Search results for: electrical measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4553

Search results for: electrical measurement

233 The Gender Criteria of Film Criticism: Creating the ‘Big’, Avoiding the Important

Authors: Eleni Karasavvidou

Abstract:

Social and anthropological research, parallel to Gender Studies, highlighted the relationship between social structures and symbolic forms as an important field of interaction and recording of 'social trends.' Since the study of representations can contribute to the understanding of the social functions and power relations, they encompass. This ‘mirage,’ however, has not only to do with the representations themselves but also with the ways they are received and the film or critical narratives that are established as dominant or alternative. Cinema and the criticism of its cultural products are no exception. Even in the rapidly changing media landscape of the 21st century, movies remain an integral and widespread part of popular culture, making films an extremely powerful means of 'legitimizing' or 'delegitimizing' visions of domination and commonsensical gender stereotypes throughout society. And yet it is film criticism, the 'language per se,' that legitimizes, reinforces, rewards and reproduces (or at least ignores) the stereotypical depictions of female roles that remain common in the realm of film images. This creates the need for this issue to have emerged (also) in academic research questioning gender criteria in film reviews as part of the effort for an inclusive art and society. Qualitative content analysis is used to examine female roles in selected Oscar-nominated films against their reviews from leading websites and newspapers. This method was chosen because of the complex nature of the depictions in the films and the narratives they evoke. The films were divided into basic scenes depicting social functions, such as love and work relationships, positions of power and their function, which were analyzed by content analysis, with borrowings from structuralism (Gennette) and the local/universal images of intercultural philology (Wierlacher). In addition to the measurement of the general ‘representation-time’ by gender, other qualitative characteristics were also analyzed, such as: speaking time, sayings or key actions, overall quality of the character's action in relation to the development of the scenario and social representations in general, as well as quantitatively (insufficient number of female lead roles, fewer key supporting roles, relatively few female directors and people in the production chain and how they might affect screen representations. The quantitative analysis in this study was used to complement the qualitative content analysis. Then the focus shifted to the criteria of film criticism and to the rhetorical narratives that exclude or highlight in relation to gender identities and functions. In the criteria and language of film criticism, stereotypes are often reproduced or allegedly overturned within the framework of apolitical "identity politics," which mainly addresses the surface of a self-referential cultural-consumer product without connecting it more deeply with the material and cultural life. One of the prime examples of this failure is the Bechtel Test, which tracks whether female characters speak in a film regardless of whether women's stories are represented or not in the films analyzed. If perceived unbiased male filmmakers still fail to tell truly feminist stories, the same is the case with the criteria of criticism and the related interventions.

Keywords: representations, context analysis, reviews, sexist stereotypes

Procedia PDF Downloads 83
232 Electronic Waste Analysis And Characterization Study: Management Input For Highly Urbanized Cities

Authors: Jilbert Novelero, Oliver Mariano

Abstract:

In a world where technological evolution and competition to create innovative products are at its peak, problems on Electronic Waste (E-Waste) are now becoming a global concern. E-waste is said to be any electrical or electronic devices that have reached the terminal of its useful life. The major issue are the volume and the raw materials used in crafting E-waste which is non-biodegradable and contains hazardous substances that are toxic to human health and the environment. The objective of this study is to gather baseline data in terms of the composition of E-waste in the solid waste stream and to determine the top 5 E-waste categories in a highly urbanized city. Recommendations in managing these wastes for its reduction were provided which may serve as a guide for acceptance and implementation in the locality. Pasig City was the chosen beneficiary of the research output and through the collaboration of the City Government of Pasig and its Solid Waste Management Office (SWMO); the researcher successfully conducted the Electronic Waste Analysis and Characterization Study (E-WACS) to achieve the objectives. E-WACS that was conducted on April 2019 showed that E-waste ranked 4th which comprises the 10.39% of the overall solid waste volume. Out of 345, 127.24kg which is the total daily domestic waste generation in the city, E-waste covers 35,858.72kg. Moreover, an average of 40 grams was determined to be the E-waste generation per person per day. The top 5 E-waste categories were then classified after the analysis. The category which ranked first is the office and telecommunications equipment that contained the 63.18% of the total generated E-waste. Second in ranking was the household appliances category with 21.13% composition. Third was the lighting devices category with 8.17%. Fourth on ranking was the consumer electronics and batteries category which was composed of 5.97% and fifth was the wires and cables category where it comprised the 1.41% of the average generated E-waste samples. One of the recommendations provided in this research is the implementation of the Pasig City Waste Advantage Card. The card can be used as a privilege card and earned points can be converted to avail of and enjoy services such as haircut, massage, dental services, medical check-up, and etc. Another recommendation raised is for the LGU to encourage a communication or dialogue with the technology and electronics manufacturers and distributors and international and local companies to plan the retrieval and disposal of the E-wastes in accordance with the Extended Producer Responsibility (EPR) policy where producers are given significant responsibilities for the treatment and disposal of post-consumer products.

Keywords: E-waste, E-WACS, E-waste characterization, electronic waste, electronic waste analysis

Procedia PDF Downloads 118
231 Comparing Radiographic Detection of Simulated Syndesmosis Instability Using Standard 2D Fluoroscopy Versus 3D Cone-Beam Computed Tomography

Authors: Diane Ghanem, Arjun Gupta, Rohan Vijayan, Ali Uneri, Babar Shafiq

Abstract:

Introduction: Ankle sprains and fractures often result in syndesmosis injuries. Unstable syndesmotic injuries result from relative motion between the distal ends of the tibia and fibula, anatomic juncture which should otherwise be rigid, and warrant operative management. Clinical and radiological evaluations of intraoperative syndesmosis stability remain a challenging task as traditional 2D fluoroscopy is limited to a uniplanar translational displacement. The purpose of this pilot cadaveric study is to compare the 2D fluoroscopy and 3D cone beam computed tomography (CBCT) stress-induced syndesmosis displacements. Methods: Three fresh-frozen lower legs underwent 2D fluoroscopy and 3D CIOS CBCT to measure syndesmosis position before dissection. Syndesmotic injury was simulated by resecting the (1) anterior inferior tibiofibular ligament (AITFL), the (2) posterior inferior tibiofibular ligament (PITFL) and the inferior transverse ligament (ITL) simultaneously, followed by the (3) interosseous membrane (IOM). Manual external rotation and Cotton stress test were performed after each of the three resections and 2D and 3D images were acquired. Relevant 2D and 3D parameters included the tibiofibular overlap (TFO), tibiofibular clear space (TCS), relative rotation of the fibula, and anterior-posterior (AP) and medial-lateral (ML) translations of the fibula relative to the tibia. Parameters were measured by two independent observers. Inter-rater reliability was assessed by intraclass correlation coefficient (ICC) to determine measurement precision. Results: Significant mismatches were found in the trends between the 2D and 3D measurements when assessing for TFO, TCS and AP translation across the different resection states. Using 3D CBCT, TFO was inversely proportional to the number of resected ligaments while TCS was directly proportional to the latter across all cadavers and ‘resection + stress’ states. Using 2D fluoroscopy, this trend was not respected under the Cotton stress test. 3D AP translation did not show a reliable trend whereas 2D AP translation of the fibula was positive under the Cotton stress test and negative under the external rotation. 3D relative rotation of the fibula, assessed using the Tang et al. ratio method and Beisemann et al. angular method, suggested slight overall internal rotation with complete resection of the ligaments, with a change < 2mm - threshold which corresponds to the commonly used buffer to account for physiologic laxity as per clinical judgment of the surgeon. Excellent agreement (>0.90) was found between the two independent observers for each of the parameters in both 2D and 3D (overall ICC 0.9968, 95% CI 0.995 - 0.999). Conclusions: The 3D CIOS CBCT appears to reliably depict the trend in TFO and TCS. This might be due to the additional detection of relevant rotational malpositions of the fibula in comparison to the standard 2D fluoroscopy which is limited to a single plane translation. A better understanding of 3D imaging may help surgeons identify the precise measurements planes needed to achieve better syndesmosis repair.

Keywords: 2D fluoroscopy, 3D computed tomography, image processing, syndesmosis injury

Procedia PDF Downloads 70
230 Theoretical Framework and Empirical Simulation of Policy Design on Trans-Dimensional Resource Recycling

Authors: Yufeng Wu, Yifan Gu, Bin Li, Wei Wang

Abstract:

Resource recycling process contains a subsystem with interactions of three dimensions including coupling allocation of primary and secondary resources, responsibility coordination of stakeholders in forward and reverse supply chains, and trans-boundary transfer of hidden resource and environmental responsibilities between regions. Overlap or lack of responsibilities is easy to appear at the intersection of the three management dimensions. It is urgent to make an overall design of the policy system for recycling resources. From theoretical perspective, this paper analyzes the unique external differences of resource and environment in various dimensions and explores the reason why the effects of trans-dimensional policies are strongly correlated. Taking the example of the copper resources contained in the waste electrical and electronic equipment, this paper constructs reduction effect accounting model of resources recycling and set four trans-dimensional policy scenarios including resources tax and environmental tax reform of the raw and secondary resources, application of extended producer responsibility system, promotion of clean development mechanism, and strict entry barriers of imported wastes. In these ways, the paper simulates the impact effect of resources recycling process on resource deduction and emission reduction of waste water and gas, and constructs trans-dimensional policy mix scenario through integrating dominant strategy. The results show that combined application of various dimensional policies can achieve incentive compatibility and the trans-dimensional policy mix scenario can reach a better effect. Compared with baseline scenario, this scenario will increase 91.06% copper resources reduction effect and improve emission reduction of waste water and gas by eight times from 2010 to 2030. This paper further analyzes the development orientation of policies in various dimension. In resource dimension, the combined application of compulsory, market and authentication methods should be promoted to improve the use ratio of secondary resources. In supply chain dimension, resource value, residual functional value and potential information value contained in waste products should be fully excavated to construct a circular business system. In regional dimension, it should give full play to the comparative advantages of manufacturing power to improve China’s voice in resource recycling in the world.

Keywords: resource recycling, trans-dimension, policy design, incentive compatibility, life cycle

Procedia PDF Downloads 126
229 Achieving Product Robustness through Variation Simulation: An Industrial Case Study

Authors: Narendra Akhadkar, Philippe Delcambre

Abstract:

In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.

Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation

Procedia PDF Downloads 164
228 Occurrence of Half-Metallicity by Sb-Substitution in Non-Magnetic Fe₂TiSn

Authors: S. Chaudhuri, P. A. Bhobe

Abstract:

Fe₂TiSn is a non-magnetic full Heusler alloy with a small gap (~ 0.07 eV) at the Fermi level. The electronic structure is highly symmetric in both the spin bands and a small percentage of substitution of holes or electrons can push the system towards spin polarization. A stable 100% spin polarization or half-metallicity is very desirable in the field of spintronics, making Fe₂TiSn a highly attractive material. However, this composition suffers from an inherent anti-site disorder between Fe and Ti sites. This paper reports on the method adopted to control the anti-site disorder and the realization of the half-metallic ground state in Fe₂TiSn, achieved by chemical substitution. Here, Sb was substituted at Sn site to obtain Fe₂TiSn₁₋ₓSbₓ compositions with x = 0, 0.1, 0.25, 0.5 and 0.6. All prepared compositions with x ≤ 0.6 exhibit long-range L2₁ ordering and a decrease in Fe – Ti anti-site disorder. The transport and magnetic properties of Fe₂TiSn₁₋ₓSbₓ compositions were investigated as a function of temperature in the range, 5 K to 400 K. Electrical resistivity, magnetization, and Hall voltage measurements were carried out. All the experimental results indicate the presence of the half-metallic ground state in x ≥ 0.25 compositions. However, the value of saturation magnetization is small, indicating the presence of compensated magnetic moments. The observed magnetic moments' values are in close agreement with the Slater–Pauling rule in half-metallic systems. Magnetic interactions in Fe₂TiSn₁₋ₓSbₓ are understood from the local crystal structural perspective using extended X-ray absorption fine structure (EXAFS) spectroscopy. The changes in bond distances extracted from EXAFS analysis can be correlated with the hybridization between constituent atoms and hence the RKKY type magnetic interactions that govern the magnetic ground state of these alloys. To complement the experimental findings, first principle electronic structure calculations were also undertaken. The spin-polarized DOS complies with the experimental results for Fe₂TiSn₁₋ₓSbₓ. Substitution of Sb (an electron excess element) at Sn–site shifts the majority spin band to the lower energy side of Fermi level, thus making the system 100% spin polarized and inducing long-range magnetic order in an otherwise non-magnetic Fe₂TiSn. The present study concludes that a stable half-metallic system can be realized in Fe₂TiSn with ≥ 50% Sb – substitution at Sn – site.

Keywords: antisite disorder, EXAFS, Full Heusler alloy, half metallic ferrimagnetism, RKKY interactions

Procedia PDF Downloads 139
227 Transport Properties of Alkali Nitrites

Authors: Y. Mateyshina, A.Ulihin, N.Uvarov

Abstract:

Electrolytes with different type of charge carrier can find widely application in different using, e.g. sensors, electrochemical equipments, batteries and others. One of important components ensuring stable functioning of the equipment is electrolyte. Electrolyte has to be characterized by high conductivity, thermal stability, and wide electrochemical window. In addition to many advantageous characteristic for liquid electrolytes, the solid state electrolytes have good mechanical stability, wide working range of temperature range. Thus search of new system of solid electrolytes with high conductivity is an actual task of solid state chemistry. Families of alkali perchlorates and nitrates have been investigated by us earlier. In literature data about transport properties of alkali nitrites are absent. Nevertheless, alkali nitrites MeNO2 (Me= Li+, Na+, K+, Rb+ and Cs+), except for the lithium salt, have high-temperature phases with crystal structure of the NaCl-type. High-temperature phases of nitrites are orientationally disordered, i.e. non-spherical anions are reoriented over several equivalents directions in the crystal lattice. Pure lithium nitrite LiNO2 is characterized by ionic conductivity near 10-4 S/cm at 180°C and more stable as compared with lithium nitrate and can be used as a component for synthesis of composite electrolytes. In this work composite solid electrolytes in the binary system LiNO2 - A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) were synthesized and their structural, thermodynamic and electrical properties investigated. Alkali nitrite was obtained by exchange reaction from water solutions of barium nitrite and alkali sulfate. The synthesized salt was characterized by X-ray powder diffraction technique using D8 Advance X-Ray Diffractometer with Cu K radiation. Using thermal analysis, the temperatures of dehydration and thermal decomposition of salt were determined.. The conductivity was measured using a two electrode scheme in a forevacuum (6.7 Pa) with an HP 4284A (Precision LCR meter) in a frequency range 20 Hz < ν < 1 MHz. Solid composite electrolytes LiNO2 - A A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) have been synthesized by mixing of preliminary dehydrated components followed by sintering at 250°C. In the series of nitrite of alkaline metals Li+-Cs+, the conductivity varies not monotonically with increasing radius of cation. The minimum conductivity is observed for KNO2; however, with further increase in the radius of cation in the series, the conductivity tends to increase. The work was supported by the Russian Foundation for Basic research, grant #14-03-31442.

Keywords: conductivity, alkali nitrites, composite electrolytes, transport properties

Procedia PDF Downloads 319
226 Assessing Measures and Caregiving Experiences of Thai Caregivers of Persons with Dementia

Authors: Piyaorn Wajanatinapart, Diane R. Lauver

Abstract:

The number of persons with dementia (PWD) has increased. Informal caregivers are the major providing care. They can have perceived gains and burdens. Caregivers who reported high in perceived gains may report low in burdens and better health. Gaps of caregiving literature were: no report psychometrics in a few studies and unclear definitions of gains; most studies with no theory-guided and conducting in Western countries; not fully described relationships among caregiving variables: motivations, satisfaction with psychological needs, social support, gains, burdens, and physical and psycho-emotional health. Those gaps were filled by assessing psychometric properties of selected measures, providing clearly definitions of gains, using self-determination theory (SDT) to guide the study, and developing the study in Thailand. The study purposes were to evaluate six measures for internal consistency reliability, content validity, and construct validity. This study also examined relationships of caregiving variables: motivations (controlled and autonomous motivations), satisfaction with psychological needs (autonomy, competency, and relatedness), perceived social support, perceived gains, perceived burdens, and physical and psycho-emotional health. This study was a cross-sectional and correlational descriptive design with two convenience samples. Sample 1 was five Thai experts to assess content validity of measures. Sample 2 was 146 Thai caregivers of PWD to assess construct validity, reliability, and relationships among caregiving variables. Experts rated questionnaires and sent them back via e-mail. Caregivers answered questionnaires at clinics of four Thai hospitals. Data analysis was used descriptive statistics and bivariate and multivariate analyses using the composite indicator structural equation model to control measurement errors. For study results, most caregivers were female (82%), middle age (M =51.1, SD =11.9), and daughters (57%). They provided care for 15 hours/day with 4.6 years. The content validity indices of items and scales were .80 or higher for clarity and relevance. Experts suggested item revisions. Cronbach’s alphas were .63 to .93 of ten subscales of four measures and .26 to .57 of three subscales. The gain scale was acceptable for construct validity. With controlling covariates, controlled motivations, the satisfaction with three subscales of psychological needs, and perceived social support had positive relationships with physical and psycho-emotional health. Both satisfaction with autonomy subscale and perceived social support had negative relationship with perceived burdens. The satisfaction with three subscales of psychological needs had positive relationships among them. Physical and psycho-emotional health subscales had positive relationships with each other. Furthermore, perceived burdens had negative relationships with physical and psycho-emotional health. This study was the first use SDT to describe relationships of caregiving variables in Thailand. Caregivers’ characteristics were consistent with literature. Four measures were valid and reliable except two measures. Breadth knowledge about relationships was provided. Interpretation of study results was cautious because of using same sample to evaluate psychometric properties of measures and relationships of caregiving variables. Researchers could use four measures for further caregiving studies. Using a theory would help describe concepts, propositions, and measures used. Researchers may examine the satisfaction with psychological needs as mediators. Future studies to collect data with caregivers in communities are needed.

Keywords: caregivers, caregiving, dementia, measures

Procedia PDF Downloads 308
225 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis

Authors: Iman Farasat, Howard M. Salis

Abstract:

Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.

Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement

Procedia PDF Downloads 473
224 An Integrated Geophysical Investigation for Earthen Dam Inspection: A Case Study of Huai Phueng Dam, Udon Thani, Northeastern Thailand

Authors: Noppadol Poomvises, Prateep Pakdeerod, Anchalee Kongsuk

Abstract:

In the middle of September 2017, a tropical storm named ‘DOKSURI’ swept through Udon Thani, Northeastern Thailand. The storm dumped heavy rain for many hours and caused large amount of water flowing into Huai Phueng reservoir. Level of impounding water increased rapidly, and the extra water flowed over a service spillway, morning-glory type constructed by concrete material for about 50 years ago. Subsequently, a sinkhole was formed on the dam crest and five points of water piping were found on downstream slope closely to spillway. Three techniques of geophysical investigation were carried out to inspect cause of failures; Electrical Resistivity Imaging (ERI), Multichannel Analysis of Surface Wave (MASW), and Ground Penetrating Radar (GPR), respectively. Result of ERI clearly shows evidence of overtop event and heterogeneity around spillway that implied possibility of previous shape of sinkhole around the pipe. The shear wave velocity of subsurface soil measured by MASW can numerically convert to undrained shear strength of impervious clay core. Result of GPR clearly reveals partial settlements of freeboard zone at top part of the dam and also shaping new refilled material to plug the sinkhole back to the condition it should be. In addition, the GPR image is a main answer to confirm that there are not any sinkholes in the survey lines, only that found on top of the spillway. Integrity interpretation of the three results together with several evidences observed during a field walk-through and data from drilled holes can be interpreted that there are four main causes in this account. The first cause is too much water flowing over the spillway. Second, the water attacking morning glory spillway creates cracks upon concrete contact where the spillway is cross-cut to the center of the dam. Third, high velocity of water inside the concrete pipe sucking fine particle of embankment material down via those cracks and flushing out to the river channel. Lastly, loss of clay material of the dam into the concrete pipe creates the sinkhole at the crest. However, in case of failure by piping, it is possible that they can be formed both by backward erosion (internal erosion along or into embedded structure of spillway walls) and also by excess saturated water of downstream material.

Keywords: dam inspection, GPR, MASW, resistivity

Procedia PDF Downloads 242
223 Self-Assembling Layered Double Hydroxide Nanosheets on β-FeOOH Nanorods for Reducing Fire Hazards of Epoxy Resin

Authors: Wei Wang, Yuan Hu

Abstract:

Epoxy resins (EP), one of the most important thermosetting polymers, is widely applied in various fields due to its desirable properties, such as excellent electrical insulation, low shrinkage, outstanding mechanical stiffness, satisfactory adhesion and solvent resistance. However, like most of the polymeric materials, EP has the fatal drawbacks including inherent flammability and high yield of toxic smoke, which restricts its application in the fields requiring fire safety. So, it is still a challenge and an interesting subject to develop new flame retardants which can not only remarkably improve the flame retardancy, but also render modified resins low toxic gases generation. In recent work, polymer nanocomposites based on nanohybrids that contain two or more kinds of nanofillers have drawn intensive interest, which can realize performance enhancements. The realization of previous hybrids of carbon nanotubes (CNTs) and molybdenum disulfide provides us a novel route to decorate layered double hydroxide (LDH) nanosheets on the surface of β-FeOOH nanorods; the deposited LDH nanosheets can fill the network and promote the work efficiency of β-FeOOH nanorods. Moreover, the synergistic effects between LDH and β-FeOOH can be anticipated to have potential applications in reducing fire hazards of EP composites for the combination of condense-phase and gas-phase mechanism. As reported, β-FeOOH nanorods can act as a core to prepare hybrid nanostructures combining with other nanoparticles through electrostatic attraction through layer-by-layer assembly technique. In this work, LDH nanosheets wrapped β-FeOOH nanorods (LDH-β-FeOOH) hybrids was synthesized by a facile method, with the purpose of combining the characteristics of one dimension (1D) and two dimension (2D), to improve the fire resistance of epoxy resin. The hybrids showed a well dispersion in EP matrix and had no obvious aggregation. Thermogravimetric analysis and cone calorimeter tests confirmed that LDH-β-FeOOH hybrids into EP matrix with a loading of 3% could obviously improve the fire safety of EP composites. The plausible flame retardancy mechanism was explored by thermogravimetric infrared (TG-IR) and X-ray photoelectron spectroscopy. The reasons were concluded: condense-phase and gas-phase. Nanofillers were transferred to the surface of matrix during combustion, which could not only shield EP matrix from external radiation and heat feedback from the fire zone, but also efficiently retard transport of oxygen and flammable pyrolysis.

Keywords: fire hazards, toxic gases, self-assembly, epoxy

Procedia PDF Downloads 173
222 The Role of Serum Fructosamine as a Monitoring Tool in Gestational Diabetes Mellitus Treatment in Vietnam

Authors: Truong H. Le, Ngoc M. To, Quang N. Tran, Luu T. Cao, Chi V. Le

Abstract:

Introduction: In Vietnam, the current monitoring and treatment for ordinary diabetic patient mostly based on glucose monitoring with HbA1c test for every three months (recommended goal is HbA1c < 6.5%~7%). For diabetes in pregnant women or Gestational diabetes mellitus (GDM), glycemic control until the time of delivery is extremly important because it could reduce significantly medical implications for both the mother and the child. Besides, GDM requires continuos glucose monitoring at least every two weeks and therefore an alternative marker of glycemia for short-term control is considering a potential tool for the healthcare providers. There are published studies have indicated that the glycosylated serum protein is a better indicator than glycosylated hemoglobin in GDM monitoring. Based on the actual practice in Vietnam, this study was designed to evaluate the role of serum fructosamine as a monitoring tool in GDM treament and its correlations with fasting blood glucose (G0), 2-hour postprandial glucose (G2) and glycosylated hemoglobin (HbA1c). Methods: A cohort study on pregnant women diagnosed with GDM by the 75-gram oralglucose tolerance test was conducted at Endocrinology Department, Cho Ray hospital, Vietnam from June 2014 to March 2015. Cho Ray hospital is the final destination for GDM patient in the southern of Vietnam, the study population has many sources from other pronvinces and therefore researchers belive that this demographic characteristic can help to provide the study result as a reflection for the whole area. In this study, diabetic patients received a continuos glucose monitoring method which consists of bi-weekly on-site visit every 2 weeks with glycosylated serum protein test, fasting blood glucose test and 2-hour postprandial glucose test; HbA1c test for every 3 months; and nutritious consultance for daily diet program. The subjects still received routine treatment at the hospital, with tight follow-up from their healthcare providers. Researchers recorded bi-weekly health conditions, serum fructosamine level and delivery outcome from the pregnant women, using Stata 13 programme for the analysis. Results: A total of 500 pregnant women was enrolled and follow-up in this study. Serum fructosamine level was found to have a light correlation with G0 ( r=0.3458, p < 0.001) and HbA1c ( r=0.3544, p < 0.001), and moderately correlated with G2 ( r=0.4379, p < 0.001). During study timeline, the delivery outcome of 287 women were recorded with the average age of 38.5 ± 1.5 weeks, 9% of them have macrosomia, 2.8% have premature birth before week 35th and 9.8% have premature birth before week 37th; 64.8% of cesarean section and none of them have perinatal or neonatal mortality. The study provides a reference interval of serum fructosamine for GDM patient was 112.9 ± 20.7 μmol/dL. Conclusion: The present results suggests that serum fructosamine is as effective as HbA1c as a reflection of blood glucose control in GDM patient, with a positive result in delivery outcome (0% perinatal or neonatal mortality). The reference value of serum fructosamine measurement provided a potential monitoring utility in GDM treatment for hospitals in Vietnam. Healthcare providers in Cho Ray hospital is considering to conduct more studies to test this reference as a target value in their GDM treatment and monitoring.

Keywords: gestational diabetes mellitus, monitoring tool, serum fructosamine, Vietnam

Procedia PDF Downloads 280
221 An Aptasensor Based on Magnetic Relaxation Switch and Controlled Magnetic Separation for the Sensitive Detection of Pseudomonas aeruginosa

Authors: Fei Jia, Xingjian Bai, Xiaowei Zhang, Wenjie Yan, Ruitong Dai, Xingmin Li, Jozef Kokini

Abstract:

Pseudomonas aeruginosa is a Gram-negative, aerobic, opportunistic human pathogen that is present in the soil, water, and food. This microbe has been recognized as a representative food-borne spoilage bacterium that can lead to many types of infections. Considering the casualties and property loss caused by P. aeruginosa, the development of a rapid and reliable technique for the detection of P. aeruginosa is crucial. The whole-cell aptasensor, an emerging biosensor using aptamer as a capture probe to bind to the whole cell, for food-borne pathogens detection has attracted much attention due to its convenience and high sensitivity. Here, a low-field magnetic resonance imaging (LF-MRI) aptasensor for the rapid detection of P. aeruginosa was developed. The basic detection principle of the magnetic relaxation switch (MRSw) nanosensor lies on the ‘T₂-shortening’ effect of magnetic nanoparticles in NMR measurements. Briefly speaking, the transverse relaxation time (T₂) of neighboring water protons get shortened when magnetic nanoparticles are clustered due to the cross-linking upon the recognition and binding of biological targets, or simply when the concentration of the magnetic nanoparticles increased. Such shortening is related to both the state change (aggregation or dissociation) and the concentration change of magnetic nanoparticles and can be detected using NMR relaxometry or MRI scanners. In this work, two different sizes of magnetic nanoparticles, which are 10 nm (MN₁₀) and 400 nm (MN₄₀₀) in diameter, were first immobilized with anti- P. aeruginosa aptamer through 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) chemistry separately, to capture and enrich the P. aeruginosa cells. When incubating with the target, a ‘sandwich’ (MN₁₀-bacteria-MN₄₀₀) complex are formed driven by the bonding of MN400 with P. aeruginosa through aptamer recognition, as well as the conjugate aggregation of MN₁₀ on the surface of P. aeruginosa. Due to the different magnetic performance of the MN₁₀ and MN₄₀₀ in the magnetic field caused by their different saturation magnetization, the MN₁₀-bacteria-MN₄₀₀ complex, as well as the unreacted MN₄₀₀ in the solution, can be quickly removed by magnetic separation, and as a result, only unreacted MN₁₀ remain in the solution. The remaining MN₁₀, which are superparamagnetic and stable in low field magnetic field, work as a signal readout for T₂ measurement. Under the optimum condition, the LF-MRI platform provides both image analysis and quantitative detection of P. aeruginosa, with the detection limit as low as 100 cfu/mL. The feasibility and specificity of the aptasensor are demonstrated in detecting real food samples and validated by using plate counting methods. Only two steps and less than 2 hours needed for the detection procedure, this robust aptasensor can detect P. aeruginosa with a wide linear range from 3.1 ×10² cfu/mL to 3.1 ×10⁷ cfu/mL, which is superior to conventional plate counting method and other molecular biology testing assay. Moreover, the aptasensor has a potential to detect other bacteria or toxins by changing suitable aptamers. Considering the excellent accuracy, feasibility, and practicality, the whole-cell aptasensor provides a promising platform for a quick, direct and accurate determination of food-borne pathogens at cell-level.

Keywords: magnetic resonance imaging, meat spoilage, P. aeruginosa, transverse relaxation time

Procedia PDF Downloads 152
220 Molecular Migration in Polyvinyl Acetate Matrix: Impact of Compatibility, Number of Migrants and Stress on Surface and Internal Microstructure

Authors: O. Squillace, R. L. Thompson

Abstract:

Migration of small molecules to, and across the surface of polymer matrices is a little-studied problem with important industrial applications. Tackifiers in adhesives, flavors in foods and binding agents in paints all present situations where the function of a product depends on the ability of small molecules to migrate through a polymer matrix to achieve the desired properties such as softness, dispersion of fillers, and to deliver an effect that is felt (or tasted) on a surface. It’s been shown that the chemical and molecular structure, surface free energies, phase behavior, close environment and compatibility of the system, influence the migrants’ motion. When differences in behavior, such as occurrence of segregation to the surface or not, are observed it is then of crucial importance to identify and get a better understanding of the driving forces involved in the process of molecular migration. In this aim, experience is meant to be allied with theory in order to deliver a validated theoretical and computational toolkit to describe and predict these phenomena. The systems that have been chosen for this study aim to address the effect of polarity mismatch between the migrants and the polymer matrix and that of a second migrant over the first one. As a non-polar resin polymer, polyvinyl acetate is used as the material to which more or less polar migrants (sorbitol, carvone, octanoic acid (OA), triacetin) are to be added. Through contact angle measurement a surface excess is seen for sorbitol (polar) mixed with PVAc as the surface energy is lowered compare to the one of pure PVAc. This effect is increased upon the addition of carvon or triacetin (non-polars). Surface micro-structures are also evidenced by atomic force microscopy (AFM). Ion beam analysis (Nuclear Reaction Analysis), supplemented by neutron reflectometry can accurately characterize the self-organization of surfactants, oligomers, aromatic molecules in polymer films in order to relate the macroscopic behavior to the length scales that are amenable to simulation. The nuclear reaction analysis (NRA) data for deuterated OA 20% shows the evidence of a surface excess which is enhanced after annealing. The addition of 10% triacetin, as a second migrant, results in the formation of an underlying layer enriched in triacetin below the surface excess of OA. The results show that molecules in polarity mismatch with the matrix tend to segregate to the surface, and this is favored by the addition of a second migrant of the same polarity than the matrix. As studies have been restricted to materials that are model supported films under static conditions in a first step, it is also wished to address the more challenging conditions of materials under controlled stress or strain. To achieve this, a simple rig and PDMS cell have been designed to stretch the material to a defined strain and to probe these mechanical effects by ion beam analysis and atomic force microscopy. This will make a significant step towards exploring the influence of extensional strain on surface segregation, flavor release in cross-linked rubbers.

Keywords: polymers, surface segregation, thin films, molecular migration

Procedia PDF Downloads 132
219 Effect of Wheat Germ Agglutinin- and Lactoferrin-Grafted Catanionic Solid Lipid Nanoparticles on Targeting Delivery of Etoposide to Glioblastoma Multiforme

Authors: Yung-Chih Kuo, I-Hsin Wang

Abstract:

Catanionic solid lipid nanoparticles (CASLNs) with surface wheat germ agglutinin (WGA) and lactoferrin (Lf) were formulated for entrapping and releasing etoposide (ETP), crossing the blood–brain barrier (BBB), and inhibiting the growth of glioblastoma multiforme (GBM). Microemulsified ETP-CASLNs were modified with WGA and Lf for permeating a cultured monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and for treating malignant U87MG cells. Experimental evidence revealed that an increase in the concentration of catanionic surfactant from 5 μM to 7.5 μM reduced the particle size. When the concentration of catanionic surfactant increased from 7.5 μM to 12.5 μM, the particle size increased, yielding a minimal diameter of WGA-Lf-ETP-CASLNs at 7.5 μM of catanionic surfactant. An increase in the weight percentage of BW from 25% to 75% enlarged WGA-Lf-ETP-CASLNs. In addition, an increase in the concentration of catanionic surfactant from 5 to 15 μM increased the absolute value of zeta potential of WGA-Lf-ETP-CASLNs. It was intriguing that the increment of the charge as a function of the concentration of catanionic surfactant was approximately linear. WGA-Lf-ETP-CASLNs revealed an integral structure with smooth particle contour, displayed a lighter exterior layer of catanionic surfactant, WGA, and Lf and showed a rigid interior region of solid lipids. A variation in the concentration of catanionic surfactant between 5 μM and 15 μM yielded a maximal encapsulation efficiency of ETP ata 7.5 μM of catanionic surfactant. An increase in the concentration of Lf/WGA decreased the grafting efficiency of Lf/WGA. Also, an increase in the weight percentage of ETP decreased its encapsulation efficiency. Moreover, the release rate of ETP from WGA-Lf-ETP-CASLNs reduced with increasing concentration of catanionic surfactant, and WGA-Lf-ETP-CASLNs at 12.5 μM of catanionic surfactant exhibited a feature of sustained release. The order in the viability of HBMECs was ETP-CASLNs ≅ Lf-ETP-CASLNs ≅ WGA-Lf-ETP-CASLNs > ETP. The variation in the transendothelial electrical resistance (TEER) and permeability of propidium iodide (PI) was negligible when the concentration of Lf increased. Furthermore, an increase in the concentration of WGA from 0.2 to 0.6 mg/mL insignificantly altered the TEER and permeability of PI. When the concentration of Lf increased from 2.5 to 7.5 μg/mL and the concentration of WGA increased from 2.5 to 5 μg/mL, the enhancement in the permeability of ETP was minor. However, 10 μg/mL of Lf promoted the permeability of ETP using Lf-ETP-CASLNs, and 5 and 10 μg/mL of WGA could considerably improve the permeability of ETP using WGA-Lf-ETP-CASLNs. The order in the efficacy of inhibiting U87MG cells was WGA-Lf-ETP-CASLNs > Lf-ETP-CASLNs > ETP-CASLNs > ETP. As a result, WGA-Lf-ETP-CASLNs reduced the TEER, enhanced the permeability of PI, induced a minor cytotoxicity to HBMECs, increased the permeability of ETP across the BBB, and improved the antiproliferative efficacy of U87MG cells. The grafting of WGA and Lf is crucial to control the medicinal property of ETP-CASLNs and WGA-Lf-ETP-CASLNs can be promising colloidal carriers in GBM management.

Keywords: catanionic solid lipid nanoparticle, etoposide, glioblastoma multiforme, lactoferrin, wheat germ agglutinin

Procedia PDF Downloads 237
218 Luminescent Properties of Plastic Scintillator with Large Area Photonic Crystal Prepared by a Combination of Nanoimprint Lithography and Atomic Layer Deposition

Authors: Jinlu Ruan, Liang Chen, Bo Liu, Xiaoping Ouyang, Zhichao Zhu, Zhongbing Zhang, Shiyi He, Mengxuan Xu

Abstract:

Plastic scintillators play an important role in the measurement of a mixed neutron/gamma pulsed radiation, neutron radiography and pulse shape discrimination technology. In some research, these luminescent properties are necessary that photons produced by the interactions between a plastic scintillator and radiations can be detected as much as possible by the photoelectric detectors and more photons can be emitted from the scintillators along a specific direction where detectors are located. Unfortunately, a majority of these photons produced are trapped in the plastic scintillators due to the total internal reflection (TIR), because there is a significant light-trapping effect when the incident angle of internal scintillation light is larger than the critical angle. Some of these photons trapped in the scintillator may be absorbed by the scintillator itself and the others are emitted from the edges of the scintillator. This makes the light extraction of plastic scintillators very low. Moreover, only a small portion of the photons emitted from the scintillator easily can be detected by detectors effectively, because the distribution of the emission directions of this portion of photons exhibits approximate Lambertian angular profile following a cosine emission law. Therefore, enhancing the light extraction efficiency and adjusting the emission angular profile become the keys for improving the number of photons detected by the detectors. In recent years, photonic crystal structures have been covered on inorganic scintillators to enhance the light extraction efficiency and adjust the angular profile of scintillation light successfully. However, that, preparation methods of photonic crystals will deteriorate performance of plastic scintillators and even destroy the plastic scintillators, makes the investigation on preparation methods of photonic crystals for plastic scintillators and luminescent properties of plastic scintillators with photonic crystal structures inadequate. Although we have successfully made photonic crystal structures covered on the surface of plastic scintillators by a modified self-assembly technique and achieved a great enhance of light extraction efficiency without evident angular-dependence for the angular profile of scintillation light, the preparation of photonic crystal structures with large area (the diameter is larger than 6cm) and perfect periodic structure is still difficult. In this paper, large area photonic crystals on the surface of scintillators were prepared by nanoimprint lithography firstly, and then a conformal layer with material of high refractive index on the surface of photonic crystal by atomic layer deposition technique in order to enhance the stability of photonic crystal structures and increase the number of leaky modes for improving the light extraction efficiency. The luminescent properties of the plastic scintillator with photonic crystals prepared by the mentioned method are compared with those of the plastic scintillator without photonic crystal. The results indicate that the number of photons detected by detectors is increased by the enhanced light extraction efficiency and the angular profile of scintillation light exhibits evident angular-dependence for the scintillator with photonic crystals. The mentioned preparation of photonic crystals is beneficial to scintillation detection applications and lays an important technique foundation for the plastic scintillators to meet special requirements under different application backgrounds.

Keywords: angular profile, atomic layer deposition, light extraction efficiency, plastic scintillator, photonic crystal

Procedia PDF Downloads 200
217 A Comprehensive Study on Freshwater Aquatic Life Health Quality Assessment Using Physicochemical Parameters and Planktons as Bio Indicator in a Selected Region of Mahaweli River in Kandy District, Sri Lanka

Authors: S. M. D. Y. S. A. Wijayarathna, A. C. A. Jayasundera

Abstract:

Mahaweli River is the longest and largest river in Sri Lanka and it is the major drinking water source for a large portion of 2.5 million inhabitants in the Central Province. The aim of this study was to the determination of water quality and aquatic life health quality in a selected region of Mahaweli River. Six sampling locations (Site 1: 7° 16' 50" N, 80° 40' 00" E; Site 2: 7° 16' 34" N, 80° 40' 27" E; Site 3: 7° 16' 15" N, 80° 41' 28" E; Site 4: 7° 14' 06" N, 80° 44' 36" E; Site 5: 7° 14' 18" N, 80° 44' 39" E; Site 6: 7° 13' 32" N, 80° 46' 11" E) with various anthropogenic activities at bank of the river were selected for a period of three months from Tennekumbura Bridge to Victoria Reservoir. Temperature, pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Dissolved Oxygen (DO), 5-day Biological Oxygen Demand (BOD5), Total Suspended Solids (TSS), hardness, the concentration of anions, and metal concentration were measured according to the standard methods, as physicochemical parameters. Planktons were considered as biological parameters. Using a plankton net (20 µm mesh size), surface water samples were collected into acid washed dried vials and were stored in an ice box during transportation. Diversity and abundance of planktons were identified within 4 days of sample collection using standard manuals of plankton identification under the light microscope. Almost all the measured physicochemical parameters were within the CEA standards limits for aquatic life, Sri Lanka Standards (SLS) or World Health Organization’s Guideline for drinking water. Concentration of orthophosphate ranged between 0.232 to 0.708 mg L-1, and it has exceeded the standard limit of aquatic life according to CEA guidelines (0.400 mg L-1) at Site 1 and Site 2, where there is high disturbance by cultivations and close households. According to the Pearson correlation (significant correlation at p < 0.05), it is obvious that some physicochemical parameters (temperature, DO, TDS, TSS, phosphate, sulphate, chloride fluoride, and sodium) were significantly correlated to the distribution of some plankton species such as Aulocoseira, Navicula, Synedra, Pediastrum, Fragilaria, Selenastrum, Oscillataria, Tribonema and Microcystis. Furthermore, species that appear in blooms (Aulocoseira), organic pollutants (Navicula), and phosphate high eutrophic water (Microcystis) were found, indicating deteriorated water quality in Mahaweli River due to agricultural activities, solid waste disposal, and release of domestic effluents. Therefore, it is necessary to improve environmental monitoring and management to control the further deterioration of water quality of the river.

Keywords: bio indicator, environmental variables, planktons, physicochemical parameters, water quality

Procedia PDF Downloads 106
216 Investigation of Polypropylene Composite Films With Carbon Nanotubes and the Role of β Nucleating Agents for the Improvement of Their Water Vapor Permeability

Authors: Glykeria A. Visvini, George N. Mathioudakis, Amaia Soto Beobide, Aris E. Giannakas, George A. Voyiatzis

Abstract:

Polymeric nanocomposites have generated considerable interest in both academic research and industry because their properties can be tailored by adjusting the type & concentration of nano-inclusions, resulting in complementary and adaptable characteristics. The exceptional and/or unique properties of the nanocomposites, including the high mechanical strength and stiffness, the ease of processing, and their lightweight nature, are attributed to the high surface area, the electrical and/or thermal conductivity of the nano-fillers, which make them appealing materials for a wide range of engineering applications. Polymeric «breathable» membranes enabling water vapor permeability (WVP) can be designed either by using micro/nano-fillers with the ability to interrupt the continuity of the polymer phase generating micro/nano-porous structures or/and by creating micro/nano-pores into the composite material by uniaxial/biaxial stretching. Among the nanofillers, carbon nanotubes (CNTs) exhibit particular high WVP and for this reason, they have already been proposed for gas separation membranes. In a similar context, they could prove to be promising alternative/complementary filler nano-materials, for the development of "breathable" products. Polypropylene (PP) is a commonly utilized thermoplastic polymer matrix in the development of composite films, due to its easy processability and low price, combined with its good chemical & physical properties. PP is known to present several crystalline phases (α, β and γ), depending on the applied treatment process, which have a significant impact on its final properties, particularly in terms of WVP. Specifically, the development of the β-phase in PP in combination with stretching is anticipated to modify the crystalline behavior and extend the microporosity of the polymer matrix exhibiting enhanced WVP. The primary objective of this study is to develop breathable nano-carbon based (functionalized MWCNTs) PP composite membranes, potentially also avoiding the stretching process. This proposed alternative is expected to have a better performance/cost ratio over current stretched PP/CaCO3 composite benchmark membranes. The focus is to investigate the impact of both β-nucleator(s) and nano-carbon fillers on water vapor transmission rate properties of relevant PP nanocomposites.

Keywords: carbon nanotubes, nanocomposites, nucleating agents, polypropylene, water vapor permeability

Procedia PDF Downloads 73
215 Epidemiological Patterns of Pediatric Fever of Unknown Origin

Authors: Arup Dutta, Badrul Alam, Sayed M. Wazed, Taslima Newaz, Srobonti Dutta

Abstract:

Background: In today's world, with modern science and contemporary technology, a lot of diseases may be quickly identified and ruled out, but children's fever of unknown origin (FUO) still presents diagnostic difficulties in clinical settings. Any fever that reaches 38 °C and lasts for more than seven days without a known cause is now classified as a fever of unknown origin (FUO). Despite tremendous progress in the medical sector, fever of unknown origin, or FOU, persists as a major health issue and a major contributor to morbidity and mortality, particularly in children, and its spectrum is sometimes unpredictable. The etiology is influenced by geographic location, age, socioeconomic level, frequency of antibiotic resistance, and genetic vulnerability. Since there are currently no known diagnostic algorithms, doctors are forced to evaluate each patient one at a time with extreme caution. A persistent fever poses difficulties for both the patient and the doctor. This prospective observational study was carried out in a Bangladeshi tertiary care hospital from June 2018 to May 2019 with the goal of identifying the epidemiological patterns of fever of unknown origin in pediatric patients. Methods: It was a hospital-based prospective observational study carried out on 106 children (between 2 months and 12 years) with prolonged fever of >38.0 °C lasting for more than 7 days without a clear source. Children with additional chronic diseases or known immunodeficiency problems were not allowed. Clinical practices that helped determine the definitive etiology were assessed. Initial testing included a complete blood count, a routine urine examination, PBF, a chest X-ray, CRP measurement, blood cultures, serology, and additional pertinent investigations. The analysis focused mostly on the etiological results. The standard program SPSS 21 was used to analyze all of the study data. Findings: A total of 106 patients identified as having FUO were assessed, with over half (57.5%) being female and the majority (40.6%) falling within the 1 to 3-year age range. The study categorized the etiological outcomes into five groups: infections, malignancies, connective tissue conditions, miscellaneous, and undiagnosed. In the group that was being studied, infections were found to be the main cause in 44.3% of cases. Undiagnosed cases came in at 31.1%, cancers at 10.4%, other causes at 8.5%, and connective tissue disorders at 4.7%. Hepato-splenomegaly was seen in people with enteric fever, malaria, acute lymphoid leukemia, lymphoma, and hepatic abscesses, either by itself or in combination with other conditions. About 53% of people who were not diagnosed also had hepato-splenomegaly at the same time. Conclusion: Infections are the primary cause of PUO (pyrexia of unknown origin) in children, with undiagnosed cases being the second most common cause. An incremental approach is beneficial in the process of diagnosing a condition. Non-invasive examinations are used to diagnose infections and connective tissue disorders, while invasive investigations are used to diagnose cancer and other ailments. According to this study, the prevalence of undiagnosed diseases is still remarkable, so extensive historical analysis and physical examinations are necessary in order to provide a precise diagnosis.

Keywords: children, diagnostic challenges, fever of unknown origin, pediatric fever, undiagnosed diseases

Procedia PDF Downloads 27
214 The Effectiveness of Exercise Therapy on Decreasing Pain in Women with Temporomandibular Disorders and How Their Brains Respond: A Pilot Randomized Controlled Trial

Authors: Zenah Gheblawi, Susan Armijo-Olivo, Elisa B. Pelai, Vaishali Sharma, Musa Tashfeen, Angela Fung, Francisca Claveria

Abstract:

Due to physiological differences between men and women, pain is experienced differently between the two sexes. Chronic pain disorders, notably temporomandibular disorders (TMDs), disproportionately affect women in diagnosis, and pain severity in opposition of their male counterparts. TMDs are a type of musculoskeletal disorder that target the masticatory muscles, temporalis muscle, and temporomandibular joints, causing considerable orofacial pain which can usually be referred to the neck and back. Therapeutic methods are scarce, and are not TMD-centered, with the latest research suggesting that subjects with chronic musculoskeletal pain disorders have abnormal alterations in the grey matter of their brains which can be remedied with exercise, and thus, decreasing the pain experienced. The aim of the study is to investigate the effects of exercise therapy in TMD female patients experiencing chronic jaw pain and to assess the consequential effects on brain activity. In a randomized controlled trial, the effectiveness of an exercise program to improve brain alterations and clinical outcomes in women with TMD pain will be tested. Women with chronic TMD pain will be randomized to either an intervention arm or a placebo control group. Women in the intervention arm will receive 8 weeks of progressive exercise of motor control training using visual feedback (MCTF) of the cervical muscles, twice per week. Women in the placebo arm will receive innocuous transcutaneous electrical nerve stimulation during 8 weeks as well. The primary outcomes will be changes in 1) pain, measured with the Visual Analogue Scale, 2) brain structure and networks, measured by fractional anisotropy (brain structure) and the blood-oxygen level dependent signal (brain networks). Outcomes will be measured at baseline, after 8 weeks of treatment, and 4 months after treatment ends and will determine effectiveness of MCTF in managing TMD, through improved clinical outcomes. Results will directly inform and guide clinicians in prescribing more effective interventions for women with TMD. This study is underway, and no results are available at this point. The results of this study will have substantial implications on the advancement in understanding the scope of plasticity the brain has in regards with pain, and how it can be used to improve the treatment and pain of women with TMD, and more generally, other musculoskeletal disorders.

Keywords: exercise therapy, musculoskeletal disorders, physical therapy, rehabilitation, tempomandibular disorders

Procedia PDF Downloads 292
213 Hypothalamic Para-Ventricular and Supra-Optic Nucleus Histo-Morphological Alterations in the Streptozotocin-Diabetic Gerbils (Gerbillus Gerbillus)

Authors: Soumia Hammadi, Imane Nouacer, Lamine Hamida, Younes A. Hammadi, Rachid Chaibi

Abstract:

Aims and objective: In the present work, we investigate the impact of both acute and chronic diabetes mellitus induced by streptozotocin (STZ) on the hypothalamus of the small gerbil (Gerbillus gerbillus). In this purpose, we aimed to study the histologic structure of the gerbil’s hypothalamic supraoptic (NSO) and paraventricular nucleus (NPV) at two distinct time points: two days and 30 days after diabetes onset. Methods: We conducted our investigation using 19 adult male gerbils weighing 25 to 28 g, divided into three groups as follow: Group I: Control gerbils (n=6) received an intraperitoneal injection of citrate buffer. Group II: STZ-diabetic gerbils (n=8) received a single intraperitoneal injection of STZ at a dose of 165 mg/kg of body weight. Diabetes onset (D0) is considered with the first hyperglycemia level exceeding 2,5 g/L. This group was further divided into two subgroups: Group II-1: Experimental Gerbils, at acute state of diabetes (n=8) sacrificed after 02 days of diabetes onset, Group II-2: Experimental Gerbils at chronic state of diabetes (n=7) sacrificed after 30 days of diabetes onset. Two and 30 days after diabetes onset, gerbils had blood drawn from the retro-orbital sinus into EDTA tubes. After centrifugation at -4°C, plasma was frozen at -80°C for later measurement of Cortisol, ACTH, and insulin. Afterward, animals were decapitated; their brain was removed, weighed, fixed in aqueous bouin, and processed and stained with Toluidine Bleu stain for histo-stereological analysis. A comparison was done with control gerbils treated with citrate buffer. Results: Compared to control gerbils, at 02 Days post diabetes onset, the neuronal somata of the paraventricular (NPV) and supraoptic nuclei (NSO) expressed numerous vacuoles of various sizes, we distinct also a neuronal juxtaposition and several unidentifiable vacuolated profiles were also seen in the neuropile. At the same time, we revealed the presence of à shrunken and condensed nuclei, which seem to touch the parvocellular neurons ( NPV); this leads us to suggest the presence of an apoptotic process in the early stage of diabetes. At 30 days of diabetes mellitus, the NPV manifests a few neurons with a distant appearance, in addition the magnocellular neurons in both NPV and NSO were hypertrophied with a rich euchromatin nucleus, a well-defined nucleolus, and a granular cytoplasm. Despite the neuronal degeneration at this stage, unexpectedly, ACTH registers a continuous significant high level compared to the early stage of diabetes mellitus and to control gerbils. Conclusion: The results suggest that the induction of diabetes mellitus using STZ in the small gerbils lead to alterations in the structure and morphology of the hypothalamus and hyper-secretion of ACTH and cortisol, possibly indicating hyperactivity of the hypothalamo-pituitary adrenal axis (HPA) during both the early and later stages of the disease. The subsequent quantitative evaluation of CRH, immunehistochemical evaluation of apoptosis, and oxidative stress assessment could corroborate our results.

Keywords: diabetes type 1., streptozotocin., small gerbil., hypothalamus., paraventricular nucleus., supraoptic nucleus.

Procedia PDF Downloads 74
212 Analysis of Metamaterial Permeability on the Performance of Loosely Coupled Coils

Authors: Icaro V. Soares, Guilherme L. F. Brandao, Ursula D. C. Resende, Glaucio L. Siqueira

Abstract:

Electrical energy can be wirelessly transmitted through resonant coupled coils that operate in the near-field region. Once in this region, the field has evanescent character, the efficiency of Resonant Wireless Power Transfer (RWPT) systems decreases proportionally with the inverse cube of distance between the transmitter and receiver coils. The commercially available RWPT systems are restricted to short and mid-range applications in which the distance between coils is lesser or equal to the coil size. An alternative to overcome this limitation is applying metamaterial structures to enhance the coupling between coils, thus reducing the field decay along the distance between them. Metamaterials can be conceived as composite materials with periodic or non-periodic structure whose unconventional electromagnetic behaviour is due to its unit cell disposition and chemical composition. This new kind of material has been used in frequency selective surfaces, invisibility cloaks, leaky-wave antennas, among other applications. However, for RWPT it is mainly applied as superlenses which are lenses that can overcome the optical limitation and are made of left-handed media, that is, a medium with negative magnetic permeability and electric permittivity. As RWPT systems usually operate at wavelengths of hundreds of meters, the metamaterial unit cell size is much smaller than the wavelength. In this case, electric and magnetic field are decoupled, therefore the double negative condition for superlenses are not required and the negative magnetic permeability is enough to produce an artificial magnetic medium. In this work, the influence of the magnetic permeability of a metamaterial slab inserted between two loosely coupled coils is studied in order to find the condition that leads to the maximum transmission efficiency. The metamaterial used is formed by a subwavelength unit cell that consist of a capacitor-loaded split ring with an inner spiral that is designed and optimized using the software Computer Simulation Technology. The unit cell permeability is experimentally characterized by the ratio of the transmission parameters between coils measured with and without the presence of the metamaterial slab. Early measurements results show that the transmission coefficient at the resonant frequency after the inclusion of the metamaterial is about three times higher than with just the two coils, which confirms the enhancement that this structure brings to RWPT systems.

Keywords: electromagnetic lens, loosely coupled coils, magnetic permeability, metamaterials, resonant wireless power transfer, subwavelength unit cells

Procedia PDF Downloads 146
211 Creation of a Test Machine for the Scientific Investigation of Chain Shot

Authors: Mark McGuire, Eric Shannon, John Parmigiani

Abstract:

Timber harvesting increasingly involves mechanized equipment. This has increased the efficiency of harvesting, but has also introduced worker-safety concerns. One such concern arises from the use of harvesters. During operation, harvesters subject saw chain to large dynamic mechanical stresses. These stresses can, under certain conditions, cause the saw chain to fracture. The high speed of harvester saw chain can cause the resulting open chain loop to fracture a second time due to the dynamic loads placed upon it as it travels through space. If a second fracture occurs, it can result in a projectile consisting of one-to-several chain links. This projectile is referred to as a chain shot. It has speeds similar to a bullet but typically has greater mass and is a significant safety concern. Numerous examples exist of chain shots penetrating bullet-proof barriers and causing severe injury and death. Improved harvester-cab barriers can help prevent injury however a comprehensive scientific understanding of chain shot is required to consistently reduce or prevent it. Obtaining this understanding requires a test machine with the capability to cause chain shot to occur under carefully controlled conditions and accurately measure the response. Worldwide few such test machine exist. Those that do focus on validating the ability of barriers to withstand a chain shot impact rather than obtaining a scientific understanding of the chain shot event itself. The purpose of this paper is to describe the design, fabrication, and use of a test machine capable of a comprehensive scientific investigation of chain shot. The capabilities of this machine are to test all commercially-available saw chains and bars at chain tensions and speeds meeting and exceeding those typically encountered in harvester use and accurately measure the corresponding key technical parameters. The test machine was constructed inside of a standard shipping container. This provides space for both an operator station and a test chamber. In order to contain the chain shot under any possible test conditions, the test chamber was lined with a base layer of AR500 steel followed by an overlay of HDPE. To accommodate varying bar orientations and fracture-initiation sites, the entire saw chain drive unit and bar mounting system is modular and capable of being located anywhere in the test chamber. The drive unit consists of a high-speed electric motor with a flywheel. Standard Ponsse harvester head components are used to bar mounting and chain tensioning. Chain lubrication is provided by a separate peristaltic pump. Chain fracture is initiated through ISO standard 11837. Measure parameters include shaft speed, motor vibration, bearing temperatures, motor temperature, motor current draw, hydraulic fluid pressure, chain force at fracture, and high-speed camera images. Results show that the machine is capable of consistently causing chain shot. Measurement output shows fracture location and the force associated with fracture as a function of saw chain speed and tension. Use of this machine will result in a scientific understanding of chain shot and consequently improved products and greater harvester operator safety.

Keywords: chain shot, safety, testing, timber harvesters

Procedia PDF Downloads 152
210 Design of Evaluation for Ehealth Intervention: A Participatory Study in Italy, Israel, Spain and Sweden

Authors: Monika Jurkeviciute, Amia Enam, Johanna Torres Bonilla, Henrik Eriksson

Abstract:

Introduction: Many evaluations of eHealth interventions conclude that the evidence for improved clinical outcomes is limited, especially when the intervention is short, such as one year. Often, evaluation design does not address the feasibility of achieving clinical outcomes. Evaluations are designed to reflect upon clinical goals of intervention without utilizing the opportunity to illuminate effects on organizations and cost. A comprehensive design of evaluation can better support decision-making regarding the effectiveness and potential transferability of eHealth. Hence, the purpose of this paper is to present a feasible and comprehensive design of evaluation for eHealth intervention, including the design process in different contexts. Methodology: The situation of limited feasibility of clinical outcomes was foreseen in the European Union funded project called “DECI” (“Digital Environment for Cognitive Inclusion”) that is run under the “Horizon 2020” program with an aim to define and test a digital environment platform within corresponding care models that help elderly people live independently. A complex intervention of eHealth implementation into elaborate care models in four different countries was planned for one year. To design the evaluation, a participative approach was undertaken using Pettigrew’s lens of change and transformations, including context, process, and content. Through a series of workshops, observations, interviews, and document analysis, as well as a review of scientific literature, a comprehensive design of evaluation was created. Findings: The findings indicate that in order to get evidence on clinical outcomes, eHealth interventions should last longer than one year. The content of the comprehensive evaluation design includes a collection of qualitative and quantitative methods for data gathering which illuminates non-medical aspects. Furthermore, it contains communication arrangements to discuss the results and continuously improve the evaluation design, as well as procedures for monitoring and improving the data collection during the intervention. The process of the comprehensive evaluation design consists of four stages: (1) analysis of a current state in different contexts, including measurement systems, expectations and profiles of stakeholders, organizational ambitions to change due to eHealth integration, and the organizational capacity to collect data for evaluation; (2) workshop with project partners to discuss the as-is situation in relation to the project goals; (3) development of general and customized sets of relevant performance measures, questionnaires and interview questions; (4) setting up procedures and monitoring systems for the interventions. Lastly, strategies are presented on how challenges can be handled during the design process of evaluation in four different countries. The evaluation design needs to consider contextual factors such as project limitations, and differences between pilot sites in terms of eHealth solutions, patient groups, care models, national and organizational cultures and settings. This implies a need for the flexible approach to evaluation design to enable judgment over the effectiveness and potential for adoption and transferability of eHealth. In summary, this paper provides learning opportunities for future evaluation designs of eHealth interventions in different national and organizational settings.

Keywords: ehealth, elderly, evaluation, intervention, multi-cultural

Procedia PDF Downloads 323
209 Polypeptide Modified Carbon Nanotubes – Mediated GFP Gene Transfection for H1299 Cells and Toxicity Assessment

Authors: Pei-Ying Lo, Jing-Hao Ciou, Kai-Cheng Yang, Jia-Huei Zheng, Shih-Hsiang Huang, Kuen-Chan Lee, Er-Chieh Cho

Abstract:

As-produced CNTs are insoluble in all organic solvents and aqueous solutions have imposed limitations to the use of CNTs. Therefore, how to debundle carbon nanotubes and to modify them for further uses is an important issue. There are several methods for the dispersion of CNTs in water using covalent attachment of hydrophilic groups to the surface of tubes. These methods, however, alter the electronic structure of the nanotubes by disrupting the network of sp2 hybridized carbons. In order to keep the nanotubes’ intrinsic mechanical and electrical properties intact, non-covalent interactions are increasingly being explored as an alternative route for dispersion. Apart from conventional surfactants such as sodium dodecylsulfate (SDS) or sodium dodecylbenzenesulfonate (SDBS) which are highly effective in dispersing CNTs, biopolymers have received much attention as dispersing agents due to the anticipated biocompatibility of the dispersed CNTs. Also, The pyrenyl group is known to interact strongly with the basal plane of graphene via π-stacking. In this study, a highly re-dispersible biopolymer is reported for the synthesis of pyrene-modified poly-L-lysine (PBPL) and poly(D-Glu, D-Lys) (PGLP). To provide the evidence of the safety of the PBPL/CNT & PGLP/CNT materials we use in this study, H1299 and HCT116 cells were incubated with PBPL/CNT & PGLP/CNT materials for toxicity analysis, MTS assays. The results from MTS assays indicated that no significant cellular toxicity was shown in H1299 and HCT116 cells. Furthermore, the fluorescence marker fluorescein isothiocyanate (FITC) was added to PBPL & PGLP dispersions. From the fluorescent measurements showed that the chemical functionalisation of the PBPL/CNT & PGLP/CNT conjugates with the fluorescence marker were successful. The fluorescent PBPL/CNT & PGLP/CNT conjugates could find application in medical imaging. In the next step, the GFP gene is immobilized onto PBPL/CNT conjugates by introducing electrostatic interaction. GFP-transfected cells that emitted fluorescence were imaged and counted under a fluorescence microscope. Due to the unique biocompatibility of PBPL modified CNTs, the GFP gene could be transported into H1299 cells without using antibodies. The applicability of such soluble and chemically functionalised polypeptide/CNT conjugates in biomedicine is currently investigated. We expect that this polypeptide/CNT system will be a safe and multi-functional nanomedical delivery platform and contribute to future medical therapy.

Keywords: carbon nanotube, nanotoxicology, GFP transfection, polypeptide/CNT hybrids

Procedia PDF Downloads 339
208 Water Quality in Buyuk Menderes Graben, Turkey

Authors: Tugbanur Ozen Balaban, Gultekin Tarcan, Unsal Gemici, Mumtaz Colak, I. Hakki Karamanderesi

Abstract:

Buyuk Menderes Graben is located in the Western Anatolia (Turkey). The graben has become the largest industrial and agricultural area with a total population exceeding 3.000.000. There are two big cities within the study areas from west to east as Aydın and Denizli. The study area is very rich with regard to cold ground waters and thermal waters. Electrical production using geothermal potential has become very popular in the last decades in this area. Buyuk Menderes Graben is a tectonically active extensional region and is undergoing a north–south extensional tectonic regime which commenced at the latest during Early Middle Miocene period. The basement of the study area consists of Menderes massif rocks that are made up of high-to low-grade metamorphics and they are aquifer for both cold ground waters and thermal waters depending on the location. Neogene terrestrial sediments, which are mainly composed by alluvium fan deposits unconformably cover the basement rocks in different facies have very low permeability and locally may act as cap rocks for the geothermal systems. The youngest unit is Quaternary alluvium which is the shallow regional aquifer consists of Holocene alluvial deposits in the study area. All the waters are of meteoric origin and reflect shallow or deep circulation according to the 8O, 2H and 3H contents. Meteoric waters move to deep zones by fractured system and rise to the surface along the faults. Water samples (drilling well, spring and surface waters) and local seawater were collected between 2010 and 2012 years. Geochemical modeling was calculated distribution of the aqueous species and exchange processes by using PHREEQCi speciation code. Geochemical analyses show that cold ground water types are evolving from Ca–Mg–HCO3 to Na–Cl–SO4 and geothermal aquifer waters reflect the water types of Na-Cl-HCO3 in Aydın. Water types of Denizli are Ca-Mg-HCO3 and Ca-Mg-HCO3-SO4. Thermal water types reflect generally Na-HCO3-SO4. The B versus Cl rates increase from east to west with the proportion of seawater introduced into the fresh water aquifers and geothermal reservoirs. Concentrations of some elements (As, B, Fe and Ni) are higher than the tolerance limit of the drinking water standard of Turkey (TS 266) and international drinking water standards (WHO, FAO etc).

Keywords: Buyuk Menderes, isotope chemistry, geochemical modelling, water quality

Procedia PDF Downloads 536
207 Development of PCL/Chitosan Core-Shell Electrospun Structures

Authors: Hilal T. Sasmazel, Seda Surucu

Abstract:

Skin tissue engineering is a promising field for the treatment of skin defects using scaffolds. This approach involves the use of living cells and biomaterials to restore, maintain, or regenerate tissues and organs in the body by providing; (i) larger surface area for cell attachment, (ii) proper porosity for cell colonization and cell to cell interaction, and (iii) 3-dimensionality at macroscopic scale. Recent studies on this area mainly focus on fabrication of scaffolds that can closely mimic the natural extracellular matrix (ECM) for creation of tissue specific niche-like environment at the subcellular scale. Scaffolds designed as ECM-like architectures incorporating into the host with minimal scarring/pain and facilitate angiogenesis. This study is related to combining of synthetic PCL and natural chitosan polymers to form 3D PCL/Chitosan core-shell structures for skin tissue engineering applications. Amongst the polymers used in tissue engineering, natural polymer chitosan and synthetic polymer poly(ε-caprolactone) (PCL) are widely preferred in the literature. Chitosan has been among researchers for a very long time because of its superior biocompatibility and structural resemblance to the glycosaminoglycan of bone tissue. However, the low mechanical flexibility and limited biodegradability properties reveals the necessity of using this polymer in a composite structure. On the other hand, PCL is a versatile polymer due to its low melting point (60°C), ease of processability, degradability with non-enzymatic processes (hydrolysis) and good mechanical properties. Nevertheless, there are also several disadvantages of PCL such as its hydrophobic structure, limited bio-interaction and susceptibility to bacterial biodegradation. Therefore, it became crucial to use both of these polymers together as a hybrid material in order to overcome the disadvantages of both polymers and combine advantages of those. The scaffolds here were fabricated by using electrospinning technique and the characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-Ray Photoelectron spectroscopy (XPS). Additionally, gas permeability test, mechanical test, thickness measurement and PBS absorption and shrinkage tests were performed for all type of scaffolds (PCL, chitosan and PCL/chitosan core-shell). By using ImageJ launcher software program (USA) from SEM photographs the average inter-fiber diameter values were calculated as 0.717±0.198 µm for PCL, 0.660±0.070 µm for chitosan and 0.412±0.339 µm for PCL/chitosan core-shell structures. Additionally, the average inter-fiber pore size values exhibited decrease of 66.91% and 61.90% for the PCL and chitosan structures respectively, compare to PCL/chitosan core-shell structures. TEM images proved that homogenous and continuous bead free core-shell fibers were obtained. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. Measured average gas permeability value of produced PCL/chitosan core-shell structure was determined 2315±3.4 g.m-2.day-1. In the future, cell-material interactions of those developed PCL/chitosan core-shell structures will be carried out with L929 ATCC CCL-1 mouse fibroblast cell line. Standard MTT assay and microscopic imaging methods will be used for the investigation of the cell attachment, proliferation and growth capacities of the developed materials.

Keywords: chitosan, coaxial electrospinning, core-shell, PCL, tissue scaffold

Procedia PDF Downloads 481
206 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method

Authors: Berker Bayazit, Gulgun Kayakutlu

Abstract:

The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.

Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy

Procedia PDF Downloads 244
205 A Quasi-Systematic Review on Effectiveness of Social and Cultural Sustainability Practices in Built Environment

Authors: Asif Ali, Daud Salim Faruquie

Abstract:

With the advancement of knowledge about the utility and impact of sustainability, its feasibility has been explored into different walks of life. Scientists, however; have established their knowledge in four areas viz environmental, economic, social and cultural, popularly termed as four pillars of sustainability. Aspects of environmental and economic sustainability have been rigorously researched and practiced and huge volume of strong evidence of effectiveness has been founded for these two sub-areas. For the social and cultural aspects of sustainability, dependable evidence of effectiveness is still to be instituted as the researchers and practitioners are developing and experimenting methods across the globe. Therefore, the present research aimed to identify globally used practices of social and cultural sustainability and through evidence synthesis assess their outcomes to determine the effectiveness of those practices. A PICO format steered the methodology which included all populations, popular sustainability practices including walkability/cycle tracks, social/recreational spaces, privacy, health & human services and barrier free built environment, comparators included ‘Before’ and ‘After’, ‘With’ and ‘Without’, ‘More’ and ‘Less’ and outcomes included Social well-being, cultural co-existence, quality of life, ethics and morality, social capital, sense of place, education, health, recreation and leisure, and holistic development. Search of literature included major electronic databases, search websites, organizational resources, directory of open access journals and subscribed journals. Grey literature, however, was not included. Inclusion criteria filtered studies on the basis of research designs such as total randomization, quasi-randomization, cluster randomization, observational or single studies and certain types of analysis. Studies with combined outcomes were considered but studies focusing only on environmental and/or economic outcomes were rejected. Data extraction, critical appraisal and evidence synthesis was carried out using customized tabulation, reference manager and CASP tool. Partial meta-analysis was carried out and calculation of pooled effects and forest plotting were done. As many as 13 studies finally included for final synthesis explained the impact of targeted practices on health, behavioural and social dimensions. Objectivity in the measurement of health outcomes facilitated quantitative synthesis of studies which highlighted the impact of sustainability methods on physical activity, Body Mass Index, perinatal outcomes and child health. Studies synthesized qualitatively (and also quantitatively) showed outcomes such as routines, family relations, citizenship, trust in relationships, social inclusion, neighbourhood social capital, wellbeing, habitability and family’s social processes. The synthesized evidence indicates slight effectiveness and efficacy of social and cultural sustainability on the targeted outcomes. Further synthesis revealed that such results of this study are due weak research designs and disintegrated implementations. If architects and other practitioners deliver their interventions in collaboration with research bodies and policy makers, a stronger evidence-base in this area could be generated.

Keywords: built environment, cultural sustainability, social sustainability, sustainable architecture

Procedia PDF Downloads 400
204 Partial M-Sequence Code Families Applied in Spectral Amplitude Coding Fiber-Optic Code-Division Multiple-Access Networks

Authors: Shin-Pin Tseng

Abstract:

Nowadays, numerous spectral amplitude coding (SAC) fiber-optic code-division-multiple-access (FO-CDMA) techniques were appealing due to their capable of providing moderate security and relieving the effects of multiuser interference (MUI). Nonetheless, the performance of the previous network is degraded due to fixed in-phase cross-correlation (IPCC) value. Based on the above problems, a new SAC FO-CDMA network using partial M-sequence (PMS) code is presented in this study. Because the proposed PMS code is originated from M-sequence code, the system using the PMS code could effectively suppress the effects of MUI. In addition, two-code keying (TCK) scheme can applied in the proposed SAC FO-CDMA network and enhance the whole network performance. According to the consideration of system flexibility, simple optical encoders/decoders (codecs) using fiber Bragg gratings (FBGs) were also developed. First, we constructed a diagram of the SAC FO-CDMA network, including (N/2-1) optical transmitters, (N/2-1) optical receivers, and one N×N star coupler for broadcasting transmitted optical signals to arrive at the input port of each optical receiver. Note that the parameter N for the PMS code was the code length. In addition, the proposed SAC network was using superluminescent diodes (SLDs) as light sources, which then can save a lot of system cost compared with the other FO-CDMA methods. For the design of each optical transmitter, it is composed of an SLD, one optical switch, and two optical encoders according to assigned PMS codewords. On the other hand, each optical receivers includes a 1 × 2 splitter, two optical decoders, and one balanced photodiode for mitigating the effect of MUI. In order to simplify the next analysis, the some assumptions were used. First, the unipolarized SLD has flat power spectral density (PSD). Second, the received optical power at the input port of each optical receiver is the same. Third, all photodiodes in the proposed network have the same electrical properties. Fourth, transmitting '1' and '0' has an equal probability. Subsequently, by taking the factors of phase‐induced intensity noise (PIIN) and thermal noise, the corresponding performance was displayed and compared with the performance of the previous SAC FO-CDMA networks. From the numerical result, it shows that the proposed network improved about 25% performance than that using other codes at BER=10-9. This is because the effect of PIIN was effectively mitigated and the received power was enhanced by two times. As a result, the SAC FO-CDMA network using PMS codes has an opportunity to apply in applications of the next-generation optical network.

Keywords: spectral amplitude coding, SAC, fiber-optic code-division multiple-access, FO-CDMA, partial M-sequence, PMS code, fiber Bragg grating, FBG

Procedia PDF Downloads 384