. This paper identifies for the first time the key elements that influence the formation and maintenance of effective supply chain relationships, which are crucial for navigating the complexities of the luxury food industry. In particular, it explores the critical role of trust in a business-to-business context, specifically emphasizing its significance in the luxury food supply chain. Empirically, this research is contextualized in the region of the French Riviera, which offers a gastronomic playground for food enthusiasts, making it ideally suited to explore the luxury food sector. Qualitative in-depth interviews with stakeholders along the luxury supply chain (i.e., suppliers, chefs, restaurant owners, and fine food shop managers) allow identifying key drivers of trustful business relationships. Triangulating different perspectives of stakeholders within the luxury supply chain adds validity and robustness to the findings. The findings have important theoretical and managerial implications for the effective functioning of long-term supplier-buyer relationships.Keywords: luxury food, relationship building, B2B, supply chain, trust
Procedia PDF Downloads 525627 Long-Term Climate Patterns in Eastern and Southeastern Ethiopia
Authors: Messay Mulugeta, Degefa Tolossa
Abstract:
The purpose of this paper is to scrutinize trends of climate risks in eastern and southeastern parts of Ethiopia. This part of the country appears severely affected by recurrent droughts, erratic rainfall, and increasing temperature condition. Particularly, erratic rains and moisture stresses have been forcibly threatening and shoving the people over many decades coupled with unproductive policy frameworks and weak institutional setups. These menaces have been more severe in dry lowlands where rainfall is more erratic and scarce. Long-term climate data of nine weather stations in eastern and southeastern parts of Ethiopia were obtained from National Meteorological Agency of Ethiopia (NMA). As issues related to climate risks are very intricate, different techniques and indices were applied to deal with the objectives of the study. It is concluded that erratic rainfall, moisture scarcity, and increasing temperature conditions have been the main challenges in eastern and southeastern Ethiopia. In fact, these risks can be eased by putting in place efficient and integrated rural development strategies, environmental rehabilitation plans of action in overworked areas, proper irrigation and water harvesting practices and well thought-out and genuine resettlement schemes.Keywords: rainfall variability, erratic rains, precipitation concentration index (PCI), climatic pattern, Ethiopia
Procedia PDF Downloads 2385626 The Effect of Environmental, Social, and Governance (ESG) Disclosure on Firms’ Credit Rating and Capital Structure
Authors: Heba Abdelmotaal
Abstract:
This paper explores the impact of the extent of a company's environmental, social, and governance (ESG) disclosure on credit rating and capital structure. The analysis is based on a sample of 202 firms from the 350 FTSE firms over the period of 2008-2013. ESG disclosure score is measured using Proprietary Bloomberg score based on the extent of a company's Environmental, Social, and Governance (ESG) disclosure. The credit rating is measured by The QuiScore, which is a measure of the likelihood that a company will become bankrupt in the twelve months following the date of calculation. The Capital Structure is measured by long term debt ratio. Two hypotheses are test using panel data regression. The results suggested that the higher degree of ESG disclosure leads to better credit rating. There is significant negative relationship between ESG disclosure and the long term debit percentage. The paper includes implications for the transparency which is resulting of the ESG disclosure could support the Monitoring Function. The monitoring role of disclosure is the increasing in the transparency of the credit rating agencies, also it could affect on managers’ actions. This study provides empirical evidence on the material of ESG disclosure on credit ratings changes and the firms’ capital decision making.Keywords: capital structure, credit rating agencies, ESG disclosure, panel data regression
Procedia PDF Downloads 3605625 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50
Procedia PDF Downloads 128