Search results for: recurrent artificial neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6942

Search results for: recurrent artificial neural network

2592 Cloud Computing in Jordanian Libraries: An Overview

Authors: Mohammad A. Al-Madi, Nagham A. Al-Madi, Fanan A. Al-Madi

Abstract:

The current concept of the technology of cloud computing libraries has been increasing where users can store their data in a virtual space and can be retrieved from anywhere whilst using the network. By using cloud computing technology, industries and individuals save money, time, and space. Moreover, data and information about libraries can be placed in the cloud. This paper discusses the meaning of cloud computing along with its types. Further, the focus has been given to the application of cloud computing in modern libraries. Additionally, the advantages of cloud computing and the areas in which cloud computing be applied with current usage are discussed. Finally, the present situation of the Jordanian libraries is considered and discussed in further detail.

Keywords: cloud computing, community cloud, hybrid cloud, private cloud, public cloud

Procedia PDF Downloads 222
2591 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 101
2590 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk

Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi

Abstract:

The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.

Keywords: daylight, window, orientation, energy consumption, design builder

Procedia PDF Downloads 235
2589 Shaping Lexical Concept of 'Mage' through Image Schemas in Dragon Age 'Origins'

Authors: Dean Raiyasmi, Elvi Citraresmana, Sutiono Mahdi

Abstract:

Language shapes the human mind and its concept toward things. Using image schemas, in nowadays technology, even AI (artificial intelligence) can concept things in response to their creator negativity or positivity. This is reflected inside one of the most selling game around the world in 2012 called Dragon Age Origins. The AI in form of NPC (Non-Playable Character) inside the game reflects on the creator of the game on negativity or positivity toward the lexical concept of mage. Through image schemas, shaping the lexical concept of mage deemed possible and proved the negativity or positivity creator of the game toward mage. This research analyses the cognitive-semantic process of image schema and shaping the concept of ‘mage’ by describing kinds of image schemas exist in the Dragon Age Origin Game. This research is also aimed to analyse kinds of image schemas and describing the image schemas which shaping the concept of ‘mage’ itself. The methodology used in this research is qualitative where participative observation is employed with five stages and documentation. The results shows that there are four image schemas exist in the game and those image schemas shaping the lexical concept of ‘mage’.

Keywords: cognitive semantic, image-schema, conceptual metaphor, video game

Procedia PDF Downloads 439
2588 Assumption of Cognitive Goals in Science Learning

Authors: Mihail Calalb

Abstract:

The aim of this research is to identify ways for achieving sustainable conceptual understanding within science lessons. For this purpose, a set of teaching and learning strategies, parts of the theory of visible teaching and learning (VTL), is studied. As a result, a new didactic approach named "learning by being" is proposed and its correlation with educational paradigms existing nowadays in science teaching domain is analysed. In the context of VTL the author describes the main strategies of "learning by being" such as guided self-scaffolding, structuring of information, and recurrent use of previous knowledge or help seeking. Due to the synergy effect of these learning strategies applied simultaneously in class, the impact factor of learning by being on cognitive achievement of students is up to 93 % (the benchmark level is equal to 40% when an experienced teacher applies permanently the same conventional strategy during two academic years). The key idea in "learning by being" is the assumption by the student of cognitive goals. From this perspective, the article discusses the role of student’s personal learning effort within several teaching strategies employed in VTL. The research results emphasize that three mandatory student – related moments are present in each constructivist teaching approach: a) students’ personal learning effort, b) student – teacher mutual feedback and c) metacognition. Thus, a successful educational strategy will target to achieve an involvement degree of students into the class process as high as possible in order to make them not only know the learning objectives but also to assume them. In this way, we come to the ownership of cognitive goals or students’ deep intrinsic motivation. A series of approaches are inherent to the students’ ownership of cognitive goals: independent research (with an impact factor on cognitive achievement equal to 83% according to the results of VTL); knowledge of success criteria (impact factor – 113%); ability to reveal similarities and patterns (impact factor – 132%). Although it is generally accepted that the school is a public service, nonetheless it does not belong to entertainment industry and in most of cases the education declared as student – centered actually hides the central role of the teacher. Even if there is a proliferation of constructivist concepts, mainly at the level of science education research, we have to underline that conventional or frontal teaching, would never disappear. Research results show that no modern method can replace an experienced teacher with strong pedagogical content knowledge. Such a teacher will inspire and motivate his/her students to love and learn physics. The teacher is precisely the condensation point for an efficient didactic strategy – be it constructivist or conventional. In this way, we could speak about "hybridized teaching" where both the student and the teacher have their share of responsibility. In conclusion, the core of "learning by being" approach is guided learning effort that corresponds to the notion of teacher–student harmonic oscillator, when both things – guidance from teacher and student’s effort – are equally important.

Keywords: conceptual understanding, learning by being, ownership of cognitive goals, science learning

Procedia PDF Downloads 170
2587 Optimal Design Solution in "The Small Module" Within the Possibilities of Ecology, Environmental Science/Engineering, and Economics

Authors: Hassan Wajid

Abstract:

We will commend accommodating an environmentally friendly architectural proposal that is extremely common/usual but whose features will make it a sustainable space. In this experiment, the natural and artificial built space is being proposed in such a way that deals with Environmental, Ecological, and Economic Criteria under different climatic conditions. Moreover, the criteria against ecology-environment-economics reflect in the different modules which are being experimented with and analyzed by multiple research groups. The ecological, environmental, and economic services are provided used as units of production side by side, resulting in local job creation and saving resources, for instance, conservation of rainwater, soil formation or protection, less energy consumption to achieve Net Zero, and a stable climate as a whole. The synthesized results from the collected data suggest several aspects to consider when designing buildings for beginning the design process under the supervision of instructors/directors who are responsible for developing curricula and sustainable goals. Hence, the results of the research and the suggestions will benefit the sustainable design through multiple results, heat analysis of different small modules, and comparisons. As a result, it is depleted as the resources are either consumed or the pollution contaminates the resources.

Keywords: optimization, ecology, environment, sustainable solution

Procedia PDF Downloads 75
2586 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery

Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado

Abstract:

Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.

Keywords: biometrics, deep learning, handwriting, signature forgery

Procedia PDF Downloads 85
2585 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 448
2584 A Method for Automated Planning of Fiber to the Home Access Network Infrastructures

Authors: Hammad Khalid

Abstract:

In this paper, a strategy for computerized arranging of Fiber to the Home (FTTH) get to systems is proposed. We presented an efficient methodology for arranging access organize framework. The GIS information and a lot of calculations were utilized to make the arranging procedure increasingly programmed. The technique clarifies various strides of the arranging process. Considering various situations, various designs can be produced by utilizing the technique. It was likewise conceivable to produce the designs in an extremely brief temporal contrast with the conventional arranging. A contextual investigation is considered to delineate the utilization and abilities of the arranging technique. The technique, be that as it may, doesn't completely robotize the arranging however, make the arranging procedure fundamentally quick. The outcomes and dialog are displayed and end is given at last.

Keywords: FTTH, GIS, robotize, plan

Procedia PDF Downloads 154
2583 Raising Test of English for International Communication (TOEIC) Scores through Purpose-Driven Vocabulary Acquisition

Authors: Edward Sarich, Jack Ryan

Abstract:

In contrast to learning new vocabulary incidentally in one’s first language, foreign language vocabulary is often acquired purposefully, because a lack of natural exposure requires it to be studied in an artificial environment. It follows then that foreign language vocabulary may be more efficiently acquired if it is purpose-driven, or linked to a clear and desirable outcome. The research described in this paper relates to the early stages of what is seen as a long-term effort to measure the effectiveness of a methodology for purpose-driven foreign language vocabulary instruction, specifically by analyzing whether directed studying from high-frequency vocabulary lists leads to an improvement in Test of English for International Communication (TOEIC) scores. The research was carried out in two sections of a first-year university English composition class at a small university in Japan. The results seem to indicate that purposeful study from relevant high-frequency vocabulary lists can contribute to raising TOEIC scores and that the test preparation methodology used in this study was thought by students to be beneficial in helping them to prepare to take this high-stakes test.

Keywords: corpus vocabulary, language asssessment, second language vocabulary acquisition, TOEIC test preparation

Procedia PDF Downloads 152
2582 Life Expansion: Autobiography, Ficctionalized Digital Diaries and Forged Narratives of Everyday Life on Instagram

Authors: Pablo M. S. Vallejos

Abstract:

The article aims to analyze the autobiographical practices of users on Instagram, observing the instrumentalization of image resources in the construction of visual narratives that make up that archive and digital diary. Through bibliographical review, discourse exploration and case studies, the research also aims to present a new theoretical perception about everyday records - edited with a collage of filters and aesthetic tools - that permeate that social network, understanding it as a platform fictionalizing and an expansion of life. In this way, therefore, the work reflects on possible futures in the elaboration of representations and identities in the context of digital spaces in the 21st century.

Keywords: visual culture, social media, autobiography, image

Procedia PDF Downloads 81
2581 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph

Procedia PDF Downloads 21
2580 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains

Authors: Christian Angerer, Markus Lienkamp

Abstract:

Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.

Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx

Procedia PDF Downloads 418
2579 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 151
2578 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases

Authors: Suglo Tohari Luri

Abstract:

Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.

Keywords: data, engine, intelligence, customer, neo4j, database

Procedia PDF Downloads 194
2577 Critical Success Factors for Implementation of E-Supply Chain Management

Authors: Mehrnoosh Askarizadeh

Abstract:

Globalization of the economy, e-business, and introduction of new technologies pose new challenges to all organizations. In recent decades, globalization, outsourcing, and information technology have enabled many organizations to successfully operate collaborative supply networks in which each specialized business partner focuses on only a few key strategic activities For this industries supply network can be acknowledged as a new form of organization. We will study about critical success factors (CSFs) for implementation of SCM in companies. It is shown that in different circumstances e- supply chain management has a higher impact on performance.

Keywords: supply chain management, logistics management, critical success factors, information technology, top management support, human resource

Procedia PDF Downloads 410
2576 Design of a Rectifier with Enhanced Efficiency and a High-gain Antenna for Integrated and Compact-size Rectenna Circuit

Authors: Rawaa Maher, Ahmed Allam, Haruichi Kanaya, Adel B. Abdelrahman

Abstract:

In this paper, a compact, high-efficiency integrated rectenna is presented to operate in the 2.45 GHz band. A comparison between two rectifier topologies is performed to verify the benefits of removing the matching network from the rectifier. A rectifier high conversion efficiency of 74.1% is achieved. To complete the rectenna system, a novel omnidirectional antenna with high gain (3.72 dB) and compact size (25 mm * 29 mm) is designed and fabricated. The same antenna is used with a reflector for raising the gain to nearly 8.3 dB. The simulation and measurement results of the antenna are in good agreement.

Keywords: internet of things, integrated rectenna, rectenna, RF energy harvesting, wireless sensor networks(WSN)

Procedia PDF Downloads 183
2575 The Practices of Creative Tourism in Urban and Rural Areas at International Level

Authors: Isabel Freitas, Paula Remoaldo, Olga Matos, Ricardo Goja, Juliana Araujo, Vitor Ribeiro, Miguel Pereira

Abstract:

Several destinations have been experiencing a transition from a massified cultural tourism to a creative tourism approach. In this new segment of tourism, urban territories have been the focus for several decades. Urban studies on creative industries and initiatives have been taking place in big cities marginalizing small towns and more specifically rural areas. This paper envisages evaluating the differences between rural and urban institutions/platforms, mostly certified by the Creative Tourism Network, in what concerns the practices and initiatives in creative tourism worldwide. In the research carried out between March 2017 and March 2018, we had three levels of primary data and qualitative analysis: i) research on Google (web) by using several keywords like 'creative tourism initiatives', 'creative cities', 'best practices in creative tourism' (from March to August 2017). With the help of the certification of institutions/platforms by the Creative Tourism Network, 24 institutions were found and declared to be developing creative initiatives. It was decided to try to unravel the type of activities and some practices and initiatives carried out by these institutions and the analysis of the differences between rural and urban initiatives. A database of 20 items (e.g., institutions in charge of implementing the initiatives, year of implementation, site, activities developed, place of development, country of origin, type of partners chosen) was created for each institution/platform; ii) A deeper analysis was made on the websites’ information on the institutions (from September to December 2017). The type of professionals involved in the activities, the language used in the activities and the type of activity performed were some of the data analysed and iii) To complement these data, semi-structured interviews were done to representatives of the institutions, conducted mainly by Skype from July 2017 to April 2018. The interviews consisted of 17 questions. In the present paper, these interviews are used to complement the analysis of the same items. Some of the qualitative analysis was supported by the narratives of the leaders of the twenty-four institutions that were surveyed. The results indicate that creative tourism is more active and diverse in urban areas. Some more consolidated communication strategies and partnerships are needed for these activities to become economically more sustainable. The findings of this research provide researchers and practitioners with a better understanding of creative tourism and give some information of how creative tourism is developed in rural and urban areas, the gaps and lack of information, and all the possible directions towards the development of the creative tourism industry.

Keywords: creative tourism, practices of creative tourism, rural areas, urban areas

Procedia PDF Downloads 181
2574 Valence Effects on Episodic Memory Retrieval Following Exposure to Arousing Stimuli in Young and Old Adults

Authors: Marianna Constantinou, Hana Burianova, Ala Yankouskaya

Abstract:

Episodic memory retrieval benefits from arousal, with better performance linked to arousing to-be-remembered information. However, the enduring impact of arousal on subsequent memory processes, particularly for non-arousing stimuli, remains unclear. This functional Magnetic Resonance Imaging (fMRI) study examined the effects of arousal on episodic memory processes in young and old adults, focusing on memory of neutral information following arousal exposure. Neural activity was assessed at three distinct timepoints: during exposure to arousing and non-arousing stimuli, memory consolidation (with or without arousing stimulus exposure), and during memory retrieval (with or without arousing stimulus exposure). Behavioural results show that across both age groups, participants performed worse when retrieving episodic memories about a video preceded by a highly arousing negative image. Our fMRI findings reveal three key findings: i) the extension of the influence of negative arousal beyond encoding; ii) the presence of this influence in both young and old adults; iii) and the differential treatment of positive arousal between these age groups. Our findings emphasise valence-specific effects on memory processes and support the enduring impact of negative arousal. We further propose an age-related alteration in the old adult brain in differentiating between positive and negative arousal.

Keywords: episodic memory, ageing, fmri, arousal, valence

Procedia PDF Downloads 64
2573 Active Space Debris Removal by Extreme Ultraviolet Radiation

Authors: A. Anandha Selvan, B. Malarvizhi

Abstract:

In recent year the problem of space debris have become very serious. The mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now most of space debris object orbiting in LEO region about 97%. The catastrophic collision can be mostly occurred in LEO region, where this collision generate the new debris. Thus, we propose a concept for cleaning the space debris in the region of thermosphere by passing the Extreme Ultraviolet (EUV) radiation to in front of space debris object from the re-orbiter. So in our concept the Extreme Ultraviolet (EUV) radiation will create the thermosphere expansion by reacting with atmospheric gas particles. So the drag is produced in front of the space debris object by thermosphere expansion. This drag force is high enough to slow down the space debris object’s relative velocity. Therefore the space debris object gradually reducing the altitude and finally enter into the earth’s atmosphere. After the first target is removed, the re-orbiter can be goes into next target. This method remove the space debris object without catching debris object. Thus it can be applied to a wide range of debris object without regard to their shapes or rotation. This paper discusses the operation of re-orbiter for removing the space debris in thermosphere region.

Keywords: active space debris removal, space debris, LEO, extreme ultraviolet, re-orbiter, thermosphere

Procedia PDF Downloads 464
2572 Matlab Method for Exclusive-or Nodes in Fuzzy GERT Networks

Authors: Roland Lachmayer, Mahtab Afsari

Abstract:

Research is the cornerstone for advancement of human communities. So that it is one of the indexes for evaluating advancement of countries. Research projects are usually cost and time-consuming and do not end in result in short term. Project scheduling is one of the integral parts of project management. The present article offers a new method by using C# and Matlab software to solve Fuzzy GERT networks for Exclusive-OR kind of nodes to schedule the network. In this article we concentrate on flowcharts that we used in Matlab to show how we apply Matlab to schedule Exclusive-OR nodes.

Keywords: research projects, fuzzy GERT, fuzzy CPM, CPM, α-cuts, scheduling

Procedia PDF Downloads 399
2571 A Study of Predicting Judgments on Causes of Online Privacy Invasions: Based on U.S Judicial Cases

Authors: Minjung Park, Sangmi Chai, Myoung Jun Lee

Abstract:

Since there are growing concerns on online privacy, enterprises could involve various personal privacy infringements cases resulting legal causations. For companies that are involving online business, it is important for them to pay extra attentions to protect users’ privacy. If firms can aware consequences from possible online privacy invasion cases, they can more actively prevent future online privacy infringements. This study attempts to predict the probability of ruling types caused by various invasion cases under U.S Personal Privacy Act. More specifically, this research explores online privacy invasion cases which was sentenced guilty to identify types of criminal punishments such as penalty, imprisonment, probation as well as compensation in civil cases. Based on the 853 U.S judicial cases ranged from January, 2000 to May, 2016, which related on data privacy, this research examines the relationship between personal information infringements cases and adjudications. Upon analysis results of 41,724 words extracted from 853 regal cases, this study examined online users’ privacy invasion cases to predict the probability of conviction for a firm as an offender in both of criminal and civil law. This research specifically examines that a cause of privacy infringements and a judgment type, whether it leads a civil or criminal liability, from U.S court. This study applies network text analysis (NTA) for data analysis, which is regarded as a useful method to discover embedded social trends within texts. According to our research results, certain online privacy infringement cases caused by online spamming and adware have a high possibility that firms are liable in the case. Our research results provide meaningful insights to academia as well as industry. First, our study is providing a new insight by applying Big Data analytics to legal cases so that it can predict the cause of invasions and legal consequences. Since there are few researches applying big data analytics in the domain of law, specifically in online privacy, this study suggests new area that future studies can explore. Secondly, this study reflects social influences, such as a development of privacy invasion technologies and changes of users’ level of awareness of online privacy on judicial cases analysis by adopting NTA method. Our research results indicate that firms need to improve technical and managerial systems to protect users’ online privacy to avoid negative legal consequences.

Keywords: network text analysis, online privacy invasions, personal information infringements, predicting judgements

Procedia PDF Downloads 229
2570 Central African Republic Government Recruitment Agency Based on Identity Management and Public Key Encryption

Authors: Koyangbo Guere Monguia Michel Alex Emmanuel

Abstract:

In e-government and especially recruitment, many researches have been conducted to build a trustworthy and reliable online or application system capable to process users or job applicant files. In this research (Government Recruitment Agency), cloud computing, identity management and public key encryption have been used to management domains, access control authorization mechanism and to secure data exchange between entities for reliable procedure of processing files.

Keywords: cloud computing network, identity management systems, public key encryption, access control and authorization

Procedia PDF Downloads 361
2569 The Symbolic Power of the IMF: Looking through Argentina’s New Period of Indebtedness

Authors: German Ricci

Abstract:

The research aims to analyse the symbolic power of the International Monetary Fund (IMF) in its relationship with a borrowing country, drawing upon Pierre Bourdieu’s Field Theory. This theory of power, typical of constructivist structuralism, has been minor used in international relations. Thus, selecting this perspective offers a new understanding of how the IMF's power operates and is structured. The IMF makes periodic economic reviews in which the staff evaluates the Government's performance. It also offers “last instance” loans when private external credit is not accessible. This relationship generates great expectations in financial agents because the IMF’s statements indicate the capacity of the Nation-State to meet its payment obligations (or not). Therefore, it is argued that the IMF is a legitimate actor for financial agents concerned about a government facing an economic crisis both for the effects of its immediate economic contribution through loans and the promotion of adjustment programs, helpful to guarantee the payment of the external debt. This legitimacy implies a symbolic power relationship in addition to the already known economic power relationship. Obtaining the IMF's consent implies that the government partially puts its political-economic decisions into play since the monetary policy must be agreed upon with the Fund. This has consequences at the local level. First, it implies that the debtor state must establish a daily relationship with the Fund. This everyday interaction with the Fund influences how officials and policymakers internalize the meaning of political management. On the other hand, if the Government has access to the IMF's seal of approval, the State will be again in a position to re-enter the financial market and go back into debt to face external debt. This means that private creditors increase the chances of collecting the debt and, again, grant credits. Thus, it is argued that the borrowing country submits to the relationship with the IMF in search of the latter's economic and symbolic capital. Access to this symbolic capital has objective and subjective repercussions at the national level that might tend to reproduce the relevance of the financial market and legitimizes the IMF’s intervention during economic crises. The paper has Argentina as its case study, given its historical relationship with the IMF and the relevance of the current indebtedness period, which remains largely unexplored. Argentina’s economy is characterized by recurrent financial crises, and it is the country to which the Fund has lent the most in its entire history. It surpasses more than three times the second, Egypt. In addition, Argentina is currently the country that owes the most to the Fund after receiving the largest loan ever granted by the IMF in 2018, and a new agreement in 2022. While the historical strong association with the Fund culminated in the most acute economic and social crisis in the country’s contemporary history, producing an unprecedented political and institutional crisis in 2001, Argentina still recognized the IMF as the only way out during economic crises.

Keywords: IMF, fields theory, symbolic power, Argentina, Bourdieu

Procedia PDF Downloads 71
2568 Hydroxyapatite from Biowaste for the Reinforcement of Polymer

Authors: John O. Akindoyo, M. D. H. Beg, Suriati Binti Ghazali, Nitthiyah Jeyaratnam

Abstract:

Regeneration of bone due to the many health challenges arising from traumatic effects of bone loss, bone tumours and other bone infections is fast becoming indispensable. Over the period of time, some approaches have been undertaken to mitigate this challenge. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. However, most of these techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are expensive and environmentally unfriendly. Extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment-friendly. In this research, HA was produced from bio-waste: namely bovine bones through a combination of hydrothermal chemical processes and ordinary calcination techniques. Structure and property of the HA was carried out through different characterization techniques (such as TGA, FTIR, DSC, XRD and BET). The synthesized HA was found to possess similar properties to stoichiometric HA with highly desirable thermal, degradation, structural and porous properties. This material is unique for its potential minimal cost, environmental friendliness and property controllability. It is also perceived to be suitable for tissue and bone engineering applications.

Keywords: biomaterial, biopolymer, bone, hydroxyapatite

Procedia PDF Downloads 323
2567 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks

Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed

Abstract:

Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.

Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks

Procedia PDF Downloads 499
2566 Capacity Optimization in Cooperative Cognitive Radio Networks

Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis

Abstract:

Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.

Keywords: cooperative networks, normalized capacity, sensing time

Procedia PDF Downloads 636
2565 The Tourism in the Regional Development of South Caucasus

Authors: Giorgi Sulashvili, Vladimer Kekenadze, Olga Khutsishvili, Bela Khotenashvili, Tsiuri Phkhakadze, Besarion Tsikhelashvili

Abstract:

The article dealt with the South Caucasus is a complex economic policy, which consists of strands: The process of deepening economic integration in the South Caucasus region; deepening economic integration with the EU in the framework of "Neighbourhood policy with Europe" and in line with the Maastricht criteria; the development of bilateral trade and economic relations with many countries of the world community; the development of sufficient conditions for the integration of the South Caucasus region in the world to enter the market. According to the author, to determine the place of Georgia in the regional policy of the South Caucasus, it is necessary to consider two views about Georgia: The first is the view of Georgia, as a part of global economic and political processes and the second look at Georgia, as a country located in the geo-economic and geopolitical space of the South Caucasus. Such approaches reveal the place of Georgia in two dimensions; in the global and regional economies. In the countries of South Caucasus, the tourism has been developing fast and has a great social and economic importance. Tourism influences deeply on the social and economic growth of the regions of the country. Tourism development formulates thousand new jobs, fixes the positions of small and middle businesses, ensures the development of the education and culture of the population. In the countries of South Caucasus, the Tourist Industry can be specified as the intersectoral complex, which consists of travel transport and it’s technical service network, tourist enterprises which are specialized in various types, wide network services. Tourists have a chance to enjoy all of these services. At the transitional stage of shifting to the market economy, tourism is among the priorities in the development of the national economy of our country. It is true that the Georgian tourism faces a range of problems at present, but its recognition and the necessity for its development may be considered as a fact. Besides, we would underline that the revitalization of the Georgian tourism is not only the question of time. This area can bring a lot of benefits as to private firms, as to specific countries. It also has many negative effects were conducted fundamental research and studies to consider both, positive and negative impacts of tourism. In the future such decisions will be taken that will bring, the maximum benefit at minimum cost, in order for tourism to take its place in Georgia it is necessary to understand the role of the tourism sector in the economic structure.

Keywords: transitional stage, national economy, Georgian tourism, positive and negative impacts

Procedia PDF Downloads 398
2564 Fault Diagnosis in Confined Systems

Authors: Nesrine Berber, Hafid Haffaf, Abdel Madjid Meghabar

Abstract:

In the last decade, technology has continued to grow and has changed the structure of our society. Today, new technologies including the information and communication (ICT) play a main role which importance continues to grow, now it's become indispensable to the economic, social and cultural. Thus, ICT technology has proven to be as a promising intervention in the area of road transport. The supervision model of class of train of intelligent and autonomous vehicles leads us to give some defintions about IAV and the different technologies used for communication between them. Our aim in this work is to present an hypergraph modeling a class of train of Intelligent and Autonomous Vehicles (IAV).

Keywords: intelligent transportation system, intelligent autonomous vehicles, Ad Hoc network, wireless technologies, hypergraph modeling, supervision

Procedia PDF Downloads 548
2563 Analysis of the Internationalisation of Spanish Enterprises in Colombia through Cooperation Agreements

Authors: Sandoval H. Leyla Angélica, Casani Fernando

Abstract:

The objective of this study is to analyse how enterprises in developed countries use cooperation agreements to expand into developing countries. Starting from the literature review, seven theoretical prepositions were derived. The qualitative methodology used includes case study, through interviews conducted with eight enterprises from Spain and Colombia. Results show that the cooperation agreements have provided a quick and solid connection that facilitates internationalization, bearing in mind aspects such as: strategic factors, partners, network, technology, experience, communication methods, social benefit and the connection between these aspects and allied enterprises.

Keywords: internationalisation, firms, cooperation agreement, case study, Spain, Colombia

Procedia PDF Downloads 557