Search results for: SME’s performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12934

Search results for: SME’s performance

8524 Organizational Challenges Facing a Small Recruitment Agency: Case Study of a Firm Based in South India

Authors: Anirban Sengupta

Abstract:

The recruitment industry plays a critical role in connecting employers with talent. While there are many big recruitment firms and big organizations that can also afford to have their own recruitment teams, small recruitment agencies form an essential part of the ecosystem serving a vast majority of small and medium sized clients. These clients utilize the services of the recruitment agencies to be able to scale their operations. However, there are significant organizational challenges that a small recruitment agency faces to build a sustainable and growing business. This case study explores the organizational challenges faced by a small recruitment agency in South India in an increasingly competitive landscape. Through this paper, the authors hope to understand, analyze and share the challenges faced by this firm and suggest a systematic approach to address the challenges. The study uses both qualitative and quantitative data collected from the agency’s management and employees based on the year 2024. The findings reveal that the agency struggles with limited resources, unpredictable clients, and lack of scalable processes and systems, which impacts not only the business outcomes but also key areas like employee performance management, compensation and benefits, and employee well-being. Based on these insights, the study proposes several strategies for overcoming these challenges, such as implementing scalable systems and processes. This research contributes to the understanding of the specific obstacles faced by small recruitment agencies in regional contexts and offers actionable recommendations for improving their organizational health, which may, in turn, positively impact their competitiveness.

Keywords: recruitment, organizational challenges, performance management, recruitment technology, application tracking system

Procedia PDF Downloads 14
8523 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning

Authors: Joseph George, Anne Kotteswara Roa

Abstract:

Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.

Keywords: skin cancer, deep learning, performance measures, accuracy, datasets

Procedia PDF Downloads 137
8522 Emerging Dimensions of Intrinsic Motivation for Effective Performance

Authors: Prachi Bhatt

Abstract:

Motivated workforce is an important asset of an organisation. Intrinsic motivation is one of the key aspects of people operations and performance. Researches have emphasized the significance of internal factors in individuals’ motivation. In the changing business scenario, it is a challenge for the organizations’ leaders to inspire and motivate their workforce. The present study deals with the intrinsic motivation potential of an individual which govern the innate capability of an individual driving him or her to behave or perform in the changing work environment, tasks, teams. Differences at individual level significantly influence differences in levels of motivation. In the above context, the present research attempts to explore behavioral trait dimensions which influence motivational potential of an individual. The present research emphasizes the significance of intrinsic motivational potential and the significance of exploring the differences in the intrinsic motivational potential levels of individuals at work places. Thus, this paper empirically tests the framework of behavioral traits which affects motivational potential of an individual. With the help of two studies i.e., Study 1 and Study 2, exploratory factor analysis and confirmatory factor analysis, respectively, indicated a reliable measure assessing intrinsic motivational potential of an individual. Given the variety of challenges of motivating contemporary workforce, and with increasing importance of intrinsic motivation, the paper discusses the relevance of the findings and of the measure assessing intrinsic motivational potential. Assessment of such behavioral traits would assist in the effective realization of intrinsic motivational potential of individuals. Additionally, the paper discusses the practical implications and furnishes scope for future research.

Keywords: behavioral traits, individual differences, intrinsic motivational potential, intrinsic motivation, motivation, workplace motivation

Procedia PDF Downloads 200
8521 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images

Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn

Abstract:

The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.

Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation

Procedia PDF Downloads 363
8520 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor

Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir

Abstract:

This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.

Keywords: centrifugal compressor, contra-rotating, interaction rotor, vacuum

Procedia PDF Downloads 139
8519 Assessment on the Conduct of Arnis Competition in Pasuc National Olympics 2015: Basis for Improvement of Rules in Competition

Authors: Paulo O. Motita

Abstract:

The Philippine Association of State Colleges and University (PASUC) is an association of State owned and operated higher learning institutions in the Philippines, it is the association that spearhead the conduct of the Annual National Athletic competitions for State Colleges and Universities and Arnis is one of the regular sports. In 2009, Republic Act 9850 also known as declared Arnis as the National Sports and Martial arts of the Philippines. Arnis an ancient Filipino Martial Arts is the major sports in the Annual Palarong Pambansa and other school based sports events. The researcher as a Filipino Martial Arts master and a former athlete desired to determine the extent of acceptability of the arnis rules in competition which serves as the basis for the development of arnis rules. The study aimed to assess the conduct of Arnis competition in PASUC Olympics 2015 in Tugegarao City, Cagayan, Philippines.the rules and conduct itself as perceived by Officiating officials, Coaches and Athletes during the competition last February 7-15, 2015. The descriptive method of research was used, the survey questionnaire as the data gathering instrument was validated. The respondents were composed of 12 Officiating officials, 19 coaches and 138 athletes representing the different regions. Their responses were treated using the Mean, Percentage and One-way Analysis of Variance. The study revealed that the conduct of Arnis competition in PASUC Olympics 2015 was at the low extent to moderate extent as perceived by the three groups of respondents in terms of officiating, scoring and giving violations. Furthermore there is no significant difference in the assessment of the three groups of respondents in the assessment of Anyo and Labanan. Considering the findings of the study, the following conclusions were drawn: 1). There is a need to identify the criteria for judging in Anyo and a tedious scrutiny on the rules of the game for labanan. 2) The three groups of respondents have similar views towards the assessment on the overall competitions for anyo that there were no clear technical guidelines for judging the performance of anyo event. 3). The three groups of respondents have similar views towards the assessment on the overall competitions for labanan that there were no clear technical guidelines for majority rule of giving scores in labanan. 4) The Anyo performance should be rated according to effectiveness of techniques and performance of weapon/s that are being used. 5) On other issues and concern towards the rules of competitions, labanan should be addressed in improving rules of competitions, focus on the applications of majority rules for scoring, players shall be given rest interval, a clear guidelines and set a standard qualifications for officiating officials.

Keywords: PASUC Olympics 2015, Arnis rules of competition, Anyo, Labanan, officiating

Procedia PDF Downloads 461
8518 Genotypic Variation in the Germination Performance and Seed Vigor of Safflower (Carthamus tinctorius L.)

Authors: Mehmet Demir Kaya, Engin Gökhan Kulan, Onur İleri, Süleyman Avcı

Abstract:

Due to variation in seed size, shape and oil content of safflower cultivars, germination and emergence performance have been severely influenced by seed characteristics. This study aimed to determine genotypic variation among safflower genotypes for one thousand seed weight, oil content, germination and seed vigor using electrical conductivity (EC) and cold test. In the study, safflower lines ES37-5, ES38-4, ES43-11, ES55-14 and ES58-11 which were developed by single seed selection method, and Dinçer and Remzibey-05 were used as standard varieties. The genotypes were grown under rainfed conditions in Eskişehir, Turkey with four replications. The seeds of each genotype were subjected to standard germination and emergence test at 25°C for 10 days with four replications and 50 seeds per replicate. Electrical conductivity test was performed at 25°C for 24 h to assess the seed vigor. Also, cold test were applied to each safflower genotype at 10°C for 4 days and 25°C for 6 days. Results showed that oil content of the safflower genotypes were different. The highest oil content was determined in ES43-11 with 36.6% while the lowest was 25.9% in ES38-4. Higher germination and emergence rate were obtained from ES55-14 with 96.5% and 73.0%, respectively. There was no significant difference among the safflower genotypes for EC values. Cold test showed that ES43-11 and ES55-14 gave the maximum germination percentages. It was concluded that genotypic factors except for soil and climatic conditions play an important role for determining seed vigor because safflower genotypes grown at the same condition produced various seed vigor values.

Keywords: Carthamus tinctorius L., germination, emergence, cold test, electrical conductivity

Procedia PDF Downloads 374
8517 Recognizing Human Actions by Multi-Layer Growing Grid Architecture

Authors: Z. Gharaee

Abstract:

Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.

Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance

Procedia PDF Downloads 159
8516 Atomic Layer Deposition of Metal Oxides on Si/C Materials for the Improved Cycling Stability of High-Capacity Lithium-Ion Batteries

Authors: Philipp Stehle, Dragoljub Vrankovic, Montaha Anjass

Abstract:

Due to its high availability and extremely high specific capacity, silicon (Si) is the most promising anode material for next generation lithium-ion batteries (LIBs). However, Si anodes are suffering from high volume changes during cycling causing unstable solid-electrolyte interface (SEI). One approach for mitigation of these effects is to embed Si particles into a carbon matrix to create silicon/carbon composites (Si/C). These typically show more stable electrochemical performance than bare silicon materials. Nevertheless, the same failure mechanisms mentioned earlier appear in a less pronounced form. In this work, we further improved the cycling performance of two commercially available Si/C materials by coating thin metal oxide films of different thicknesses on the powders via Atomic Layer Deposition (ALD). The coated powders were analyzed via ICP-OES and AFM measurements. Si/C-graphite anodes with automotive-relevant loadings (~3.5 mAh/cm2) were processed out of the materials and tested in half coin cells (HCCs) and full pouch cells (FPCs). During long-term cycling in FPCs, a significant improvement was observed for some of the ALD-coated materials. After 500 cycles, the capacity retention was already up to 10% higher compared to the pristine materials. Cycling of the FPCs continued until they reached a state of health (SOH) of 80%. By this point, up to the triple number of cycles were achieved by ALD-coated compared to pristine anodes. Post-mortem analysis via various methods was carried out to evaluate the differences in SEI formation and thicknesses.

Keywords: silicon anodes, li-ion batteries, atomic layer deposition, silicon-carbon composites, surface coatings

Procedia PDF Downloads 127
8515 On the Existence of Homotopic Mapping Between Knowledge Graphs and Graph Embeddings

Authors: Jude K. Safo

Abstract:

Knowledge Graphs KG) and their relation to Graph Embeddings (GE) represent a unique data structure in the landscape of machine learning (relative to image, text and acoustic data). Unlike the latter, GEs are the only data structure sufficient for representing hierarchically dense, semantic information needed for use-cases like supply chain data and protein folding where the search space exceeds the limits traditional search methods (e.g. page-rank, Dijkstra, etc.). While GEs are effective for compressing low rank tensor data, at scale, they begin to introduce a new problem of ’data retreival’ which we observe in Large Language Models. Notable attempts by transE, TransR and other prominent industry standards have shown a peak performance just north of 57% on WN18 and FB15K benchmarks, insufficient practical industry applications. They’re also limited, in scope, to next node/link predictions. Traditional linear methods like Tucker, CP, PARAFAC and CANDECOMP quickly hit memory limits on tensors exceeding 6.4 million nodes. This paper outlines a topological framework for linear mapping between concepts in KG space and GE space that preserve cardinality. Most importantly we introduce a traceable framework for composing dense linguistic strcutures. We demonstrate performance on WN18 benchmark this model hits. This model does not rely on Large Langauge Models (LLM) though the applications are certainy relevant here as well.

Keywords: representation theory, large language models, graph embeddings, applied algebraic topology, applied knot theory, combinatorics

Procedia PDF Downloads 72
8514 Numerical Performance Evaluation of a Savonius Wind Turbines Using Resistive Torque Modeling

Authors: Guermache Ahmed Chafik, Khelfellah Ismail, Ait-Ali Takfarines

Abstract:

The Savonius vertical axis wind turbine is characterized by sufficient starting torque at low wind speeds, simple design and does not require orientation to the wind direction; however, the developed power is lower than other types of wind turbines such as Darrieus. To increase these performances several studies and researches have been developed, such as optimizing blades shape, using passive controls and also minimizing power losses sources like the resisting torque due to friction. This work aims to estimate the performance of a Savonius wind turbine introducing a User Defined Function to the CFD model analyzing resisting torque. This User Defined Function is developed to simulate the action of the wind speed on the rotor; it receives the moment coefficient as an input to compute the rotational velocity that should be imposed on computational domain rotating regions. The rotational velocity depends on the aerodynamic moment applied on the turbine and the resisting torque, which is considered a linear function. Linking the implemented User Defined Function with the CFD solver allows simulating the real functioning of the Savonius turbine exposed to wind. It is noticed that the wind turbine takes a while to reach the stationary regime where the rotational velocity becomes invariable; at that moment, the tip speed ratio, the moment and power coefficients are computed. To validate this approach, the power coefficient versus tip speed ratio curve is compared with the experimental one. The obtained results are in agreement with the available experimental results.

Keywords: resistant torque modeling, Savonius wind turbine, user-defined function, vertical axis wind turbine performances

Procedia PDF Downloads 162
8513 The Impact of the Enron Scandal on the Reputation of Corporate Social Responsibility Rating Agencies

Authors: Jaballah Jamil

Abstract:

KLD (Peter Kinder, Steve Lydenberg and Amy Domini) research & analytics is an independent intermediary of social performance information that adopts an investor-pay model. KLD rating agency does not have an explicit monitoring on the rated firm which suggests that KLD ratings may not include private informations. Moreover, the incapacity of KLD to predict accurately the extra-financial rating of Enron casts doubt on the reliability of KLD ratings. Therefore, we first investigate whether KLD ratings affect investors' perception by studying the effect of KLD rating changes on firms' financial performances. Second, we study the impact of the Enron scandal on investors' perception of KLD rating changes by comparing the effect of KLD rating changes on firms' financial performances before and after the failure of Enron. We propose an empirical study that relates a number of equally-weighted portfolios returns, excess stock returns and book-to-market ratio to different dimensions of KLD social responsibility ratings. We first find that over the last two decades KLD rating changes influence significantly and negatively stock returns and book-to-market ratio of rated firms. This finding suggests that a raise in corporate social responsibility rating lowers the firm's risk. Second, to assess the Enron scandal's effect on the perception of KLD ratings, we compare the effect of KLD rating changes before and after the Enron scandal. We find that after the Enron scandal this significant effect disappears. This finding supports the view that the Enron scandal annihilates the KLD's effect on Socially Responsible Investors. Therefore, our findings may question results of recent studies that use KLD ratings as a proxy for Corporate Social Responsibility behavior.

Keywords: KLD social rating agency, investors' perception, investment decision, financial performance

Procedia PDF Downloads 444
8512 Enhancing Employee Innovative Behaviours Through Human Resource Wellbeing Practices

Authors: Jarrod Haar, David Brougham

Abstract:

The present study explores the links between supporting employee well-being and the potential benefits to employee performance. We focus on employee innovative work behaviors (IWBs), which have three stages: (1) development, (2) adoption, and (3) implementation of new ideas and work methods. We explore the role of organizational support focusing on employee well-being via High-Performance Work Systems (HPWS). HPWS are HR practices that are designed to enhance employees’ skills, commitment, and ultimately, productivity. HPWS influence employee performance through building their skills, knowledge, and abilities and there is meta-analytic support for firm-level HPWS influencing firm performance, but less attention towards employee outcomes, especially innovation. We explore HPWS-wellbeing being offered (e.g., EAPs, well-being App, etc.) to capture organizational commitment to employee well-being. Under social exchange theory, workers should reciprocate their firm's offering of HPWS-wellbeing with greater efforts towards IWBs. Further, we explore playful work design as a mediator, which represents employees proactively creating work conditions that foster enjoyment/challenge but don’t require any design change to the job itself. We suggest HPWS-wellbeing can encourage employees to become more playful, and ultimately more innovative. Finally, beyond direct effects, we examine whether these relations are similar by gender and ultimately test a moderated mediation model. Using N=1135 New Zealand employees, we established measures with confirmatory factor analysis (CFA), and all measures had good psychometric properties (α>.80). We controlled for age, tenure, education, and hours worked and analyzed data using the PROCESS macro (version 4.2) specifically model 8 (moderated mediation). We analyzed overall IWB, and then again across the three stages. Overall, we find HPWS-wellbeing is significantly related to overall IWBs and the three stages (development, adoption, and implementation) individually. Similarly, HPWS-wellbeing shapes playful work design and playful work design predicts overall IWBs and the three stages individually. It only partially mediates the effects of HPWS-wellbeing, which retains a significant indirect effect. Moderation effects are supported, with males reporting a more significant effect from HPWS-wellbeing on playful work design but not IWB (or any of the three stages) than females. Females report higher playful work design when HPWS-wellbeing is low, but the effects are reversed when HPWS-wellbeing is high (males higher). Thus, males respond stronger under social exchange theory from HPWS-wellbeing, at least towards expressing playful work design. Finally, evidence of moderated mediation effects is found on overall IWBs and the three stages. Males report a significant indirect effect from HPWS-wellbeing on IWB (through playful work design), while female employees report no significant indirect effect. The benefits of playful work design fully account for their IWBs. The models account for small amounts of variance towards playful work design (12%) but larger for IWBs (26%). The study highlights a gap in the literature on HPWS-wellbeing and provides empirical evidence of their importance towards worker innovation. Further, gendered effects suggest these benefits might not be equal. The findings provide useful insights for organizations around how providing HR practices that support employee well-being are important, although how they work for different genders needs further exploration.

Keywords: human resource practices, wellbeing, innovation, playful work design

Procedia PDF Downloads 84
8511 Designing the Maturity Model of Smart Digital Transformation through the Foundation Data Method

Authors: Mohammad Reza Fazeli

Abstract:

Nowadays, the fourth industry, known as the digital transformation of industries, is seen as one of the top subjects in the history of structural revolution, which has led to the high-tech and tactical dominance of the organization. In the face of these profits, the undefined and non-transparent nature of the after-effects of investing in digital transformation has hindered many organizations from attempting this area of this industry. One of the important frameworks in the field of understanding digital transformation in all organizations is the maturity model of digital transformation. This model includes two main parts of digital transformation maturity dimensions and digital transformation maturity stages. Mediating factors of digital maturity and organizational performance at the individual (e.g., motivations, attitudes) and at the organizational level (e.g., organizational culture) should be considered. For successful technology adoption processes, organizational development and human resources must go hand in hand and be supported by a sound communication strategy. Maturity models are developed to help organizations by providing broad guidance and a roadmap for improvement. However, as a result of a systematic review of the literature and its analysis, it was observed that none of the 18 maturity models in the field of digital transformation fully meet all the criteria of appropriateness, completeness, clarity, and objectivity. A maturity assessment framework potentially helps systematize assessment processes that create opportunities for change in processes and organizations enabled by digital initiatives and long-term improvements at the project portfolio level. Cultural characteristics reflecting digital culture are not systematically integrated, and specific digital maturity models for the service sector are less clearly presented. It is also clearly evident that research on the maturity of digital transformation as a holistic concept is scarce and needs more attention in future research.

Keywords: digital transformation, organizational performance, maturity models, maturity assessment

Procedia PDF Downloads 113
8510 Subcontractor Development Practices and Processes: A Conceptual Model for LEED Projects

Authors: Andrea N. Ofori-Boadu

Abstract:

The purpose is to develop a conceptual model of subcontractor development practices and processes that strengthen the integration of subcontractors into construction supply chain systems for improved subcontractor performance on Leadership in Energy and Environmental Design (LEED) certified building projects. The construction management of a LEED project has an important objective of meeting sustainability certification requirements. This is in addition to the typical project management objectives of cost, time, quality, and safety for traditional projects; and, therefore increases the complexity of LEED projects. Considering that construction management organizations rely heavily on subcontractors, poor performance on complex projects such as LEED projects has been largely attributed to the unsatisfactory preparation of subcontractors. Furthermore, the extensive use of unique and non-repetitive short term contracts limits the full integration of subcontractors into construction supply chains and hinders long-term cooperation and benefits that could enhance performance on construction projects. Improved subcontractor development practices are needed to better prepare and manage subcontractors, so that complex objectives can be met or exceeded. While supplier development and supply chain theories and practices for the manufacturing sector have been extensively investigated to address similar challenges, investigations in the construction sector are not that obvious. Consequently, the objective of this research is to investigate effective subcontractor development practices and processes to guide construction management organizations in their development of a strong network of high performing subcontractors. Drawing from foundational supply chain and supplier development theories in the manufacturing sector, a mixed interpretivist and empirical methodology is utilized to assess the body of knowledge within literature for conceptual model development. A self-reporting survey with five-point Likert scale items and open-ended questions is administered to 30 construction professionals to estimate their perceptions of the effectiveness of 37 practices, classified into five subcontractor development categories. Data analysis includes descriptive statistics, weighted means, and t-tests that guide the effectiveness ranking of practices and categories. The results inform the proposed three-phased LEED subcontractor development program model which focuses on preparation, development and implementation, and monitoring. Highly ranked LEED subcontractor pre-qualification, commitment, incentives, evaluation, and feedback practices are perceived as more effective, when compared to practices requiring more direct involvement and linkages between subcontractors and construction management organizations. This is attributed to unfamiliarity, conflicting interests, lack of trust, and resource sharing challenges. With strategic modifications, the recommended practices can be extended to other non-LEED complex projects. Additional research is needed to guide the development of subcontractor development programs that strengthen direct involvement between construction management organizations and their network of high performing subcontractors. Insights from this present research strengthen theoretical foundations to support future research towards more integrated construction supply chains. In the long-term, this would lead to increased performance, profits and client satisfaction.

Keywords: construction management, general contractor, supply chain, sustainable construction

Procedia PDF Downloads 114
8509 Series Network-Structured Inverse Models of Data Envelopment Analysis: Pitfalls and Solutions

Authors: Zohreh Moghaddas, Morteza Yazdani, Farhad Hosseinzadeh

Abstract:

Nowadays, data envelopment analysis (DEA) models featuring network structures have gained widespread usage for evaluating the performance of production systems and activities (Decision-Making Units (DMUs)) across diverse fields. By examining the relationships between the internal stages of the network, these models offer valuable insights to managers and decision-makers regarding the performance of each stage and its impact on the overall network. To further empower system decision-makers, the inverse data envelopment analysis (IDEA) model has been introduced. This model allows the estimation of crucial information for estimating parameters while keeping the efficiency score unchanged or improved, enabling analysis of the sensitivity of system inputs or outputs according to managers' preferences. This empowers managers to apply their preferences and policies on resources, such as inputs and outputs, and analyze various aspects like production, resource allocation processes, and resource efficiency enhancement within the system. The results obtained can be instrumental in making informed decisions in the future. The top result of this study is an analysis of infeasibility and incorrect estimation that may arise in the theory and application of the inverse model of data envelopment analysis with network structures. By addressing these pitfalls, novel protocols are proposed to circumvent these shortcomings effectively. Subsequently, several theoretical and applied problems are examined and resolved through insightful case studies.

Keywords: inverse models of data envelopment analysis, series network, estimation of inputs and outputs, efficiency, resource allocation, sensitivity analysis, infeasibility

Procedia PDF Downloads 57
8508 Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance

Authors: Akan C. Offong, E. J. Anthony, Vasilije Manovic

Abstract:

A modified steady-state numerical model is developed for the electrochemical reduction of CO2 to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm2), FE-faradaic efficiency (~98%) and conversion (~80%) for CO2 electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF4]) electrolyte, on CD, FE and CO2 conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF4]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO2 mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO2 conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H2 formations. However, H2 formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO2 flow rate increases, CD, FE and CO2 conversion increases.

Keywords: carbon dioxide, electro-chemical reduction, ionic liquids, microfluidics, modelling

Procedia PDF Downloads 151
8507 The Research of Hand-Grip Strength for Adults with Intellectual Disability

Authors: Haiu-Lan Chin, Yu-Fen Hsiao, Hua-Ying Chuang, Wei Lee

Abstract:

An adult with intellectual disability generally has insufficient physical activity which is an important factor leading to premature weakness. Studies in recent years on frailty syndrome have accumulated substantial data about indicators of human aging, including unintentional weight loss, self-reported exhaustion, weakness, slow walking speed, and low physical activity. Of these indicators, hand-grip strength can be seen as a predictor of mortality, disability, complications, and increased length of hospital stay. Hand-grip strength in fact provides a comprehensive overview of one’s vitality. The research is about the investigation on hand-grip strength of adults with intellectual disabilities in facilities, institutions and workshops. The participants are 197 male adults (M=39.09±12.85 years old), and 114 female ones (M=35.80±8.2 years old) so far. The aim of the study is to figure out the performance of their hand-grip strength, and initiate the setting of training on hand-grip strength in their daily life which will decrease the weakening on their physical condition. Test items include weight, bone density, basal metabolic rate (BMR), static body balance except hand-grip strength. Hand-grip strength was measured by a hand dynamometer and classified as normal group ( ≧ 30 kg for male and ≧ 20 kg for female) and weak group ( < 30 kg for male, < 20 kg for female)The analysis includes descriptive statistics, and the indicators of grip strength fo the adults with intellectual disability. Though the research is still ongoing and the participants are increasing, the data indicates: (1) The correlation between hand-grip strength and degree of the intellectual disability (p ≦. 001), basal metabolic rate (p ≦ .001), and static body balance (p ≦ .01) as well. Nevertheless, there is no significant correlation between grip strength and basal metabolic rate which had been having significant correlation with hand-grip strength. (2) The difference between male and female subjects in hand-grip strength is significant, the hand-grip strength of male subjects (25.70±12.81 Kg) is much higher than female ones (16.30±8.89 Kg). Compared to the female counterparts, male participants indicate greater individual differences. And the proportion of weakness between male and female subjects is also different. (3) The regression indicates the main factors related to grip strength performance include degree of the intellectual disability, height, static body balance, training and weight sequentially. (4) There is significant difference on both hand-grip and static body balance between participants in facilities and workshops. The study supports the truth about the sex and gender differences in health. Nevertheless, the average hand-grip strength of left hand is higher than right hand in both male and female subjects. Moreover, 71.3% of male subjects and 64.2% of female subjects have better performance in their left hand-grip which is distinctive features especially in low degree of the intellectual disability.

Keywords: adult with intellectual disability, frailty syndrome, grip strength, physical condition

Procedia PDF Downloads 183
8506 Evaluation of Ensemble Classifiers for Intrusion Detection

Authors: M. Govindarajan

Abstract:

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection. 

Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy

Procedia PDF Downloads 252
8505 Differences in Assessing Hand-Written and Typed Student Exams: A Corpus-Linguistic Study

Authors: Jutta Ransmayr

Abstract:

The digital age has long arrived at Austrian schools, so both society and educationalists demand that digital means should be integrated accordingly to day-to-day school routines. Therefore, the Austrian school-leaving exam (A-levels) can now be written either by hand or by using a computer. However, the choice of writing medium (pen and paper or computer) for written examination papers, which are considered 'high-stakes' exams, raises a number of questions that have not yet been adequately investigated and answered until recently, such as: What effects do the different conditions of text production in the written German A-levels have on the component of normative linguistic accuracy? How do the spelling skills of German A-level papers written with a pen differ from those that the students wrote on the computer? And how is the teacher's assessment related to this? Which practical desiderata for German didactics can be derived from this? In a trilateral pilot project of the Austrian Center for Digital Humanities (ACDH) of the Austrian Academy of Sciences and the University of Vienna in cooperation with the Austrian Ministry of Education and the Council for German Orthography, these questions were investigated. A representative Austrian learner corpus, consisting of around 530 German A-level papers from all over Austria (pen and computer written), was set up in order to subject it to a quantitative (corpus-linguistic and statistical) and qualitative investigation with regard to the spelling and punctuation performance of the high school graduates and the differences between pen- and computer-written papers and their assessments. Relevant studies are currently available mainly from the Anglophone world. These have shown that writing on the computer increases the motivation to write, has positive effects on the length of the text, and, in some cases, also on the quality of the text. Depending on the writing situation and other technical aids, better results in terms of spelling and punctuation could also be found in the computer-written texts as compared to the handwritten ones. Studies also point towards a tendency among teachers to rate handwritten texts better than computer-written texts. In this paper, the first comparable results from the German-speaking area are to be presented. Research results have shown that, on the one hand, there are significant differences between handwritten and computer-written work with regard to performance in orthography and punctuation. On the other hand, the corpus linguistic investigation and the subsequent statistical analysis made it clear that not only the teachers' assessments of the students’ spelling performance vary enormously but also the overall assessments of the exam papers – the factor of the production medium (pen and paper or computer) also seems to play a decisive role.

Keywords: exam paper assessment, pen and paper or computer, learner corpora, linguistics

Procedia PDF Downloads 174
8504 Estimation of Hysteretic Damping in Steel Dual Systems with Buckling Restrained Brace and Moment Resisting Frame

Authors: Seyed Saeid Tabaee, Omid Bahar

Abstract:

Nowadays, using energy dissipation devices has been commonly used in structures. A high rate of energy absorption during earthquakes is the benefit of using such devices, which results in damage reduction of structural elements specifically columns. The hysteretic damping capacity of energy dissipation devices is the key point that it may adversely complicate analysis and design of such structures. This effect may be generally represented by equivalent viscous damping. The equivalent viscous damping may be obtained from the expected hysteretic behavior under the design or maximum considered displacement of a structure. In this paper, the hysteretic damping coefficient of a steel moment resisting frame (MRF), which its performance is enhanced by a buckling restrained brace (BRB) system has been evaluated. Having the foresight of damping fraction between BRB and MRF is inevitable for seismic design procedures like Direct Displacement-Based Design (DDBD) method. This paper presents an approach to calculate the damping fraction for such systems by carrying out the dynamic nonlinear time history analysis (NTHA) under harmonic loading, which is tuned to the natural frequency of the system. Two steel moment frame structures, one equipped with BRB, and the other without BRB are simultaneously studied. The extensive analysis shows that proportion of each system damping fraction may be calculated by its shear story portion. In this way, the contribution of each BRB in the floors and their general contribution in the structural performance may be clearly recognized, in advance.

Keywords: buckling restrained brace, direct displacement based design, dual systems, hysteretic damping, moment resisting frames

Procedia PDF Downloads 436
8503 Performance of the New Laboratory-Based Algorithm for HIV Diagnosis in Southwestern China

Authors: Yanhua Zhao, Chenli Rao, Dongdong Li, Chuanmin Tao

Abstract:

The Chinese Centers for Disease Control and Prevention (CCDC) issued a new laboratory-based algorithm for HIV diagnosis on April 2016, which initially screens with a combination HIV-1/HIV-2 antigen/antibody fourth-generation immunoassay (IA) followed, when reactive, an HIV-1/HIV-2 undifferentiated antibody IA in duplicate. Reactive specimens with concordant results undergo supplemental tests with western blots, or HIV-1 nucleic acid tests (NATs) and non-reactive specimens with discordant results receive HIV-1 NATs or p24 antigen tests or 2-4 weeks follow-up tests. However, little data evaluating the application of the new algorithm have been reported to date. The study was to evaluate the performance of new laboratory-based HIV diagnostic algorithm in an inpatient population of Southwest China over the initial 6 months by compared with the old algorithm. Plasma specimens collected from inpatients from May 1, 2016, to October 31, 2016, are submitted to the laboratory for screening HIV infection performed by both the new HIV testing algorithm and the old version. The sensitivity and specificity of the algorithms and the difference of the categorized numbers of plasmas were calculated. Under the new algorithm for HIV diagnosis, 170 of the total 52 749 plasma specimens were confirmed as positively HIV-infected (0.32%). The sensitivity and specificity of the new algorithm were 100% (170/170) and 100% (52 579/52 579), respectively; while 167 HIV-1 positive specimens were identified by the old algorithm with sensitivity 98.24% (167/170) and 100% (52 579/52 579), respectively. Three acute HIV-1 infections (AHIs) and two early HIV-1 infections (EHIs) were identified by the new algorithm; the former was missed by old procedure. Compared with the old version, the new algorithm produced fewer WB-indeterminate results (2 vs. 16, p = 0.001), which led to fewer follow-up tests. Therefore, the new HIV testing algorithm is more sensitive for detecting acute HIV-1 infections with maintaining the ability to verify the established HIV-1 infections and can dramatically decrease the greater number of WB-indeterminate specimens.

Keywords: algorithm, diagnosis, HIV, laboratory

Procedia PDF Downloads 404
8502 A Framework for Incorporating Non-Linear Degradation of Conductive Adhesive in Environmental Testing

Authors: Kedar Hardikar, Joe Varghese

Abstract:

Conductive adhesives have found wide-ranging applications in electronics industry ranging from fixing a defective conductor on printed circuit board (PCB) attaching an electronic component in an assembly to protecting electronics components by the formation of “Faraday Cage.” The reliability requirements for the conductive adhesive vary widely depending on the application and expected product lifetime. While the conductive adhesive is required to maintain the structural integrity, the electrical performance of the associated sub-assembly can be affected by the degradation of conductive adhesive. The degradation of the adhesive is dependent upon the highly varied use case. The conventional approach to assess the reliability of the sub-assembly involves subjecting it to the standard environmental test conditions such as high-temperature high humidity, thermal cycling, high-temperature exposure to name a few. In order to enable projection of test data and observed failures to predict field performance, systematic development of an acceleration factor between the test conditions and field conditions is crucial. Common acceleration factor models such as Arrhenius model are based on rate kinetics and typically rely on an assumption of linear degradation in time for a given condition and test duration. The application of interest in this work involves conductive adhesive used in an electronic circuit of a capacitive sensor. The degradation of conductive adhesive in high temperature and humidity environment is quantified by the capacitance values. Under such conditions, the use of established models such as Hallberg-Peck model or Eyring Model to predict time to failure in the field typically relies on linear degradation rate. In this particular case, it is seen that the degradation is nonlinear in time and exhibits a square root t dependence. It is also shown that for the mechanism of interest, the presence of moisture is essential, and the dominant mechanism driving the degradation is the diffusion of moisture. In this work, a framework is developed to incorporate nonlinear degradation of the conductive adhesive for the development of an acceleration factor. This method can be extended to applications where nonlinearity in degradation rate can be adequately characterized in tests. It is shown that depending on the expected product lifetime, the use of conventional linear degradation approach can overestimate or underestimate the field performance. This work provides guidelines for suitability of linear degradation approximation for such varied applications

Keywords: conductive adhesives, nonlinear degradation, physics of failure, acceleration factor model.

Procedia PDF Downloads 140
8501 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 137
8500 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain

Authors: Nitish Suvarna, Anjali Awasthi

Abstract:

In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.

Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix

Procedia PDF Downloads 80
8499 Weakly Solving Kalah Game Using Artificial Intelligence and Game Theory

Authors: Hiba El Assibi

Abstract:

This study aims to weakly solve Kalah, a two-player board game, by developing a start-to-finish winning strategy using an optimized Minimax algorithm with Alpha-Beta Pruning. In weakly solving Kalah, our focus is on creating an optimal strategy from the game's beginning rather than analyzing every possible position. The project will explore additional enhancements like symmetry checking and code optimizations to speed up the decision-making process. This approach is expected to give insights into efficient strategy formulation in board games and potentially help create games with a fair distribution of outcomes. Furthermore, this research provides a unique perspective on human versus Artificial Intelligence decision-making in strategic games. By comparing the AI-generated optimal moves with human choices, we can explore how seemingly advantageous moves can, in the long run, be harmful, thereby offering a deeper understanding of strategic thinking and foresight in games. Moreover, this paper discusses the evaluation of our strategy against existing methods, providing insights on performance and computational efficiency. We also discuss the scalability of our approach to the game, considering different board sizes (number of pits and stones) and rules (different variations) and studying how that affects performance and complexity. The findings have potential implications for the development of AI applications in strategic game planning, enhancing our understanding of human cognitive processes in game settings, and offer insights into creating balanced and engaging game experiences.

Keywords: minimax, alpha beta pruning, transposition tables, weakly solving, game theory

Procedia PDF Downloads 59
8498 Direct-Displacement Based Design for Buildings with Non-Linear Viscous Dampers

Authors: Kelly F. Delgado-De Agrela, Sonia E. Ruiz, Marco A. Santos-Santiago

Abstract:

An approach is proposed for the design of regular buildings equipped with non-linear viscous dissipating devices. The approach is based on a direct-displacement seismic design method which satisfies seismic performance objectives. The global system involved is formed by structural regular moment frames capable of supporting gravity and lateral loads with elastic response behavior plus a set of non-linear viscous dissipating devices which reduce the structural seismic response. The dampers are characterized by two design parameters: (1) a positive real exponent α which represents the non-linearity of the damper, and (2) the damping coefficient C of the device, whose constitutive force-velocity law is given by F=Cvᵃ, where v is the velocity between the ends of the damper. The procedure is carried out using a substitute structure. Two limits states are verified: serviceability and near collapse. The reduction of the spectral ordinates by the additional damping assumed in the design process and introduced to the structure by the viscous non-linear dampers is performed according to a damping reduction factor. For the design of the non-linear damper system, the real velocity is considered instead of the pseudo-velocity. The proposed design methodology is applied to an 8-story steel moment frame building equipped with non-linear viscous dampers, located in intermediate soil zone of Mexico City, with a dominant period Tₛ = 1s. In order to validate the approach, nonlinear static analyses and nonlinear time history analyses are performed.

Keywords: based design, direct-displacement based design, non-linear viscous dampers, performance design

Procedia PDF Downloads 196
8497 Quantitative Analysis of (+)-Catechin and (-)-Epicatechin in Pentace burmanica Stem Bark by HPLC

Authors: Thidarat Duangyod, Chanida Palanuvej, Nijsiri Ruangrungsi

Abstract:

Pentace burmanica Kurz., belonging to the Malvaceae family, is commonly used for anti-diarrhea in Thai traditional medicine. A method for quantification of (+)-catechin and (-)-epicatechin in P. burmanica stem bark from 12 different Thailand markets by reverse-phase high performance liquid chromatography (HPLC) was investigated and validated. The analysis was performed by a Shimadzu DGU-20A3 HPLC equipped with a Shimadzu SPD-M20A photo diode array detector. The separation was accomplished with an Inersil ODS-3 column (5 µm x 4.6 x 250 mm) using 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) as mobile phase at the flow rate of 1 ml/min. The isocratic was set at 20% B for 15 min and the column temperature was maintained at 40 ºC. The detection was at the wavelength of 280 nm. Both (+)-catechin and (-)-epicatechin existed in the ethanolic extract of P. burmanica stem bark. The content of (-)-epicatechin was found as 59.74 ± 1.69 µg/mg of crude extract. In contrast, the quantitation of (+)-catechin content was omitted because of its small amount. The method was linear over a range of 5-200 µg/ml with good coefficients (r2 > 0.99) for (+)-catechin and (-)-epicatechin. Limit of detection values were found to be 4.80 µg/ml for (+)-catechin and 5.14 µg/ml for (-)-epicatechin. Limit of quantitation of (+)-catechin and (-)-epicatechin were of 14.54 µg/ml and 15.57 µg/ml respectively. Good repeatability and intermediate precision (%RSD < 3) were found in this study. The average recoveries of both (+)-catechin and (-)-epicatechin were obtained with good recovery in the range of 91.11 – 97.02% and 88.53 – 93.78%, respectively, with the %RSD less than 2. The peak purity indices of catechins were more than 0.99. The results suggested that HPLC method proved to be precise and accurate and the method can be conveniently used for (+)-catechin and (-)-epicatechin determination in ethanolic extract of P. burmanica stem bark. Moreover, the stem bark of P. burmanica was found to be a rich source of (-)-epicatechin.

Keywords: pentace burmanica, (+)-catechin, (-)-epicatechin, high performance liquid chromatography

Procedia PDF Downloads 457
8496 Towards Binder-Free and Self Supporting Flexible Supercapacitor from Carbon Nano-Onions and Their Composite with CuO Nanoparticles

Authors: Debananda Mohapatra, Subramanya Badrayyana, Smrutiranjan Parida

Abstract:

Recognizing the upcoming era of carbon nanostructures and their revolutionary applications, we investigated the formation and supercapacitor application of highly pure and hydrophilic carbon nano-onions (CNOs) by economical one-step flame-synthesis procedure. The facile and scalable method uses easily available organic carbon source such as clarified butter, restricting the use of any catalyst, sophisticated instrumentation, high vacuum and post processing purification procedure. The active material was conformally coated onto a locally available cotton wipe by “sonicating and drying” process to obtain novel, lightweight, inexpensive, flexible, binder-free electrodes with strong adhesion between nanoparticles and porous wipe. This interesting electrode with CNO as the active material delivers a specific capacitance of 102.16 F/g, the energy density of 14.18 Wh/kg and power density of 2448 W/kg which are the highest values reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 as an electrolyte. Incorporation of CuO nanoparticles to these functionalized CNOs by one-step hydrothermal method add up to a significant specific capacitance of 420 F/g with deliverable energy and power density at 58.33 Wh/kg and 4228 W/kg, respectively. The free standing CNOs, as well as CNO-CuO composite electrode, showed an excellent cyclic performance and stability retaining 95 and 90% initial capacitance even after 5000 charge-discharge cycles at a current density of 5 A/g. This work presents a new platform for high performance supercapacitors for next generation wearable electronic devices.

Keywords: binder-free, flame synthesis, flexible, carbon nano-onion

Procedia PDF Downloads 201
8495 Biochar Affects Compressive Strength of Portland Cement Composites: A Meta-Analysis

Authors: Zhihao Zhao, Ali El-Nagger, Johnson Kau, Chris Olson, Douglas Tomlinson, Scott X. Chang

Abstract:

One strategy to reduce CO₂ emissions from cement production is to reduce the amount of Portland cement produced by replacing it with supplementary cementitious materials (SCMs). Biochar is a potential SCM that is an eco-friendly and stable porous pyrolytic material. However, the effects of biochar addition on the performances of Portland cement composites are not fully understood. This meta-analysis investigated the impact of biochar addition on the 7- and 28-day compressive strength of Portland cement composites based on 606 paired observations. Biochar feedstock type, pyrolysis conditions, pre-treatments and modifications, biochar dosage, and curing type all influenced the compressive strength of Portland cement composites. Biochars obtained from plant-based feedstocks (except rice and hardwood) improved the 28-day compressive strength of Portland cement composites by 3-13%. Biochars produced at pyrolysis temperatures higher than 450 °C, with a heating rate of around 10 °C/min, increased the 28-day compressive strength more effectively. Furthermore, the addition of biochars with small particle sizes increased the compressive strength of Portland cement composites by 2-7% compared to those without biochar addition. Biochar dosage of < 2.5% of the binder weight enhanced both compressive strengths and common curing methods maintained the effect of biochar addition. However, when mixing the cement, adding fine and coarse aggregates such as sand and gravel affects the concrete and mortar's compressive strength, diminishing the effect of biochar addition and making the biochar effect nonsignificant. We conclude that appropriate biochar addition could maintain or enhance the mechanical performance of Portland cement composites, and future research should explore the mechanisms of biochar effects on the performance of cement composites.

Keywords: biochar, Portland cement, constructure, compressive strength, meta-analysis

Procedia PDF Downloads 73