Search results for: professional learning communities (PLCs)
6457 Controlled Digital Lending, Equitable Access to Knowledge and Future Library Services
Authors: Xuan Pang, Alvin L. Lee, Peggy Glatthaar
Abstract:
Libraries across the world have been an innovation engine of creativity and opportunityin many decades. The on-going global epidemiology outbreak and health crisis experience illuminates potential reforms, rethinking beyond traditional library operations and services. Controlled Digital Lending (CDL) is one of the emerging technologies libraries used to deliver information digitally in support of online learning and teachingand make educational materials more affordable and more accessible. CDL became a popular term in the United States of America (USA) as a result of a white paper authored by Kyle K. Courtney (Harvard University) and David Hansen (Duke University). The paper gave the legal groundwork to explore CDL: Fair Use, First Sale Doctrine, and Supreme Court rulings. Library professionals implemented this new technology to fulfill their users’ needs. Three libraries in the state of Florida (University of Florida, Florida Gulf Coast University, and Florida A&M University) started a conversation about how to develop strategies to make CDL work possible at each institution. This paper shares the stories of piloting and initiating a CDL program to ensure students have reliable, affordable access to course materials they need to be successful. Additionally, this paper offers an overview of the emerging trends of Controlled Digital Lending in the USA and demonstrates the development of the CDL platforms, policies, and implementation plans. The paper further discusses challenges and lessons learned and how each institution plans to sustain the program into future library services. The fundamental mission of the library is providing users unrestricted access to library resources regardless of their physical location, disability, health status, or other circumstances. The professional due diligence of librarians, as information professionals, is to makeeducational resources more affordable and accessible.CDL opens a new frontier of library services as a mechanism for library practice to enhance user’s experience of using libraries’ services. Libraries should consider exploring this tool to distribute library resources in an effective and equitable way. This new methodology has potential benefits to libraries and end users.Keywords: controlled digital lending, emerging technologies, equitable access, collaborations
Procedia PDF Downloads 1426456 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 1366455 Artificial Intelligence and Canva App
Authors: Lamar Alhindi, Madhawi Alsharif
Abstract:
This report explores Canva, a user-friendly graphic design platform designed to empower individuals of all skill levels in creating diverse visual content. The study provides a comprehensive overview of Canva’s features, such as its drag-and-drop interface, AI tools, and extensive asset library. A survey was conducted to assess users’ perceptions of Canva’s AI-driven features, highlighting their utility in saving time and improving efficiency. Key insights include the popularity of design suggestions and accessibility for beginners. The report underscores Canva’s versatility for personal and professional applications, emphasizing its role as a go-to design tool for individuals and businesses alike.Keywords: Canva, Ai, Ai driven tools, beginner, editing
Procedia PDF Downloads 156454 Artificial Intelligence in Ethiopian Universities: The Influence of Technological Readiness, Acceptance, Perceived Risk, and Trust on Implementation - An Integrative Research Approach
Authors: Merih Welay Welesilassie
Abstract:
Understanding educators' readiness to incorporate AI tools into their teaching methods requires comprehensively examining the influencing factors. This understanding is crucial, given the potential of these technologies to personalise learning experiences, improve instructional effectiveness, and foster innovative pedagogical approaches. This study evaluated factors affecting teachers' adoption of AI tools in their English language instruction by extending the Technology Acceptance Model (TAM) to encompass digital readiness support, perceived risk, and trust. A cross-sectional quantitative survey was conducted with 128 English language teachers, supplemented by qualitative data collection from 15 English teachers. The structural mode analysis indicated that implementing AI tools in Ethiopian higher education was notably influenced by digital readiness support, perceived ease of use, perceived usefulness, perceived risk, and trust. Digital readiness support positively impacted perceived ease of use, usefulness, and trust while reducing safety and privacy risks. Perceived ease of use positively correlated with perceived usefulness but negatively influenced trust. Furthermore, perceived usefulness strengthened trust in AI tools, while perceived safety and privacy risks significantly undermined trust. Trust was crucial in increasing educators' willingness to adopt AI technologies. The qualitative analysis revealed that the teachers exhibited strong content and pedagogical knowledge but needed more technology-related knowledge. Moreover, It was found that the teachers did not utilise digital tools to teach English. The study identified several obstacles to incorporating digital tools into English lessons, such as insufficient digital infrastructure, a shortage of educational resources, inadequate professional development opportunities, and challenging policies and governance. The findings provide valuable guidance for educators, inform policymakers about creating supportive digital environments, and offer a foundation for further investigation into technology adoption in educational settings in Ethiopia and similar contexts.Keywords: digital readiness support, AI acceptance, risk, trust
Procedia PDF Downloads 246453 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2996452 A Corpus Output Error Analysis of Chinese L2 Learners From America, Myanmar, and Singapore
Authors: Qiao-Yu Warren Cai
Abstract:
Due to the rise of big data, building corpora and using them to analyze ChineseL2 learners’ language output has become a trend. Various empirical research has been conducted using Chinese corpora built by different academic institutes. However, most of the research analyzed the data in the Chinese corpora usingcorpus-based qualitative content analysis with descriptive statistics. Descriptive statistics can be used to make summations about the subjects or samples that research has actually measured to describe the numerical data, but the collected data cannot be generalized to the population. Comte, a Frenchpositivist, has argued since the 19th century that human beings’ knowledge, whether the discipline is humanistic and social science or natural science, should be verified in a scientific way to construct a universal theory to explain the truth and human beings behaviors. Inferential statistics, able to make judgments of the probability of a difference observed between groups being dependable or caused by chance (Free Geography Notes, 2015)and to infer from the subjects or examples what the population might think or behave, is just the right method to support Comte’s argument in the field of TCSOL. Also, inferential statistics is a core of quantitative research, but little research has been conducted by combing corpora with inferential statistics. Little research analyzes the differences in Chinese L2 learners’ language corpus output errors by using theOne-way ANOVA so that the findings of previous research are limited to inferring the population's Chinese errors according to the given samples’ Chinese corpora. To fill this knowledge gap in the professional development of Taiwanese TCSOL, the present study aims to utilize the One-way ANOVA to analyze corpus output errors of Chinese L2 learners from America, Myanmar, and Singapore. The results show that no significant difference exists in ‘shì (是) sentence’ and word order errors, but compared with Americans and Singaporeans, it is significantly easier for Myanmar to have ‘sentence blends.’ Based on the above results, the present study provides an instructional approach and contributes to further exploration of how Chinese L2 learners can have (and use) learning strategies to lower errors.Keywords: Chinese corpus, error analysis, one-way analysis of variance, Chinese L2 learners, Americans, myanmar, Singaporeans
Procedia PDF Downloads 1096451 Inferring Thimlich Ohinga Gender Identity Through Ethnoarchaeological Analysis
Authors: David Maina Muthegethi
Abstract:
The Victoria Basin is associated with gateway for migration to Southern part of Africa. Different communities migrated through the region including the Bantus and Nilotic communities that occupy present day Kenya and Tanzania. A distinct culture of dry-stone technology emerged around 15th century current era, a period associated with peopling of the western Kenya region. One of the biggest dry-stone walls enclosure is Thimlich Ohinga archaeological site. The site was constructed around fourteenth century current era. Architectural design was oval shaped stone structures that were around 4 meters and 2 meters in length and width respectively. The main subsistence strategies of the community that was crop faming, pastoralism, fishing, hunting and gathering. This paper attempts to examine gender dynamics of Thimlich Ohinga society. At that end, attempts are made to infer gender roles as manifested in archaeological record. Therefore, the study entails examination of material evidence excavated from the site. Also, ethnoarchaeological study of contemporary Luo community was undertaken in order to make inferences and analogies concerning gender roles of Thimlich Ohinga society. Overall, the study involved examination of cultural materials excavated from Thimlich Ohinga, extensive survey of the site and ethnography of Luo community. In total, an extensive survey and interviews of 20 households was undertaken in South Kanyamkango ward, Migori County in Western Kenya. The key findings point out that Thimlich Ohinga gender identities were expressed in material forms through architecture, usage of spaces, subsistence strategies, dietary patterns and household organization. Also, gender as social identity was dynamic and responsive to diversification of subsistence strategies and intensification of regional trade as documented in contemporary Luo community. The paper reiterates importance of ethnoarchaeological methods in reconstruction of past social organization as manifested in material record.Keywords: ethnoarchaeological, gender, subsistence patterns, Thimlich Ohinga
Procedia PDF Downloads 806450 Off-Topic Text Detection System Using a Hybrid Model
Authors: Usama Shahid
Abstract:
Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.Keywords: off topic, text detection, eco state network, machine learning
Procedia PDF Downloads 916449 Pitfalls and Drawbacks in Visual Modelling of Learning Knowledge by Students
Authors: Tatyana Gavrilova, Vadim Onufriev
Abstract:
Knowledge-based systems’ design requires the developer’s owning the advanced analytical skills. The efficient development of that skills within university courses needs a deep understanding of main pitfalls and drawbacks, which students usually make during their analytical work in form of visual modeling. Thus, it was necessary to hold an analysis of 5-th year students’ learning exercises within courses of 'Intelligent systems' and 'Knowledge engineering' in Saint-Petersburg Polytechnic University. The analysis shows that both lack of system thinking skills and methodological mistakes in course design cause the errors that are discussed in the paper. The conclusion contains an exploration of the issues and topics necessary and sufficient for the implementation of the improved practices in educational design for future curricula of teaching programs.Keywords: knowledge based systems, knowledge engineering, students’ errors, visual modeling
Procedia PDF Downloads 3126448 Teaching Self-Advocacy Skills to Students With Learning Disabilities: The S.A.M.E. Program of Instruction
Authors: Dr. Rebecca Kimelman
Abstract:
Teaching students to self-advocate has become a central topic in special education literature and practice. However, many special education programs do not address this important skill area. To this end, I created and implemented the Self Advocacy Made Easy (S.A.M.E.) program of instruction, intended to enhance the self-advocacy skills of young adults with mild to moderate disabilities. The effectiveness of S.A.M.E., the degree to which self-advocacy skills were acquired and demonstrated by the students, the level of parental support, and the impact of culture on the process, and teachers’ beliefs and attitudes about the role of self-advocacy skills for their students were measured using action research that employed mixed methodology. Conducted at an overseas American International School, this action research study sought answers to these questions by providing an in-depth portrayal of the S.A.M.E. program, as well as the attitudes and perceptions of the stakeholders involved in the study (thirteen students, their parents, teachers and counsellors). The findings of this study were very positive. The S.A.M.E. program was found to be a valid and valuable instructional tool for teaching self-advocacy skills to students with learning disabilities and ADHD. The study showed participation in the S.A.M.E. program led to an increased understanding of the important elements of self-advocacy, an increase in students’ skills and abilities to self-advocate, and a positive increase in students’ feelings about themselves. Inclusion in the Student-Led IEP meetings, an authentic student assessment within the S.A.M.E. program, also yielded encouraging results, including a higher level of ownership of one’s profile and learning needs, a higher level of student engagement and participation in the IEP meeting, and a growing student awareness of the relevance of the document and the IEP process to their lives. Without exception, every parent believed that participating in the Student-Led IEP led to a growth in confidence in their children, including that it taught them how to ‘own’ their disability and an improvement in their communication skills. Teachers and counsellors that participated in the study felt the program was worthwhile, and led to an increase in the students’ ability to acknowledge their learning profile and to identify and request the accommodations (such as extended time or use of a calculator) they need to overcome or work around their disability. The implications for further research are many, and include an examination of the degree to which participation in S.A.M.E. fosters student achievement, the long-term effects of participation in the program, and the degree to which student participation in the Student-Led IEP meeting increases parents’ level of understanding and involvement.Keywords: self-advocacy, learning disabilities, ADHD, student-led IEP process
Procedia PDF Downloads 576447 Mobile Collaboration Learning Technique on Students in Developing Nations
Authors: Amah Nnachi Lofty, Oyefeso Olufemi, Ibiam Udu Ama
Abstract:
New and more powerful communications technologies continue to emerge at a rapid pace and their uses in education are widespread and the impact remarkable in the developing societies. This study investigates Mobile Collaboration Learning Technique (MCLT) on learners’ outcome among students in tertiary institutions of developing nations (a case of Nigeria students). It examines the significance of retention achievement scores of students taught using mobile collaboration and conventional method. The sample consisted of 120 students using Stratified random sampling method. Three research questions and hypotheses were formulated, and tested at a 0.05 level of significance. A student achievement test (SAT) was made of 40 items of multiple-choice objective type, developed and validated for data collection by professionals. The SAT was administered to students as pre-test and post-test. The data were analyzed using t-test statistic to test the hypotheses. The result indicated that students taught using MCLT performed significantly better than their counterparts using the conventional method of instruction. Also, there was no significant difference in the post-test performance scores of male and female students taught using MCLT. Based on the findings, the following recommendations was made that: Mobile collaboration system be encouraged in the institutions to boost knowledge sharing among learners, workshop and trainings should be organized to train teachers on the use of this technique and that schools and government should formulate policies and procedures towards responsible use of MCLT.Keywords: education, communication, learning, mobile collaboration, technology
Procedia PDF Downloads 2276446 Analyzing the Perception of Social Networking Sites as a Learning Tool among University Students: Case Study of a Business School in India
Authors: Bhaskar Basu
Abstract:
Universities and higher education institutes are finding it increasingly difficult to engage students fruitfully through traditional pedagogic tools. Web 2.0 technologies comprising social networking sites (SNSs) offer a platform for students to collaborate and share information, thereby enhancing their learning experience. Despite the potential and reach of SNSs, its use has been limited in academic settings promoting higher education. The purpose of this paper is to assess the perception of social networking sites among business school students in India and analyze its role in enhancing quality of student experiences in a business school leading to the proposal of an agenda for future research. In this study, more than 300 students of a reputed business school were involved in a survey of their preferences of different social networking sites and their perceptions and attitudes towards these sites. A questionnaire with three major sections was designed, validated and distributed among a sample of students, the research method being descriptive in nature. Crucial questions were addressed to the students concerning time commitment, reasons for usage, nature of interaction on these sites, and the propensity to share information leading to direct and indirect modes of learning. It was further supplemented with focus group discussion to analyze the findings. The paper notes the resistance in the adoption of new technology by a section of business school faculty, who are staunch supporters of the classical “face-to-face” instruction. In conclusion, social networking sites like Facebook and LinkedIn provide new avenues for students to express themselves and to interact with one another. Universities could take advantage of the new ways in which students are communicating with one another. Although interactive educational options such as Moodle exist, social networking sites are rarely used for academic purposes. Using this medium opens new ways of academically-oriented interactions where faculty could discover more about students' interests, and students, in turn, might express and develop more intellectual facets of their lives. hitherto unknown intellectual facets. This study also throws up the enormous potential of mobile phones as a tool for “blended learning” in business schools going forward.Keywords: business school, India, learning, social media, social networking, university
Procedia PDF Downloads 2676445 A Cognitive Training Program in Learning Disability: A Program Evaluation and Follow-Up Study
Authors: Krisztina Bohacs, Klaudia Markus
Abstract:
To author’s best knowledge we are in absence of studies on cognitive program evaluation and we are certainly short of programs that prove to have high effect sizes with strong retention results. The purpose of our study was to investigate the effectiveness of a comprehensive cognitive training program, namely BrainRx. This cognitive rehabilitation program target and remediate seven core cognitive skills and related systems of sub-skills through repeated engagement in game-like mental procedures delivered one-on-one by a clinician, supplemented by digital training. A larger sample of children with learning disability were given pretest and post-test cognitive assessments. The experimental group completed a twenty-week cognitive training program in a BrainRx center. A matched control group received another twenty-week intervention with Feuerstein’s Instrumental Enrichment programs. A second matched control group did not receive training. As for pre- and post-test, we used a general intelligence test to assess IQ and a computer-based test battery for assessing cognition across the lifespan. Multiple regression analyses indicated that the experimental BrainRx treatment group had statistically significant higher outcomes in attention, working memory, processing speed, logic and reasoning, auditory processing, visual processing and long-term memory compared to the non-treatment control group with very large effect sizes. With the exception of logic and reasoning, the BrainRx treatment group realized significantly greater gains in six of the above given seven cognitive measures compared to the Feuerstein control group. Our one-year retention measures showed that all the cognitive training gains were above ninety percent with the greatest retention skills in visual processing, auditory processing, logic, and reasoning. The BrainRx program may be an effective tool to establish long-term cognitive changes in case of students with learning disabilities. Recommendations are made for treatment centers and special education institutions on the cognitive training of students with special needs. The importance of our study is that targeted, systematic, progressively loaded and intensive brain training approach may significantly change learning disabilities.Keywords: cognitive rehabilitation training, cognitive skills, learning disability, permanent structural cognitive changes
Procedia PDF Downloads 2046444 Fire Resilient Cities: The Impact of Fire Regulations, Technological and Community Resilience
Authors: Fanny Guay
Abstract:
Building resilience, sustainable buildings, urbanization, climate change, resilient cities, are just a few examples of where the focus of research has been in the last few years. It is obvious that there is a need to rethink how we are building our cities and how we are renovating our existing buildings. However, the question remaining is how can we assure that we are building sustainable yet resilient cities? There are many aspects one can touch upon when discussing resilience in cities, but after the event of Grenfell in June 2017, it has become clear that fire resilience must be a priority. We define resilience as a holistic approach including communities, society and systems, focusing not only on resisting the effects of a disaster, but also how it will cope and recover from it. Cities are an example of such a system, where components such as buildings have an important role to play. A building on fire will have an impact on the community, the economy, the environment, and so the entire system. Therefore, we believe that fire and resilience go hand in hand when we discuss building resilient cities. This article aims at discussing the current state of the concept of fire resilience and suggests actions to support the built of more fire resilient buildings. Using the case of Grenfell and the fire safety regulations in the UK, we will briefly compare the fire regulations in other European countries, more precisely France, Germany and Denmark, to underline the difference and make some suggestions to increase fire resilience via regulation. For this research, we will also include other types of resilience such as technological resilience, discussing the structure of buildings itself, as well as community resilience, considering the role of communities in building resilience. Our findings demonstrate that to increase fire resilience, amending existing regulations might be necessary, for example, how we performed reaction to fire tests and how we classify building products. However, as we are looking at national regulations, we are only able to make general suggestions for improvement. Another finding of this research is that the capacity of the community to recover and adapt after a fire is also an essential factor. Fundamentally, fire resilience, technological resilience and community resilience are closely connected. Building resilient cities is not only about sustainable buildings or energy efficiency; it is about assuring that all the aspects of resilience are included when building or renovating buildings. We must ask ourselves questions as: Who are the users of this building? Where is the building located? What are the components of the building, how was it designed and which construction products have been used? If we want to have resilient cities, we must answer these basic questions and assure that basic factors such as fire resilience are included in our assessment.Keywords: buildings, cities, fire, resilience
Procedia PDF Downloads 1756443 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis
Authors: C. B. Le, V. N. Pham
Abstract:
In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering
Procedia PDF Downloads 1966442 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers
Authors: Helen Zhang
Abstract:
Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogeneous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning
Procedia PDF Downloads 1246441 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 3166440 A Study of Faculty Development Programs in India to Assist Pedagogy and Curriculum Development
Authors: Chhavi Rana, Sanjay K Jain
Abstract:
All sides of every education debate agree that quality learning happens when knowledgeable, caring teachers use sound pedagogy. Many deliberations of pedagogy make the fault of considering it as principally being about teaching. There has been lot of research about how to build a positive climate for learning, improve student curiosity, and enhance classroom association. However, these things can only be facilitated when teachers are equipped with better teaching techniques that use sound and accurate pedagogy. Pedagogy is the science and art of education. Its aims range from the full development of the human being to skills acquisition. In India, a project named Mission 10 x has been started by an esteemed IT Corporation Wipro as a faculty development programme (FDP) that particularly focus on elements that facilitated teachers in developing curriculum and new pedagogies that can lead to improvement in student engagement. This paper presents a study of these FDPs and examines (1) the parameters that help teachers in building new pedagogies (2) the extent to which appropriate usage of pedagogy is improved after the conduct of Mission 10 x FDPs, and (3) whether institutions differ in terms of their ability to convert usage of improved pedagogy into academic performance via these FDPs. The sample consisted of 2,236 students at 6 four-year engineering colleges and universities that completed several FDPs during 2012-2014. Many measures of usage of better pedagogy were linked positively with such FDPs, although some of the relationships were weak in strength. The results suggest that the usage of pedagogy were more benefited after conducting these FDPs and application of novel approaches in conducting classes.Keywords: student engagement, critical thinking; achievement, student learning, pedagogy
Procedia PDF Downloads 4236439 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem
Authors: Brandon Foggo, Nanpeng Yu
Abstract:
Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.Keywords: distribution network, machine learning, network topology, phase identification, smart grid
Procedia PDF Downloads 3046438 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms
Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani
Abstract:
Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.Keywords: face recognition, body-worn cameras, deep learning, person identification
Procedia PDF Downloads 1706437 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO
Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky
Abstract:
The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.Keywords: aeronautics, big data, data processing, machine learning, S1000D
Procedia PDF Downloads 1666436 Pomegranates Attenuates Cognitive and Behavioural Deficts and reduces inflammation in a Transgenic Mice Model of Alzheimer's Disease
Authors: M. M. Essa, S. Subash, M. Akbar, S. Al-Adawi, A. Al-Asmi, G. J. Guillemein
Abstract:
Objective: Transgenic (tg) mice which contain an amyloid precursor protein (APP) gene mutation, develop extracellular amyloid beta (Aβ) deposition in the brain, and severe memory and behavioural deficits with age. These mice serve as an important animal model for testing the efficacy of novel drug candidates for the treatment and management of symptoms of Alzheimer's disease (AD). Several reports have suggested that oxidative stress is the underlying cause of Aβ neurotoxicity in AD. Pomegranates contain very high levels of antioxidants and several medicinal properties that may be useful for improving the quality of life in AD patients. In this study, we investigated the effect of dietary supplementation of Omani pomegranate extract on the memory, anxiety and learning skills along with inflammation in an AD mouse model containing the double Swedish APP mutation (APPsw/Tg2576). Methods: The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 4% pomegranate. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in Tg and wild-type mice at the age of 4-5 months and 18-19 months using the Morris water maze test, rota rod test, elevated plus maze test, and open field test. Further, inflammatory parameters also analysed. Results: APPsw/Tg2576 mice that were fed a standard chow diet without pomegranates showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination along with increased inflammation compared to the wild type mice on the same diet, at the age of 18-19 months In contrast, APPsw/Tg2576 mice that were fed a diet containing 4% pomegranates showed a significant improvements in memory, learning, locomotor function, and anxiety with reduced inflammatory markers compared to APPsw/Tg2576 mice fed the standard chow diet. Conclusion: Our results suggest that dietary supplementation with pomegranates may slow the progression of cognitive and behavioural impairments in AD. The exact mechanism is still unclear and further extensive research needed.Keywords: Alzheimer's disease, pomegranates, oman, cognitive decline, memory loss, anxiety, inflammation
Procedia PDF Downloads 5316435 Changes in the fecal Microbiome of Periparturient Dairy Cattle and Associations with the Onset of Salmonella Shedding
Authors: Lohendy Munoz-Vargas, Stephen O. Opiyo, Rose Digianantonio, Michele L. Williams, Asela Wijeratne, Gregory Habing
Abstract:
Non-typhoidal Salmonella enterica is a zoonotic pathogen with critical importance in animal and public health. The persistence of Salmonella on farms affects animal productivity and health, and represents a risk for food safety. The intestinal microbiota plays a fundamental role in the colonization and invasion of this ubiquitous microorganism. To overcome the colonization resistance imparted by the gut microbiome, Salmonella uses invasion strategies and the host inflammatory response to survive, proliferate, and establish infections with diverse clinical manifestations. Cattle serve as reservoirs of Salmonella, and periparturient cows have high prevalence of Salmonella shedding; however, to author`s best knowledge, little is known about the association between the gut microbiome and the onset of Salmonella shedding during the periparturient period. Thus, the objective of this study was to assess the association between changes in bacterial communities and the onset of Salmonella shedding in cattle approaching parturition. In a prospective cohort study, fecal samples from 98 dairy cows originating from four different farms were collected at four time points relative to calving (-3 wks, -1 wk, +1 wk, +3 wks). All 392 samples were cultured for Salmonella. Sequencing of the V4 region of the 16S rRNA gene using the Illumina platform was completed to evaluate the fecal microbiome in a selected sample subset. Analyses of microbial composition, diversity, and structure were performed according to time points, farm, and Salmonella onset status. Individual cow fecal microbiomes, predominated by Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria phyla, significantly changed before and after parturition. Microbial communities from different farms were distinguishable based on multivariate analysis. Although there were significant differences in some bacterial taxa between Salmonella positive and negative samples, our results did not identify differences in the fecal microbial diversity or structure for cows with and without the onset of Salmonella shedding. These data suggest that determinants other than the significant changes in the fecal microbiome influence the periparturient onset of Salmonella shedding in dairy cattle.Keywords: dairy cattle, microbiome, periparturient, Salmonella
Procedia PDF Downloads 1776434 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN
Authors: Jamison Duckworth, Shankarachary Ragi
Abstract:
Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands
Procedia PDF Downloads 1326433 Learning Outcomes Alignment across Engineering Core Courses
Authors: A. Bouabid, B. Bielenberg, S. Ainane, N. Pasha
Abstract:
In this paper, a team of faculty members of the Petroleum Institute in Abu Dhabi, UAE representing six different courses across General Engineering (ENGR), Communication (COMM), and Design (STPS) worked together to establish a clear developmental progression of learning outcomes and performance indicators for targeted knowledge, areas of competency, and skills for the first three semesters of the Bachelor of Sciences in Engineering curriculum. The sequences of courses studied in this project were ENGR/COMM, COMM/STPS, and ENGR/STPS. For each course’s nine areas of knowledge, competency, and skills, the research team reviewed the existing learning outcomes and related performance indicators with a focus on identifying linkages across disciplines as well as within the courses of a discipline. The team reviewed existing performance indicators for developmental progression from semester to semester for same discipline related courses (vertical alignment) and for different discipline courses within the same semester (horizontal alignment). The results of this work have led to recommendations for modifications of the initial indicators when incoherence was identified, and/or for new indicators based on best practices (identified through literature searches) when gaps were identified. It also led to recommendations for modifications of the level of emphasis within each course to ensure developmental progression. The exercise has led to a revised Sequence Performance Indicator Mapping for the knowledge, skills, and competencies across the six core courses.Keywords: curriculum alignment, horizontal and vertical progression, performance indicators, skill level
Procedia PDF Downloads 2256432 Overcoming Barriers to Improve HIV Education and Public Health Outcomes in the Democratic Republic of Congo
Authors: Danielle A. Walker, Kyle L. Johnson, Tara B. Thomas, Sandor Dorgo, Jacen S. Moore
Abstract:
Approximately 37 million people worldwide are infected with the Human Immunodeficiency Virus (HIV), with the majority located in sub-Saharan Africa. The relationship existing between HIV incidence and socioeconomic inequity confirms the critical need for programs promoting HIV education, prevention and treatment access. This literature review analyzed 36 sources with a specific focus on the Democratic Republic of Congo, whose critically low socioeconomic status and education rate have resulted in a drastically high HIV rates. Relationships between HIV testing and treatment and barriers to care were explored. Cultural and religious considerations were found to be vital when creating and implementing HIV education and testing programs. Partnerships encouraging active support from community-based spiritual leaders to implement HIV educational programs were also key mechanisms to reach communities and individuals. Gender roles were highlighted as a key component for implementation of effective community trust-building and successful HIV education programs. The efficacy of added support by hospitals and clinics in rural areas to facilitate access to HIV testing and care for people living with HIV/AIDS (PLWHA) was discussed. This review highlighted the need for healthcare providers to provide a network of continued education for PLWHA in clinical settings during disclosure and throughout the course of treatment to increase retention in care and promote medication adherence for viral load suppression. Implementation of culturally sensitive models that rely on community familiarity with HIV educators such as ‘train-the-trainer’ were also proposed as efficacious tools for educating rural communities about HIV. Further research is needed to promote community partnerships for HIV education, understand the cultural context of gender roles as barriers to care, and empower local health care providers to be successful within the HIV Continuum of Care.Keywords: cultural sensitivity, Democratic Republic of the Congo, education, HIV
Procedia PDF Downloads 2806431 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction
Procedia PDF Downloads 3426430 3D Multiuser Virtual Environments in Language Teaching
Authors: Hana Maresova, Daniel Ecler
Abstract:
The paper focuses on the use of 3D multi-user virtual environments (MUVE) in language teaching and presents the results of four years of research at the Faculty of Education, Palacký University in Olomouc (Czech Republic). In the form of an experiment, mother tongue language teaching in the 3D virtual worlds Second Life and Kitely (experimental group) and parallel traditional teaching on identical topics representing teacher's interpretation using a textbook (control group) were implemented. The didactic test, which was presented to the experimental and control groups in an identical form before and after the instruction, verified the effect of the instruction in the experimental group by comparing the results obtained by both groups. Within the three components of mother-tongue teaching (vocabulary, literature, style and communication education), the students in the literature group achieved partially better results (statistically significant in the case of items devoted to the area of visualization of the learning topic), while in the case of grammar and style education the respondents of the control group achieved better results. On the basis of the results obtained, we can conclude that the most appropriate use of MUVE can be seen in the teaching of those topics that provide the possibility of dramatization, experiential learning and group involvement and cooperation, on the contrary, with regard to the need to divide students attention between the topic taught and the control of avatar and movement in virtual reality as less suitable for teaching in the area of memorization of the topic or concepts.Keywords: distance learning, 3D virtual environments, online teaching, language teaching
Procedia PDF Downloads 1656429 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills
Authors: Kyle De Freitas, Margaret Bernard
Abstract:
Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.Keywords: educational data mining, learning management system, learning analytics, EDM framework
Procedia PDF Downloads 3306428 Using Hyperspectral Camera and Deep Learning to Identify the Ripeness of Sugar Apples
Authors: Kuo-Dung Chiou, Yen-Xue Chen, Chia-Ying Chang
Abstract:
This study uses AI technology to establish an expert system and establish a fruit appearance database for pineapples and custard apples. It collects images based on appearance defects and fruit maturity. It uses deep learning to detect the location of the fruit and can detect the appearance of the fruit in real-time. Flaws and maturity. In addition, a hyperspectral camera was used to scan pineapples and custard apples, and the light reflection at different frequency bands was used to find the key frequency band for pectin softening in post-ripe fruits. Conducted a large number of multispectral image collection and data analysis to establish a database of Pineapple Custard Apple and Big Eyed Custard Apple, which includes a high-definition color image database, a hyperspectral database in the 377~1020 nm frequency band, and five frequency band images (450, 500, 670, 720, 800nm) multispectral database, which collects 4896 images and manually labeled ground truth; 26 hyperspectral pineapple custard apple fruits (520 images each); multispectral custard apple 168 fruits (5 images each). Using the color image database to train deep learning Yolo v4's pre-training network architecture and adding the training weights established by the fruit database, real-time detection performance is achieved, and the recognition rate reaches over 97.96%. We also used multispectral to take a large number of continuous shots and calculated the difference and average ratio of the fruit in the 670 and 720nm frequency bands. They all have the same trend. The value increases until maturity, and the value will decrease after maturity. Subsequently, the sub-bands will be added to analyze further the numerical analysis of sugar content and moisture, and the absolute value of maturity and the data curve of maturity will be found.Keywords: hyperspectral image, fruit firmness, deep learning, automatic detection, automatic measurement, intelligent labor saving
Procedia PDF Downloads 10