Search results for: frontier production and revenue functions
5803 Lethal and Sublethal Effect of Azadirachtin on the Development of an Insect Model: Drosophila melanogaster (Diptera)
Authors: Bendjazia Radia, Samira Kilani-Morakchi, Nadia Aribi
Abstract:
Azadirachtin is a biorational insecticide commonly reported as selective to a range of beneficial insects. It is one of the most biologically active natural inhibitors of insect growth and development and it is known to be an antagonist of the juvenile hormone and 20-hydroxyecdysone (20E). However, its mechanism of action remains still unknown. In the present study, the toxicity of a commercial formulation of Azadirachtin (Neem Azal, 1% azadirachtine) was evaluated by topical application at various doses (0.1, 0.25, 0.5, 1 and 2 µg/insect) on the third instars larvae of D. melanogaster. Lethal doses (LD25: 0.28µg and LD50: 0.67µg), were evaluated by cumulated mortality at the immature stages. The effects of azadirachtin (LD25 and LD50) were then evaluated on the development (duration of the larval and pupal instars, the weight of larvae, pupa and adults) of Drosophila melanogaster. Results showed that the insecticide increased significantly the larval and pupal instar duration. A reduction of larval and pupal weight is noted under azadirachtin treatment as compared to controls. In addition, the weight of surviving adults at the two tested dose was also reduced. In conclusion, azadirachtin seemed to interfere with the functions of the endocrine system resulting in development defects.Keywords: azadirachtin, d.melanogaster, toxicity, development
Procedia PDF Downloads 4635802 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House
Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal
Abstract:
Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.Keywords: sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production
Procedia PDF Downloads 3395801 Design and Fabrication of an Electrostatically Actuated Parallel-Plate Mirror by 3D-Printer
Authors: J. Mizuno, S. Takahashi
Abstract:
In this paper, design and fabrication of an actuated parallel-plate mirror based on a 3D-printer is described. The mirror and electrode layers are fabricated separately and assembled thereafter. The alignment is performed by dowel pin-hole pairs fabricated on the respective layers. The electrodes are formed on the surface of the electrode layer by Au ion sputtering using a suitable mask, which is also fabricated by a 3D-printer.For grounding the mirror layer, except the contact area with the electrode paths, all the surface is Au ion sputtered. 3D-printers are widely used for creating 3D models or mock-ups. The authors have recently proposed that these models can perform electromechanical functions such as actuators by suitably masking them followed by metallization process. Since the smallest possible fabrication size is in the order of sub-millimeters, these electromechanical devices are named by the authors as SMEMS (Sub-Milli Electro-Mechanical Systems) devices. The proposed mirror described in this paper which consists of parallel-plate electrostatic actuators is also one type of SMEMS devices. In addition, SMEMS is totally environment-clean compared to MEMS (Micro Electro-Mechanical Systems) fabrication processes because any hazardous chemicals or gases are utilized.Keywords: MEMS, parallel-plate mirror, SMEMS, 3D-printer
Procedia PDF Downloads 4395800 Physical, Chemical and Mineralogical Characterization of Construction and Demolition Waste Produced in Greece
Authors: C. Alexandridou, G. N. Angelopoulos, F. A. Coutelieris
Abstract:
Construction industry in Greece consumes annually more than 25 million tons of natural aggregates originating mainly from quarries. At the same time, more than 2 million tons of construction and demolition waste are deposited every year, usually without control, therefore increasing the environmental impact of this sector. A potential alternative for saving natural resources and minimize landfilling, could be the recycling and re-use of Concrete and Demolition Waste (CDW) in concrete production. Moreover, in order to conform to the European legislation, Greece is obliged to recycle non-hazardous construction and demolition waste to a minimum of 70% by 2020. In this paper characterization of recycled materials - commercially and laboratory produced, coarse and fine, Recycled Concrete Aggregates (RCA) - has been performed. Namely, X-Ray Fluorescence and X-ray diffraction (XRD) analysis were used for chemical and mineralogical analysis respectively. Physical properties such as particle density, water absorption, sand equivalent and resistance to fragmentation were also determined. This study, first time made in Greece, aims at outlining the differences between RCA and natural aggregates and evaluating their possible influence in concrete performance. Results indicate that RCA’s chemical composition is enriched in Si, Al, and alkali oxides compared to natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, quartz and minor peaks of mica and feldspars. From all the evaluated physical properties of coarse RCA, only water absorption and resistance to fragmentation seem to have a direct influence on the properties of concrete. Low Sand Equivalent and significantly high water absorption values indicate that fine fractions of RCA cannot be used for concrete production unless further processed. Chemical properties of RCA in terms of water soluble ions are similar to those of natural aggregates. Four different concrete mixtures were produced and examined, replacing natural coarse aggregates with RCA by a ratio of 0%, 25%, 50% and 75% respectively. Results indicate that concrete mixtures containing recycled concrete aggregates have a minor deterioration of their properties (3-9% lower compression strength at 28 days) compared to conventional concrete containing the same cement quantity.Keywords: chemical and physical characterization, compressive strength, mineralogical analysis, recycled concrete aggregates, waste management
Procedia PDF Downloads 2385799 The Development of a Digitally Connected Factory Architecture to Enable Product Lifecycle Management for the Assembly of Aerostructures
Authors: Nicky Wilson, Graeme Ralph
Abstract:
Legacy aerostructure assembly is defined by large components, low build rates, and manual assembly methods. With an increasing demand for commercial aircraft and emerging markets such as the eVTOL (electric vertical take-off and landing) market, current methods of manufacturing are not capable of efficiently hitting these higher-rate demands. This project will look at how legacy manufacturing processes can be rate enabled by taking a holistic view of data usage, focusing on how data can be collected to enable fully integrated digital factories and supply chains. The study will focus on how data is flowed both up and down the supply chain to create a digital thread specific to each part and assembly while enabling machine learning through real-time, closed-loop feedback systems. The study will also develop a bespoke architecture to enable connectivity both within the factory and the wider PLM (product lifecycle management) system, moving away from traditional point-to-point systems used to connect IO devices to a hub and spoke architecture that will exploit report-by-exception principles. This paper outlines the key issues facing legacy aircraft manufacturers, focusing on what future manufacturing will look like from adopting Industry 4 principles. The research also defines the data architecture of a PLM system to enable the transfer and control of a digital thread within the supply chain and proposes a standardised communications protocol to enable a scalable solution to connect IO devices within a production environment. This research comes at a critical time for aerospace manufacturers, who are seeing a shift towards the integration of digital technologies within legacy production environments, while also seeing build rates continue to grow. It is vital that manufacturing processes become more efficient in order to meet these demands while also securing future work for many manufacturers.Keywords: Industry 4, digital transformation, IoT, PLM, automated assembly, connected factories
Procedia PDF Downloads 825798 Atomic Layer Deposition Of Metal Oxide Inverse Opals: A Promising Strategy For Photocatalytic Applications
Authors: Hamsasew Hankebo Lemago, Dóra Hessz, Tamás Igricz, Zoltán Erdélyi, , Imre Miklós Szilágyi
Abstract:
Metal oxide inverse opals are a promising class of photocatalysts with a unique hierarchical structure. Atomic layer deposition (ALD) is a versatile technique for the synthesis of high-precision metal oxide thin films, including inverse opals. In this study, we report the synthesis of TiO₂, ZnO, and Al₂O₃ inverse opal and their composites photocatalysts using thermal or plasma-enhanced ALD. The synthesized photocatalysts were characterized using a variety of techniques, including scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL), ellipsometry, and UV-visible spectroscopy. The results showed that the ALD-synthesized metal oxide inverse opals had a highly ordered structure and a tunable pore size. The PL spectroscopy results showed low recombination rates of photogenerated electron-hole pairs, while the ellipsometry and UV-visible spectroscopy results showed tunable optical properties and band gap energies. The photocatalytic activity of the samples was evaluated by the degradation of methylene blue under visible light irradiation. The results showed that the ALD-synthesized metal oxide inverse opals exhibited high photocatalytic activity, even under visible light irradiation. The composites photocatalysts showed even higher activity than the individual metal oxide inverse opals. The enhanced photocatalytic activity of the composites can be attributed to the synergistic effect between the different metal oxides. For example, Al₂O₃ can act as a charge carrier scavenger, which can reduce the recombination of photogenerated electron-hole pairs. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production.Keywords: ALD, metal oxide inverse opals, photocatalysis, composites
Procedia PDF Downloads 865797 Ix Operation for the Concentration of Low-Grade Uranium Leach Solution
Authors: Heba Ahmed Nawafleh
Abstract:
In this study, two commercial resins were evaluated to concentrate uranium from real solutions that were produced from analkaline leaching process of carbonate deposits. The adsorption was examined using a batch process. Different parameters were evaluated, including initial pH, contact time, temperature, adsorbent dose, and finally, uranium initial concentration. Both resins were effective and selective for uranium ions from the tested leaching solution. The adsorption isotherms data were well fitted for both resins using the Langmuir model. Thermodynamic functions (Gibbs free energy change ΔG, enthalpy change ΔH, and entropy change ΔS) were calculated for the adsorption of uranium. The result shows that the adsorption process is endothermic, spontaneous, and chemisorption processes took place for both resins. The kinetic studies showed that the equilibrium time for uranium ions is about two hours, where the maximum uptake levels were achieved. The kinetics studies were carried out for the adsorption of U ions, and the data was found to follow pseudo-second-order kinetics, which indicates that the adsorption of U ions was chemically controlled. In addition, the reusability (adsorption/ desorption) process was tested for both resins for five cycles, these adsorbents maintained removal efficiency close to first cycle efficiency of about 91% and 80%.Keywords: uranium, adsorption, ion exchange, thermodynamic and kinetic studies
Procedia PDF Downloads 955796 Tale of Massive Distressed Migration from Rural to Urban Areas: A Study of Mumbai City
Authors: Vidya Yadav
Abstract:
Migration is the demographic process that links rural to urban areas, generating or spurring the growth of cities. Evidence shows the role of the city as a production processes. It looks the city as a power of centre, and a centre of change. It has been observed that not only the professionals want to settle down in an urban area but rural labourers are also coming to cities for employment. These are the people who are compelled to migrate to metropolises because of lack of employment opportunities in their place of residence. However, the cities also fail to provide adequate employment because of limited job opportunity creation and capital-intensive industrialization. So these masses of incoming migrants are force to take up whatever employment absorption is available to them particularly in urban informal activities. Ultimately with this informal job they are compelled to stay in the slum areas, which is another form of deprived housing colonies. The paper seeks to examine the evidences of poverty induced migration from rural to urban areas (particularly in urban agglomeration). The present paper utilizes an abundant rich source of census migration data (D-Series) of 1991-2001. Result shows that Mumbai remain as the most attractive place to migrate. The migrants are mainly from the major states like Uttar Pradesh, Bihar, West Bengal, Jharkhand, Odisha, and Rajasthan. Male dominated migration is related mostly for employment and females due to marriages. The picture of occupational absorption of migrants who moved for employment, cross classified with educational status. Result shows that illiterate males are primarily engaged in low grade production processing work. Illiterate’s females engaged in service sectors; but these are actually very low grade services in urban informal sectors in India like maid servants, domestic help, hawkers, vendors or vegetables sellers. Among the higher educational level, a small percentage of males and females got absorbed in professional or clerical work but the percentage has been increased in the period 1991-2001.Keywords: informal, job, migration, urban
Procedia PDF Downloads 2875795 Technical and Practical Aspects of Sizing a Autonomous PV System
Authors: Abdelhak Bouchakour, Mustafa Brahami, Layachi Zaghba
Abstract:
The use of photovoltaic energy offers an inexhaustible supply of energy but also a clean and non-polluting energy, which is a definite advantage. The geographical location of Algeria promotes the development of the use of this energy. Indeed, given the importance of the intensity of the radiation received and the duration of sunshine. For this reason, the objective of our work is to develop a data-processing tool (software) of calculation and optimization of dimensioning of the photovoltaic installations. Our approach of optimization is basing on mathematical models, which amongst other things describe the operation of each part of the installation, the energy production, the storage and the consumption of energy.Keywords: solar panel, solar radiation, inverter, optimization
Procedia PDF Downloads 6165794 Artificial Intelligance Features in Canva
Authors: Amira Masood, Zainah Alshouri, Noor Bantan, Samira Kutbi
Abstract:
Artificial intelligence is continuously becoming more advanced and more widespread and is present in many of our day-to-day lives as a means of assistance in numerous different fields. A growing number of people, companies, and corporations are utilizing Canva and its AI tools as a method of quick and easy media production. Hence, in order to test the integrity of the rapid growth of AI, this paper will explore the usefulness of Canva's advanced design features as well as their accuracy by determining user satisfaction through a survey-based research approach and by investigating whether or not AI is successful enough that it eliminates the need for human alterations.Keywords: artificial intelligence, canva, features, users, satisfaction
Procedia PDF Downloads 1115793 Bayesian Value at Risk Forecast Using Realized Conditional Autoregressive Expectiel Mdodel with an Application of Cryptocurrency
Authors: Niya Chen, Jennifer Chan
Abstract:
In the financial market, risk management helps to minimize potential loss and maximize profit. There are two ways to assess risks; the first way is to calculate the risk directly based on the volatility. The most common risk measurements are Value at Risk (VaR), sharp ratio, and beta. Alternatively, we could look at the quantile of the return to assess the risk. Popular return models such as GARCH and stochastic volatility (SV) focus on modeling the mean of the return distribution via capturing the volatility dynamics; however, the quantile/expectile method will give us an idea of the distribution with the extreme return value. It will allow us to forecast VaR using return which is direct information. The advantage of using these non-parametric methods is that it is not bounded by the distribution assumptions from the parametric method. But the difference between them is that expectile uses a second-order loss function while quantile regression uses a first-order loss function. We consider several quantile functions, different volatility measures, and estimates from some volatility models. To estimate the expectile of the model, we use Realized Conditional Autoregressive Expectile (CARE) model with the bayesian method to achieve this. We would like to see if our proposed models outperform existing models in cryptocurrency, and we will test it by using Bitcoin mainly as well as Ethereum.Keywords: expectile, CARE Model, CARR Model, quantile, cryptocurrency, Value at Risk
Procedia PDF Downloads 1155792 Eco-Biological Study of Artemia salina (Branchiopoda, Anostraca) in Sahline Salt Lake, Tunisia
Authors: Khalil Trigui, Rafik Ben Said, Fourat Akrout, Neji Aloui
Abstract:
In this study, we examined in the first part the eco-biology of Artemia (A.salina) collected from Sahline Salt Lake (governorate of Monastir: Tunisia) during an annual cycle. The correlations between environmental factors and some biological parameters of Artemia were determined. The results obtained showed that the environmental factors affected the biology of Artemia. The highest abundance was recorded in May (550 ± 2,16 ind/l) and all life history stages existed with different seasonal proportions. The Artemia population is bisexual with ovoviviparous reproduction at the beginning and oviparous at the end of the life cycle. We also recorded the dominance of males at the start and the females at the end of the cycle. During all the study period, the size of mature females is bigger than that of males. The fertility obtained resulted in a significant production of cysts compared to the nauplii. A negative correlation with highly significant effect was deduced between environmental factors (temperature and salinity) and the production of nauplii (ovoviviparity) in contrast with dissolved oxygen. In the second part of our work is consecrated to the mastery of breeding Artemia. For this, we tested the effect of five external factors (temperature, salinity, dissolved oxygen, light intensity and food) on the survival of this crustacean. Thereby, the survival rates of Artemia were affected by the different values of studied factors. The recorded results showed that Artemia salina has an optimum temperature ranged from 25 to 27°C with a survival rate ranging from 84 to 88%. The optimal salinity to breed Artemia salina was 37 psu (62 ± 0,23%). Nevertheless, this crustacean was able to survive and withstand the salinity of 0 psu (freshwater). The optimum concentration of dissolved oxygen was 7mg/l with a survival rate of 87,11 ± 0,04%. An optimum light intensity of 10 lux revealed a survival rate equal to 85,33 ± 0,01%. The results also showed that the preferred micro-algae by Artemia is Dunaliella salina with a maximum survival rate of the order of 80 ± 0,15%. There is a significant effect for all experienced parameters on the survival of Artemia reared except the nature of food.Keywords: Artemia salina, biology, breeding, ecology, Sahline salt lake
Procedia PDF Downloads 3655791 Learning Chinese Suprasegmentals for a Better Communicative Performance
Authors: Qi Wang
Abstract:
Chinese has become a powerful worldwide language and millions of learners are studying it all over the words. Chinese is a tone language with unique meaningful characters, which makes foreign learners master it with more difficulties. On the other hand, as each foreign language, the learners of Chinese first will learn the basic Chinese Sound Structure (the initials and finals, tones, Neutral Tone and Tone Sandhi). It’s quite common that in the following studies, teachers made a lot of efforts on drilling and error correcting, in order to help students to pronounce correctly, but ignored the training of suprasegmental features (e.g. stress, intonation). This paper analysed the oral data based on our graduation students (two-year program) from 2006-2013, presents the intonation pattern of our graduates to speak Chinese as second language -high and plain with heavy accents, without lexical stress, appropriate stop endings and intonation, which led to the misunderstanding in different real contexts of communications and the international official Chinese test, e.g. HSK (Chinese Proficiency Test), HSKK (HSK Speaking Test). This paper also demonstrated how the Chinese to use the suprasegmental features strategically in different functions and moods (declarative, interrogative, imperative, exclamatory and rhetorical intonations) in order to train the learners to achieve better Communicative Performance.Keywords: second language learning, suprasegmental, communication, HSK (Chinese Proficiency Test)
Procedia PDF Downloads 4405790 Response Surface Methodology to Optimize the Performance of a Co2 Geothermal Thermosyphon
Authors: Badache Messaoud
Abstract:
Geothermal thermosyphons (GTs) are increasingly used in many heating and cooling geothermal applications owing to their high heat transfer performance. This paper proposes a response surface methodology (RSM) to investigate and optimize the performance of a CO2 geothermal thermosyphon. The filling ratio (FR), temperature, and flow rate of the heat transfer fluid are selected as the designing parameters, and heat transfer rate and effectiveness are adopted as response parameters (objective functions). First, a dedicated experimental GT test bench filled with CO2 was built and subjected to different test conditions. An RSM was used to establish corresponding models between the input parameters and responses. Various diagnostic tests were used to assess evaluate the quality and validity of the best-fit models, which explain respectively 98.9% and 99.2% of the output result’s variability. Overall, it is concluded from the RSM analysis that the heat transfer fluid inlet temperatures and the flow rate are the factors that have the greatest impact on heat transfer (Q) rate and effectiveness (εff), while the FR has only a slight effect on Q and no effect on εff. The maximal heat transfer rate and effectiveness achieved are 1.86 kW and 47.81%, respectively. Moreover, these optimal values are associated with different flow rate levels (mc level = 1 for Q and -1 for εff), indicating distinct operating regions for maximizing Q and εff within the GT system. Therefore, a multilevel optimization approach is necessary to optimize both the heat transfer rate and effectiveness simultaneously.Keywords: geothermal thermosiphon, co2, Response surface methodology, heat transfer performance
Procedia PDF Downloads 725789 The Implications in the Use of English as the Medium of Instruction in Business Management Courses at Vavuniya Campus
Authors: Jeyaseelan Gnanaseelan, Subajana Jeyaseelan
Abstract:
The paper avails, in a systemic form, some of the results of the investigation into nature, functions, problems, and implications in the use of English as the medium of Instruction (EMI) in the Business Management courses at Vavuniya Campus of the University of Jaffna, located in the conflict-affected northern part of Sri Lanka. It is a case study of the responses of the students and the teachers from Tamil and Sinhala language communities of the Faculty of Business Studies. This paper analyzes the perceptions on the use of the medium, the EMI background, resources available and accessible, language abilities of the teachers and learners, learning style and pedagogy, the EMI methodology, the socio-economic and socio-political contexts typical of a non-native English learning context. The analysis is quantitative and qualitative. It finds out the functional perspective of the EMI in Sri Lanka and suggests practical strategies of contextualization and acculturation in the EMI organization and positions. The paper assesses the learner and teacher capacity in the use of English. The ethnic conflict and linguistic politics in Sri Lanka have contributed multiple factors to the current use of English as the medium. It has conflicted with its domestic realities and the globalization trends of the world at large which determines efficiency and effectiveness.Keywords: medium of instruction, English, business management, teaching and learning
Procedia PDF Downloads 1305788 On the Cluster of the Families of Hybrid Polynomial Kernels in Kernel Density Estimation
Authors: Benson Ade Eniola Afere
Abstract:
Over the years, kernel density estimation has been extensively studied within the context of nonparametric density estimation. The fundamental components of kernel density estimation are the kernel function and the bandwidth. While the mathematical exploration of the kernel component has been relatively limited, its selection and development remain crucial. The Mean Integrated Squared Error (MISE), serving as a measure of discrepancy, provides a robust framework for assessing the effectiveness of any kernel function. A kernel function with a lower MISE is generally considered to perform better than one with a higher MISE. Hence, the primary aim of this article is to create kernels that exhibit significantly reduced MISE when compared to existing classical kernels. Consequently, this article introduces a cluster of hybrid polynomial kernel families. The construction of these proposed kernel functions is carried out heuristically by combining two kernels from the classical polynomial kernel family using probability axioms. We delve into the analysis of error propagation within these kernels. To assess their performance, simulation experiments, and real-life datasets are employed. The obtained results demonstrate that the proposed hybrid kernels surpass their classical kernel counterparts in terms of performance.Keywords: classical polynomial kernels, cluster of families, global error, hybrid Kernels, Kernel density estimation, Monte Carlo simulation
Procedia PDF Downloads 985787 Research on Land Use Pattern and Employment-Housing Space of Coastal Industrial Town Based on the Investigation of Liaoning Province, China
Authors: Fei Chen, Wei Lu, Jun Cai
Abstract:
During the Twelve Five period, China promulgated industrial policies promoting the relocation of energy-intensive industries to coastal areas in order to utilize marine shipping resources. Consequently, some major state-owned steel and gas enterprises have relocated and resulted in a large-scale coastal area development. However, some land may have been over-exploited with seamless coastline projects. To balance between employment and housing, new industrial coastal towns were constructed to support the industrial-led development. In this paper, we adopt a case-study approach to closely examine the development of several new industrial coastal towns of Liaoning Province situated in the Bohai Bay area, which is currently under rapid economic growth. Our investigations reflect the common phenomenon of long distance commuting and a massive amount of vacant residences. More specifically, large plant relocation caused hundreds of kilometers of daily commute and enterprises had to provide housing subsidies and education incentives to motivate employees to relocate to coastal areas. Nonetheless, many employees still refuse to relocate due to job stability, diverse needs of family members and access to convenient services. These employees averaged 4 hours of commute daily and some who lived further had to reside in temporary industrial housing units and subject to long-term family separation. As a result, only a small portion of employees purchase new coastal residences but mostly for investment and retirement purposes, leading to massive vacancy and ghost-town phenomenon. In contrast to the low demand, coastal areas tend to develop large amount of residences prior to industrial relocation, which may be directly related to local government finances. Some local governments have sold residential land to developers to general revenue to support the subsequent industrial development. Subject to the strong preference of ocean-view, residential housing developers tend to select coast-line land to construct new residential towns, which further reduces the access of marine resources for major industrial enterprises. This violates the original intent of developing industrial coastal towns and drastically limits the availability of marine resources. Lastly, we analyze the co-existence of over-exploiting residential areas and massive vacancies in reference to the demand and supply of land, as well as the demand of residential housing units with the choice criteria of enterprise employees.Keywords: coastal industry town, commuter traffic, employment-housing space, outer suburb industrial area
Procedia PDF Downloads 2275786 Human LACE1 Functions Pro-Apoptotic and Interacts with Mitochondrial YME1L Protease
Authors: Lukas Stiburek, Jana Cesnekova, Josef Houstek, Jiri Zeman
Abstract:
Cellular function depends on mitochondrial function and integrity that is therefore maintained by several classes of proteins possessing chaperone and/or proteolytic activities. In this work, we focused on characterization of LACE1 (lactation elevated 1) function in mitochondrial protein homeostasis maintenance. LACE1 is the human homologue of yeast mitochondrial Afg1 ATPase, a member of SEC18-NSF, PAS1, CDC48-VCP, TBP family. Yeast Afg1 was shown to be involved in mitochondrial complex IV biogenesis, and based on its similarity with CDC48 (p97/VCP) it was suggested to facilitate extraction of polytopic membrane proteins. Here we show that LACE1, which is a mitochondrial integral membrane protein, exists as part of three complexes of approx. 140, 400 and 500 kDa and is essential for maintenance of fused mitochondrial reticulum and lamellar cristae morphology. Using affinity purification of LACE1-FLAG expressed in LACE1 knockdown background we show that the protein physically interacts with mitochondrial inner membrane protease YME1L. We further show that human LACE1 exhibits significant pro-apoptotic activity and that the protein is required for normal function of the mitochondrial respiratory chain. Thus, our work establishes LACE1 as a novel factor with the crucial role in mitochondrial homeostasis maintenance.Keywords: LACE1, mitochondria, apoptosis, protease
Procedia PDF Downloads 3175785 Reliability Study of Steel Headed Stud Shear Connector Exposed to Fire
Authors: Idris Haruna Muhammad, Okorie Austine Uche
Abstract:
This paper presents a study on reliability of shear connector exposed to fire situation in accordance with Eurocode 4. The reliability analysis i reliability analysis is based on First Order Second Moment Integration Technique (FOSMIT) using FORM 5. Performance functions for shear connector are derived for normal and under fire condition and their implied safety levels are evaluated. Four (4) design variables which include ultimate tensile strength, diameter of the stud, temperature and span of the steel beam are treated as random variables with their statistical characteristic adopted from literature. Results show that for normal condition the β – value decrease from 7.95 to 5.43 which show it is conservative in safety level for normal condition. Under fire condition, β – value decrease from 2.88 to – 0.32 with corresponding load ratio of 0.2 to 1.2. It was also shown from sensitivity assessment, that the temperature and span of the beam decrease with increase in their β – values while ultimate tensile strength and diameter of the stud increase with increase in their β – values for a given load ratio of 0.2 to 1.2.Keywords: Composite steel beam, Fire condition, Shear stud, Sensitivity study
Procedia PDF Downloads 5255784 Multi-Objective Discrete Optimization of External Thermal Insulation Composite Systems in Terms of Thermal and Embodied Energy Performance
Authors: Berfin Yildiz
Abstract:
These days, increasing global warming effects, limited amount of energy resources, etc., necessitates the awareness that must be present in every profession group. The architecture and construction sectors are responsible for both the embodied and operational energy of the materials. This responsibility has led designers to seek alternative solutions for energy-efficient material selection. The choice of energy-efficient material requires consideration of the entire life cycle, including the building's production, use, and disposal energy. The aim of this study is to investigate the method of material selection of external thermal insulation composite systems (ETICS). Embodied and in-use energy values of material alternatives were used for the evaluation in this study. The operational energy is calculated according to the u-value calculation method defined in the TS 825 (Thermal Insulation Requirements) standard for Turkey, and the embodied energy is calculated based on the manufacturer's Energy Performance Declaration (EPD). ETICS consists of a wall, adhesive, insulation, lining, mechanical, mesh, and exterior finishing materials. In this study, lining, mechanical, and mesh materials were ignored because EPD documents could not be obtained. The material selection problem is designed as a hypothetical volume area (5x5x3m) and defined as a multi-objective discrete optimization problem for external thermal insulation composite systems. Defining the problem as a discrete optimization problem is important in order to choose between materials of various thicknesses and sizes. Since production and use energy values, which are determined as optimization objectives in the study, are often conflicting values, material selection is defined as a multi-objective optimization problem, and it is aimed to obtain many solution alternatives by using Hypervolume (HypE) algorithm. The enrollment process started with 100 individuals and continued for 50 generations. According to the obtained results, it was observed that autoclaved aerated concrete and Ponce block as wall material, glass wool, as insulation material gave better results.Keywords: embodied energy, multi-objective discrete optimization, performative design, thermal insulation
Procedia PDF Downloads 1475783 Improved 3D Structure Prediction of Beta-Barrel Membrane Proteins by Using Evolutionary Coupling Constraints, Reduced State Space and an Empirical Potential Function
Authors: Wei Tian, Jie Liang, Hammad Naveed
Abstract:
Beta-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. They carry out diverse biological functions, including pore formation, membrane anchoring, enzyme activity, and bacterial virulence. In addition, beta-barrel membrane proteins increasingly serve as scaffolds for bacterial surface display and nanopore-based DNA sequencing. Due to difficulties in experimental structure determination, they are sparsely represented in the protein structure databank and computational methods can help to understand their biophysical principles. We have developed a novel computational method to predict the 3D structure of beta-barrel membrane proteins using evolutionary coupling (EC) constraints and a reduced state space. Combined with an empirical potential function, we can successfully predict strand register at > 80% accuracy for a set of 49 non-homologous proteins with known structures. This is a significant improvement from previous results using EC alone (44%) and using empirical potential function alone (73%). Our method is general and can be applied to genome-wide structural prediction.Keywords: beta-barrel membrane proteins, structure prediction, evolutionary constraints, reduced state space
Procedia PDF Downloads 6225782 Using Analytic Hierarchy Process as a Decision-Making Tool in Project Portfolio Management
Authors: Darius Danesh, Michael J. Ryan, Alireza Abbasi
Abstract:
Project Portfolio Management (PPM) is an essential component of an organisation’s strategic procedures, which requires attention of several factors to envisage a range of long-term outcomes to support strategic project portfolio decisions. To evaluate overall efficiency at the portfolio level, it is essential to identify the functionality of specific projects as well as to aggregate those findings in a mathematically meaningful manner that indicates the strategic significance of the associated projects at a number of levels of abstraction. PPM success is directly associated with the quality of decisions made and poor judgment increases portfolio costs. Hence, various Multi-Criteria Decision Making (MCDM) techniques have been designed and employed to support the decision-making functions. This paper reviews possible option to improve the decision-making outcomes in the organisational portfolio management processes using the Analytic Hierarchy Process (AHP) both from academic and practical perspectives and will examine the usability, certainty and quality of the technique. The results of the study will also provide insight into the technical risk associated with current decision-making model to underpin initiative tracking and strategic portfolio management.Keywords: analytic hierarchy process, decision support systems, multi-criteria decision making, project portfolio management
Procedia PDF Downloads 3255781 The Effects of Fungicide and Genetics on Fungal Diseases on Wheat in Nebraska With Emphasis on Stem Rust
Authors: Javed Sidiqi, Stephen Baezinger, Stephen Wegulo
Abstract:
Wheat (Triticum aestivum L.) production continues to be challenged by foliar fungal diseases although significant improvement has been made to manage the diseases through developing resistant varieties and the fungicide use to ensure sufficient wheat is produced to meet the growing population’s need. Significant crop losses have been recorded in the history of grain production and yield losses due to fungal diseases, and the trend continues to threat food security in the world and particularly in the less developed countries. The impact of individual fungal diseases on grain yield has been studied extensively to determine crop losses. However, there is limited research available to find out the combined effects of fungal diseases on grain yield and the ways to effectively manage the diseases. Therefore, the objectives of this research were to study the effect of fungal pathogens on grain yield of pre-released winter wheat genotypes in fungicide treated and untreated plots, and to determine whether S7b gene was present in ‘Gage’ wheat as previously hypothesized. Sixty winter wheat genotypes in fungicide treated and untreated plots were studied across four environments. There was a significant effect of fungicide on grain yield consistently across four environments in three years. Fungicide treated wheat lines demonstrated (4,496 kg/ ha-1) grain yield compared to (3,147 kg/ ha-1) grain yield in untreated wheat lines indicating 43% increased grain yield due to severity of foliar fungal diseases. Furthermore, fungicide application also caused an increase in protein concentration from 153 (g kg-1) to 164 (g kg-1) in treated plots in along with test weight from 73 to 77 (kg hL-1) respectively. Gage wheat variety and ISr7b-Ra were crossed to determine presence of Sr7b in Gage. The F2 and F2:3 segregating families were screened and evaluated for stem rust resistance. The segregation of families fell within 15:1 ratio for two separate resistance genes suggesting that Sr7b segregates independently from an unknown resistance gene in Gage that needs to be characterized for its use in the future wheat breeding program to develop resistant wheat varieties.Keywords: funicide, genetics, foliar diseases, grain
Procedia PDF Downloads 1305780 Molecular Detection and Antibiotics Resistance Pattern of Extended-Spectrum Beta-Lactamase Producing Escherichia coli in a Tertiary Hospital in Enugu, Nigeria
Authors: I. N. Nwafia, U. C. Ozumba, M. E. Ohanu, S. O. Ebede
Abstract:
Antibiotic resistance is increasing globally and has become a major health challenge. Extended-spectrum beta-lactamase is clinically important because the ESBL gene are mostly plasmid encoded and these plasmids frequently carry genes encoding resistance to other classes of antimicrobials thereby limiting antibiotic options in the treatment of infections caused by these organisms. The specific objectives of this study were to determine the prevalence of ESBLs production in Escherichia coli, to determine the antibiotic susceptibility pattern of ESBLs producing Escherichia coli, to detect TEM, SHV and CTX-M genes and the risk factors to acquisition of ESBL producing Escherichia coli. The protocol of the study was approved by Health Research and Ethics committee of the University of Nigeria Teaching Hospital (UNTH), Enugu. It was a descriptive cross-sectional study that involved all hospitalized patients in UNTH from whose specimens Escherichia coli was isolated during the period of the study. The samples analysed were urine, wound swabs, blood and cerebrospinal fluid. These samples were cultured in 5% sheep Blood agar and MacConkey agar (Oxoid Laboratories, Cambridge UK) and incubated at 35-370C for 24 hours. Escherichia coli was identified with standard biochemical tests and confirmed using API 20E auxanogram (bioMerieux, Marcy 1'Etoile, France). The antibiotic susceptibility testing was done by disc diffusion method and interpreted according to the Clinical and Laboratory Standard Institute guideline. ESBL production was confirmed using ESBL Epsilometer test strips (Liofilchem srl, Italy). The ESBL bla genes were detected with polymerase chain reaction, after extraction of DNA with plasmid mini-prep kit (Jena Bioscience, Jena, Germany). Data analysis was with appropriate descriptive and inferential statistics. One hundred and six isolates (53.00%) out of the 200 were from urine, followed by isolates from different swabs specimens 53(26.50%) and the least number of the isolates 4(2.00) were from blood (P value = 0.096). Seventy (35.00%) out of the 200 isolates, were confirmed positive for ESBL production. Forty-two (60.00%) of the isolates were from female patients while 28(40.00%) were from male patients (P value = 0.13). Sixty-eight (97.14%) of the isolates were susceptible to imipenem while all of the isolates were resistant to ampicillin, chloramphenicol and tetracycline. From the 70 positive isolates the ESBL genes detected with polymerase chain reaction were blaCTX-M (n=26; 37.14%), blaTEM (n=7; 10.00%), blaSHV (n=2; 2.86%), blaCTX-M/TEM (n=7; 10.0%), blaCTX-M/SHV (n=14; 20.0%) and blaCTX-M/TEM/SHV (n=10; 14.29%). There was no gene detected in 4(5.71%) of the isolates. The most associated risk factors to infections caused by ESBL producing Escherichia coli was previous antibiotics use for the past 3 months followed by admission in the intensive care unit, recent surgery, and urinary catheterization. In conclusion, ESBLs was detected in 4 of every 10 Escherichia coli with the predominant gene detected being CTX-M. This knowledge will enable appropriate measures towards improvement of patient health care, antibiotic stewardship, research and infection control in the hospital.Keywords: antimicrobial, Escherichia coli, extended spectrum beta lactamase, resistance
Procedia PDF Downloads 2995779 Seismic Retrofits – A Catalyst for Minimizing the Building Sector’s Carbon Footprint
Authors: Juliane Spaak
Abstract:
A life-cycle assessment was performed, looking at seven retrofit projects in New Zealand using LCAQuickV3.5. The study found that retrofits save up to 80% of embodied carbon emissions for the structural elements compared to a new building. In other words, it is only a 20% carbon investment to transform and extend a building’s life. In addition, the systems were evaluated by looking at environmental impacts over the design life of these buildings and resilience using FEMA P58 and PACT software. With the increasing interest in Zero Carbon targets, significant changes in the building and construction sector are required. Emissions for buildings arise from both embodied carbon and operations. Based on the significant advancements in building energy technology, the focus is moving more toward embodied carbon, a large portion of which is associated with the structure. Since older buildings make up most of the real estate stock of our cities around the world, their reuse through structural retrofit and wider refurbishment plays an important role in extending the life of a building’s embodied carbon. New Zealand’s building owners and engineers have learned a lot about seismic issues following a decade of significant earthquakes. Recent earthquakes have brought to light the necessity to move away from constructing code-minimum structures that are designed for life safety but are frequently ‘disposable’ after a moderate earthquake event, especially in relation to a structure’s ability to minimize damage. This means weaker buildings sit as ‘carbon liabilities’, with considerably more carbon likely to be expended remediating damage after a shake. Renovating and retrofitting older assets plays a big part in reducing the carbon profile of the buildings sector, as breathing new life into a building’s structure is vastly more sustainable than the highest quality ‘green’ new builds, which are inherently more carbon-intensive. The demolition of viable older buildings (often including heritage buildings) is increasingly at odds with society’s desire for a lower carbon economy. Bringing seismic resilience and carbon best practice together in decision-making can open the door to commercially attractive outcomes, with retrofits that include structural and sustainability upgrades transforming the asset’s revenue generation. Across the global real estate market, tenants are increasingly demanding the buildings they occupy be resilient and aligned with their own climate targets. The relationship between seismic performance and ‘sustainable design’ has yet to fully mature, yet in a wider context is of profound consequence. A whole-of-life carbon perspective on a building means designing for the likely natural hazards within the asset’s expected lifespan, be that earthquake, storms, damage, bushfires, fires, and so on, ¬with financial mitigation (e.g., insurance) part, but not all, of the picture.Keywords: retrofit, sustainability, earthquake, reuse, carbon, resilient
Procedia PDF Downloads 755778 A Multi-Objective Optimization Tool for Dual-Mode Operating Active Magnetic Regenerator Model
Authors: Anna Ouskova Leonteva, Michel Risser, Anne Jeannin-Girardon, Pierre Parrend, Pierre Collet
Abstract:
This paper proposes an efficient optimization tool for an active magnetic regenerator (AMR) model, operating in two modes: magnetic refrigeration system (MRS) and thermo-magnetic generator (TMG). The aim of this optimizer is to improve the design of the AMR by applying a multi-physics multi-scales numerical model as a core of evaluation functions to achieve industrial requirements for refrigeration and energy conservation systems. Based on the multi-objective non-dominated sorting genetic algorithm 3 (NSGA3), it maximizes four different objectives: efficiency and power density for MRS and TMG. The main contribution of this work is in the simultaneously application of a CPU-parallel NSGA3 version to the AMR model in both modes for studying impact of control and design parameters on the performance. The parametric study of the optimization results are presented. The main conclusion is that the common (for TMG and MRS modes) optimal parameters can be found by the proposed tool.Keywords: ecological refrigeration systems, active magnetic regenerator, thermo-magnetic generator, multi-objective evolutionary optimization, industrial optimization problem, real-world application
Procedia PDF Downloads 1185777 Artificial Neural Network Reconstruction of Proton Exchange Membrane Fuel Cell Output Profile under Transient Operation
Abstract:
Unbalanced power output from individual cells of Proton Exchange Membrane Fuel Cell (PEMFC) has direct effects on PEMFC stack performance, in particular under transient operation. In the paper, a multi-layer ANN (Artificial Neural Network) model Radial Basis Functions (RBF) has been developed for predicting cells' output profiles by applying gas supply parameters, cooling conditions, temperature measurement of individual cells, etc. The feed-forward ANN model was validated with experimental data. Influence of relevant parameters of RBF on the network accuracy was investigated. After adequate model training, the modelling results show good correspondence between actual measurements and reconstructed output profiles. Finally, after the model was used to optimize the stack output performance under steady-state and transient operating conditions, it suggested that the developed ANN control model can help PEMFC stack to have obvious improvement on power output under fast acceleration process.Keywords: proton exchange membrane fuel cell, PEMFC, artificial neural network, ANN, cell output profile, transient
Procedia PDF Downloads 1765776 Excavation of Phylogenetically Diverse Bioactive Actinobacteria from Unexplored Regions of Sundarbans Mangrove Ecosystem for Mining of Economically Important Antimicrobial Compounds
Authors: Sohan Sengupta, Arnab Pramanik, Abhrajyoti Ghosh, Maitree Bhattacharyya
Abstract:
Newly emerged phyto-pathogens and multi drug resistance have been threating the world for last few decades. Actinomycetes, the most endowed group of microorganisms isolated from unexplored regions of the world may be the ultimate solution to these problems. Thus the aim of this study was to isolate several bioactive actinomycetes strains capable of producing antimicrobial secondary metabolite from Sundarbans, the only mangrove tiger land of the world. Fifty four actinomycetes were isolated and analyzed for antimicrobial activity against fifteen test organisms including three phytopathogens. Nine morphologically distinct and biologically active isolates were subjected to polyphasic identification study. 16s rDNA sequencing indicated eight isolates to reveal maximum similarity to the genus streptomyces, whereas one isolate presented only 93.57% similarity with Streptomyces albogriseolus NRRL B-1305T. Seventy-one carbon sources and twenty-three chemical sources utilization assay revealed their metabolic relatedness. Among these nine isolates three specific strains were found to have notably higher degree of antimicrobial potential effective in a broader range including phyto-pathogenic fungus. PCR base whole genome screen for PKS and NRPS genes, confirmed the occurrence of bio-synthetic gene cluster in some of the isolates for novel antibiotic production. Finally the strain SMS_SU21, which showed antimicrobial activity with MIC value of 0.05 mg ml-1and antioxidant activity with IC50 value of 0.242±0.33 mg ml-1 was detected to be the most potential one. True prospective of this strain was evaluated utilizing GC-MS and the bioactive compound responsible for antimicrobial activity was purified and characterized. Rare bioactive actinomycetes were isolated from unexplored heritage site. Diversity of the biosynthetic gene cluster for antimicrobial compound production has also been evaluated. Antimicrobial compound SU21-C has been identified and purified which is active against a broad range of pathogens.Keywords: actinomycetes, sundarbans, antimicrobial, pks nrps, phyto-pathogens, GC-MS
Procedia PDF Downloads 5075775 Molecular Approach for the Detection of Lactic Acid Bacteria in the Kenyan Spontaneously Fermented Milk, Mursik
Authors: John Masani Nduko, Joseph Wafula Matofari
Abstract:
Many spontaneously fermented milk products are produced in Kenya, where they are integral to the human diet and play a central role in enhancing food security and income generation via small-scale enterprises. Fermentation enhances product properties such as taste, aroma, shelf-life, safety, texture, and nutritional value. Some of these products have demonstrated therapeutic and probiotic effects although recent reports have linked some to death, biotoxin infections, and esophageal cancer. These products are mostly processed from poor quality raw materials under unhygienic conditions resulting to inconsistent product quality and limited shelf-lives. Though very popular, research on their processing technologies is low, and none of the products has been produced under controlled conditions using starter cultures. To modernize the processing technologies for these products, our study aims at describing the microbiology and biochemistry of a representative Kenyan spontaneously fermented milk product, Mursik using modern biotechnology (DNA sequencing) and their chemical composition. Moreover, co-creation processes reflecting stakeholders’ experiences on traditional fermented milk production technologies and utilization, ideals and senses of value, which will allow the generation of products based on common ground for rapid progress will be discussed. Knowledge of the value of clean starting raw material will be emphasized, the need for the definition of fermentation parameters highlighted, and standard equipment employment to attain controlled fermentation discussed. This presentation will review the available information regarding traditional fermented milk (Mursik) and highlight our current research work on the application of molecular approaches (metagenomics) for the valorization of Mursik production process through starter culture/ probiotic strains isolation and identification, and quality and safety aspects of the product. The importance of the research and future research areas on the same subject will also be highlighted.Keywords: lactic acid bacteria, high throughput biotechnology, spontaneous fermentation, Mursik
Procedia PDF Downloads 2995774 Automatic Verification Technology of Virtual Machine Software Patch on IaaS Cloud
Authors: Yoji Yamato
Abstract:
In this paper, we propose an automatic verification technology of software patches for user virtual environments on IaaS Cloud to decrease verification costs of patches. In these days, IaaS services have been spread and many users can customize virtual machines on IaaS Cloud like their own private servers. Regarding to software patches of OS or middleware installed on virtual machines, users need to adopt and verify these patches by themselves. This task increases operation costs of users. Our proposed method replicates user virtual environments, extracts verification test cases for user virtual environments from test case DB, distributes patches to virtual machines on replicated environments and conducts those test cases automatically on replicated environments. We have implemented the proposed method on OpenStack using Jenkins and confirmed the feasibility. Using the implementation, we confirmed the effectiveness of test case creation efforts by our proposed idea of 2-tier abstraction of software functions and test cases. We also evaluated the automatic verification performance of environment replications, test cases extractions and test cases conductions.Keywords: OpenStack, cloud computing, automatic verification, jenkins
Procedia PDF Downloads 492