Search results for: professional learning communities (PLCs)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10807

Search results for: professional learning communities (PLCs)

6517 A Review on Intelligent Systems for Geoscience

Authors: R Palson Kennedy, P.Kiran Sai

Abstract:

This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.

Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science

Procedia PDF Downloads 140
6516 Accounting Information Systems of Kuwaiti Companies: Obstacles and Barriers

Authors: Haya Y Alobaid

Abstract:

The aim of this paper is to identify and discuss the obstacles to the ability of the accounting information systems of Kuwaiti companies to deal with electronic commerce, and then to propose appropriate solutions to overcome the barriers. The study revealed a remarkable decrease in external auditors who have professional certification. The results also showed an agreement regarding the accounting systems and the ability to deal with e-commerce, with a different degree of importance, despite the presence of obstacles to the ability of accounting systems in dealing with different companies.

Keywords: accounting information systems, obstacle and barriers, electronic commerce, Kuwait companies

Procedia PDF Downloads 256
6515 Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks

Authors: Ahmed Negm, George Aggidis, Xiandong Ma

Abstract:

With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort.

Keywords: deep reinforcement learning, pressure management, water distribution networks, leakage management

Procedia PDF Downloads 97
6514 Implementation of Real-World Learning Experiences in Teaching Courses of Medical Microbiology and Dietetics for Health Science Students

Authors: Miriam I. Jimenez-Perez, Mariana C. Orellana-Haro, Carolina Guzman-Brambila

Abstract:

As part of microbiology and dietetics courses, students of medicine and nutrition analyze the main pathogenic microorganisms and perform dietary analyzes. The course of microbiology describes in a general way the main pathogens including bacteria, viruses, fungi, and parasites, as well as their interaction with the human species. We hypothesize that lack of practical application of the course causes the students not to find the value and the clinical application of it when in reality it is a matter of great importance for healthcare in our country. The courses of the medical microbiology and dietetics are mostly theoretical and only a few hours of laboratory practices. Therefore, it is necessary the incorporation of new innovative techniques that involve more practices and community fieldwork, real cases analysis and real-life situations. The purpose of this intervention was to incorporate real-world learning experiences in the instruction of medical microbiology and dietetics courses, in order to improve the learning process, understanding and the application in the field. During a period of 6 months, medicine and nutrition students worked in a community of urban poverty. We worked with 90 children between 4 and 6 years of age from low-income families with no access to medical services, to give an infectious diagnosis related to nutritional status in these children. We expect that this intervention would give a different kind of context to medical microbiology and dietetics students improving their learning process, applying their knowledge and laboratory practices to help a needed community. First, students learned basic skills in microbiology diagnosis test during laboratory sessions. Once, students acquired abilities to make biochemical probes and handle biological samples, they went to the community and took stool samples from children (with the corresponding informed consent). Students processed the samples in the laboratory, searching for enteropathogenic microorganism with RapID™ ONE system (Thermo Scientific™) and parasites using Willis and Malloy modified technique. Finally, they compared the results with the nutritional status of the children, previously measured by anthropometric indicators. The anthropometric results were interpreted by the OMS Anthro software (WHO, 2011). The microbiological result was interpreted by ERIC® Electronic RapID™ Code Compendium software and validated by a physician. The results were analyses of infectious outcomes and nutritional status. Related to fieldwork community learning experiences, our students improved their knowledge in microbiology and were capable of applying this knowledge in a real-life situation. They found this kind of learning useful when they translate theory to a real-life situation. For most of our students, this is their first contact as health caregivers with real population, and this contact is very important to help them understand the reality of many people in Mexico. In conclusion, real-world or fieldwork learning experiences empower our students to have a real and better understanding of how they can apply their knowledge in microbiology and dietetics and help a much- needed population, this is the kind of reality that many people live in our country.

Keywords: real-world learning experiences, medical microbiology, dietetics, nutritional status, infectious status.

Procedia PDF Downloads 137
6513 Connotation Reform and Problem Response of Rural Social Relations under the Influence of the Earthquake: With a Review of Wenchuan Decade

Authors: Yanqun Li, Hong Geng

Abstract:

The occurrence of Wenchuan earthquake in 2008 has led to severe damage to the rural areas of Chengdu city, such as the rupture of the social network, the stagnation of economic production and the rupture of living space. The post-disaster reconstruction has become a sustainable issue. As an important link to maintain the order of rural social development, social network should be an important content of post-disaster reconstruction. Therefore, this paper takes rural reconstruction communities in earthquake-stricken areas of Chengdu as the research object and adopts sociological research methods such as field survey, observation and interview to try to understand the transformation of rural social relations network under the influence of earthquake and its impact on rural space. It has found that rural societies under the earthquake generally experienced three phases: the break of stable social relations, the transition of temporary non-normal state, and the reorganization of social networks. The connotation of phased rural social relations also changed accordingly: turn to a new division of labor on the social orientation, turn to a capital flow and redistribution in new production mode on the capital orientation, and turn to relative decentralization after concentration on the spatial dimension. Along with such changes, rural areas have emerged some social issues such as the alienation of competition in the new industry division, the low social connection, the significant redistribution of capital, and the lack of public space. Based on a comprehensive review of these issues, this paper proposes the corresponding response mechanism. First of all, a reasonable division of labor should be established within the villages to realize diversified commodity supply. Secondly, the villages should adjust the industrial type to promote the equitable participation of capital allocation groups. Finally, external public spaces should be added to strengthen the field of social interaction within the communities.

Keywords: social relations, social support networks, industrial division, capital allocation, public space

Procedia PDF Downloads 160
6512 Reinforcement Learning the Born Rule from Photon Detection

Authors: Rodrigo S. Piera, Jailson Sales Ara´ujo, Gabriela B. Lemos, Matthew B. Weiss, John B. DeBrota, Gabriel H. Aguilar, Jacques L. Pienaar

Abstract:

The Born rule was historically viewed as an independent axiom of quantum mechanics until Gleason derived it in 1957 by assuming the Hilbert space structure of quantum measurements [1]. In subsequent decades there have been diverse proposals to derive the Born rule starting from even more basic assumptions [2]. In this work, we demonstrate that a simple reinforcement-learning algorithm, having no pre-programmed assumptions about quantum theory, will nevertheless converge to a behaviour pattern that accords with the Born rule, when tasked with predicting the output of a quantum optical implementation of a symmetric informationally-complete measurement (SIC). Our findings support a hypothesis due to QBism (the subjective Bayesian approach to quantum theory), which states that the Born rule can be thought of as a normative rule for making decisions in a quantum world [3].

Keywords: quantum Bayesianism, quantum theory, quantum information, quantum measurement

Procedia PDF Downloads 115
6511 The Effectiveness of Using Nihongo Mantappu Channel on Youtube as an Effort to Succeed Sustainable Development Goals 2030 for Tenth Graders of Smam 10 GKB Gresik

Authors: Salsabila Meutia Meutia

Abstract:

Indonesia as one of the countries that agreed to SDG's must commit to achieve this SDG's goal until the deadline of 2030. The government has tried hard to realize all the goals in the SDG’s, but there is still something that has not been achieved, especially the goal in number 4 which is to ensure that every human being has a decent and inclusive education and encourages lifelong learning opportunities for everyone. Teenagers who are the golden generation for Indonesia are starting to feel dependent on Youtube. The addictive virus of teenagers about using YouTube is both good news and bad news for the sustainability of government programs in achieving goals in SDG’s, especially in term of education. One popular YouTube channel among high school teenagers is Nihongo Mantappu which has 1.8 million followers. This channel contains interesting but quality content that can have a positive influence for the audience. This research was conducted to determine the effectiveness of the Nihongo Mantappu channel on Youtube as a means of fostering enthusiasm and awareness of learning in tenth graders of SMA Muhammadiyah 10 GKB, as well as how it affected in achieving quality educational goals as an effort to succeed in the Sustainable Development Goals of 2030. The objectives of this study were carried out with distributing questionnaires to tenth graders of SMA Muhammadiyah 10 GKB and observing objects in the real life. Then the data obtained are analyzed and described properly so that this research is a descriptive study. The results of the study mentioned that YouTube as one of the websites for viewing and sharing videos is a very effective media for disseminating information, especially among teenagers. The Nihongo Mantappu channel is also considered to be a very effective channel in building enthusiasm and awareness of learning in tenth graders of SMA Muhammadiyah 10 GKB. Students as the main subject of education have a great influence on the achievement of one of SDG’s fourth goals, named quality education. Students who are always on fire in the spirit and awareness of learning will greatly help the achievement of quality education goals in the Sustainable Development Goals by 2030.

Keywords: Youtube, Nihongo, Mantappu, SDG's

Procedia PDF Downloads 139
6510 Politics in Academia: How the Diffusion of Innovation Relates to Professional Capital

Authors: Autumn Rooms Cypres, Barbara Driver

Abstract:

The purpose of this study is to extend discussions about innovations and career politics. Research questions that grounded this effort were: How does an academic learn the unspoken rules of the academy? What happens politically to an academic’s career when their research speaks against the grain of society? Do professors perceive signals that it is time to move on to another institution or even to another career? Epistemology and Methods: This qualitative investigation was focused on examining perceptions of academics. Therefore an open-ended field study, based on Grounded Theory, was used. This naturalistic paradigm (Lincoln & Guba,1985) was selected because it tends to understand information in terms of whole, of patterns, and in relations to the context of the environment. The technique for gathering data was the process of semi-structured, in-depth interviewing. Twenty five academics across the United States were interviewed relative to their career trajectories and the politics and opportunities they have encountered in relation to their research efforts. Findings: The analysis of interviews revealed four themes: Academics are beholden to 2 specific networks of power that influence their sense of job security; the local network based on their employing university and the national network of scholars who share the same field of research. The fights over what counts as research can and does drift from the intellectual to the political, and personal. Academic were able to identify specific instances of shunning and or punishment from their colleagues related directly to the dissemination of research that spoke against the grain of the local or national networks. Academics identified specific signals from both of these networks indicating that their career was flourishing or withering. Implications: This research examined insights from those who persevered when the fights over what and who counts drifted from the intellectual to the political, and the personal. Considerations of why such drifts happen were offered in the form of a socio-political construct called Fit, which included thoughts on hegemony, discourse, and identity. This effort reveals the importance of understanding what professional capital is relative to job security. It also reveals that fear is an enmeshed and often unspoken part of the culture of Academia. Further research to triangulate these findings would be helpful within international contexts.

Keywords: politics, academia, job security, context

Procedia PDF Downloads 325
6509 Promoting Physical Activity through Urban Active Environments: Learning from Practice and Policy Implementation in the EU Space Project

Authors: Rosina U. Ndukwe, Diane Crone, Nick Cavill

Abstract:

Active transport (i.e. walking to school, cycle to work schemes etc.) is an effective approach with multiple social and environmental benefits for transforming urban environments into active urban environments. Although walking and cycling often remain on the margins of urban planning and infrastructure, there are new approaches emerging, along with policy intervention relevant for the creation of sustainable urban active environments conductive to active travel, increasing physical activity levels of involved communities and supporting social inclusion through more active participation. SPAcE - Supporting Policy and Action for Active Environments is a 3 year Erasmus+ project that aims to integrate active transport programmes into public policy across the EU. SPAcE focuses on cities/towns with recorded low physical activity levels to support the development of active environments in 5 sites: Latvia [Tukums], Italy [Palermo], Romania [Brasov], Spain [Castilla-La Mancha] and Greece [Trikala]. The first part of the project involved a review of good practice including case studies from across the EU and project partner countries. This has resulted in the first output from the project, an evidence of good practice summary with case study examples. In the second part of the project, working groups across the 5 sites have carried out co-production to develop Urban Active Environments (UActivE) Action Plans aimed at influencing policy and practice for increasing physical activity primarily through the use of cycling and walking. Action plans are based on international evidence and guidance for healthy urban planning. Remaining project partners include Universities (Gloucestershire, Oxford, Zurich, Thessaly) and Fit for Life programme (National physical activity promotion program, Finland) who provide support and advice incorporating current evidence, healthy urban planning and mentoring. Cooperation and co-production with public health professionals, local government officers, education authorities and transport agencies has been a key approach of the project. The third stage of the project has involved training partners in the WHO HEAT tool to support the implementation of the Action Plans. Project results show how multi-agency, transnational collaboration can produce real-life Action Plans in five EU countries, based on published evidence, real-life experience, consultation and collaborative working with other organisations across the EU. Learning from the processes adopted within this project will demonstrate how public health, local government and transport agencies across the EU, can work together to create healthy environments that have the aim of facilitating active behaviour, even in times of constrained public budgets. The SPAcE project has captured both the challenges and solutions for increasing population physical activity levels, health and wellness in urban spaces and translating evidence into policy and practice ensuring innovation at policy level. Funding acknowledgment: SPAcE (www.activeenvironments.eu) is co-funded by the Sport action of the ERASMUS+ programme.

Keywords: action plans, active transport, SPAcE, UActivE urban active environments, walking and cycling

Procedia PDF Downloads 266
6508 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection

Authors: Yaojun Wang, Yaoqing Wang

Abstract:

Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.

Keywords: case-based reasoning, decision tree, stock selection, machine learning

Procedia PDF Downloads 424
6507 Variations in Spatial Learning and Memory across Natural Populations of Zebrafish, Danio rerio

Authors: Tamal Roy, Anuradha Bhat

Abstract:

Cognitive abilities aid fishes in foraging, avoiding predators & locating mates. Factors like predation pressure & habitat complexity govern learning & memory in fishes. This study aims to compare spatial learning & memory across four natural populations of zebrafish. Zebrafish, a small cyprinid inhabits a diverse range of freshwater habitats & this makes it amenable to studies investigating role of native environment in spatial cognitive abilities. Four populations were collected across India from waterbodies with contrasting ecological conditions. Habitat complexity of the water-bodies was evaluated as a combination of channel substrate diversity and diversity of vegetation. Experiments were conducted on populations under controlled laboratory conditions. A square shaped spatial testing arena (maze) was constructed for testing the performance of adult zebrafish. The square tank consisted of an inner square shaped layer with the edges connected to the diagonal ends of the tank-walls by connections thereby forming four separate chambers. Each of the four chambers had a main door in the centre. Each chamber had three sections separated by two windows. A removable coloured window-pane (red, yellow, green or blue) identified each main door. A food reward associated with an artificial plant was always placed inside the left-hand section of the red-door chamber. The position of food-reward and plant within the red-door chamber was fixed. A test fish would have to explore the maze by taking turns and locate the food inside the right-side section of the red-door chamber. Fishes were sorted from each population stock and kept individually in separate containers for identification. At a time, a test fish was released into the arena and allowed 20 minutes to explore in order to find the food-reward. In this way, individual fishes were trained through the maze to locate the food reward for eight consecutive days. The position of red door, with the plant and the reward, was shuffled every day. Following training, an intermission of four days was given during which the fishes were not subjected to trials. Post-intermission, the fishes were re-tested on the 13th day following the same protocol for their ability to remember the learnt task. Exploratory tendencies and latency of individuals to explore on 1st day of training, performance time across trials, and number of mistakes made each day were recorded. Additionally, mechanism used by individuals to solve the maze each day was analyzed across populations. Fishes could be expected to use algorithm (sequence of turns) or associative cues in locating the food reward. Individuals of populations did not differ significantly in latencies and tendencies to explore. No relationship was found between exploration and learning across populations. High habitat-complexity populations had higher rates of learning & stronger memory while low habitat-complexity populations had lower rates of learning and much reduced abilities to remember. High habitat-complexity populations used associative cues more than algorithm for learning and remembering while low habitat-complexity populations used both equally. The study, therefore, helped understand the role of natural ecology in explaining variations in spatial learning abilities across populations.

Keywords: algorithm, associative cue, habitat complexity, population, spatial learning

Procedia PDF Downloads 291
6506 Association Between Type of Face Mask and Visual Analog Scale Scores During Pain Assessment

Authors: Merav Ben Natan, Yaniv Steinfeld, Sara Badash, Galina Shmilov, Milena Abramov, Danny Epstein, Yaniv Yonai, Eyal Berbalek, Yaron Berkovich

Abstract:

Introduction: Postoperative pain management is crucial for effective rehabilitation, with the Visual Analog Scale (VAS) being a common tool for assessing pain intensity due to its sensitivity and accuracy. However, challenges such as misunderstanding of instructions and discrepancies in pain reporting can affect its reliability. Additionally, the mandatory use of face masks during the COVID-19 pandemic may impair nonverbal and verbal communication, potentially impacting pain assessment and overall care quality. Aims: This study examines the association between the type of mask worn by health care professionals and the assessment of pain intensity in patients after orthopedic surgery using the visual analog scale (VAS). Design: A nonrandomized controlled trial was conducted among 176 patients hospitalized in an orthopedic department of a hospital located in northern-central Israel from January to March 2021. Methods: In the intervention group (n = 83), pain assessment using the VAS was performed by a healthcare professional wearing a transparent face mask, while in the control group (n = 93), pain assessment was performed by a healthcare professional wearing a standard nontransparent face mask. The initial assessment was performed by a nurse, and 15 minutes later, an additional assessment was performed by a physician. Results: Healthcare professionals wearing a standard non-transparent mask obtained higher VAS scores than healthcare professionals wearing a transparent mask. In addition, nurses obtained lower VAS scores than physicians. The discrepancy in VAS scores between nurses and physicians was found in 50% of cases. This discrepancy was more prevalent among female patients, patients after knee replacement or spinal surgery, and when health care professionals were wearing a standard nontransparent mask. Conclusions: This study supports the use of transparent face masks by healthcare professionals in an orthopedic department, particularly by nurses. In addition, this study supports the assumption of problems involving the reliability of VAS.

Keywords: postoperative pain management, visual analog scale, face masks, orthopedic surgery

Procedia PDF Downloads 31
6505 Comparison Analysis of Fuzzy Logic Controler Based PV-Pumped Hydro and PV-Battery Storage Systems

Authors: Seada Hussen, Frie Ayalew

Abstract:

Integrating different energy resources, like solar PV and hydro, is used to ensure reliable power to rural communities like Hara village in Ethiopia. Hybrid power system offers power supply for rural villages by providing an alternative supply for the intermittent nature of renewable energy resources. The intermittent nature of renewable energy resources is a challenge to electrifying rural communities in a sustainable manner with solar resources. Major rural villages in Ethiopia are suffering from a lack of electrification, that cause our people to suffer deforestation, travel for long distance to fetch water, and lack good services like clinic and school sufficiently. The main objective of this project is to provide a balanced, stable, reliable supply for Hara village, Ethiopia using solar power with a pumped hydro energy storage system. The design of this project starts by collecting data from villages and taking solar irradiance data from NASA. In addition to this, geographical arrangement and location are also taken into consideration. After collecting this, all data analysis and cost estimation or optimal sizing of the system and comparison of solar with pumped hydro and solar with battery storage system is done using Homer Software. And since solar power only works in the daytime and pumped hydro works at night time and also at night and morning, both load will share to cover the load demand; this need controller designed to control multiple switch and scheduling in this project fuzzy logic controller is used to control this scenario. The result of the simulation shows that solar with pumped hydro energy storage system achieves good results than with a battery storage system since the comparison is done considering storage reliability, cost, storage capacity, life span, and efficiency.

Keywords: pumped hydro storage, solar energy, solar PV, battery energy storage, fuzzy logic controller

Procedia PDF Downloads 86
6504 Inclusive Early Childhood Education and the Development of Children with Learning Disabilities in Ghana: Cultural-Historical Analysis

Authors: D. K. Kumador, E. A. Muthivhi

Abstract:

Historically, reforms in early childhood education in Ghana have focused narrowly on structural and pedagogical aspects with little attention paid to the broader sociocultural framework within which schooling and child development systems interact. This preliminary study investigates inclusive early childhood education within rapidly changing Ghanaian socio-cultural context, and its consequences for the development of children with learning disabilities. The study addresses an important topic, which is largely under-researched outside of Europe, North America, and Australasia. While inclusive education has been widely accepted globally at the level of policy, its implementation is uneven, as is shown in numerous studies across an array of countries and education systems. Despite this burgeoning area of research internationally, there have been far fewer studies conducted in African settings and fewer still that use cultural-historical activity theory as an investigative approach. More so, specific literature on the subject in the Ghanaian context is non-existent and, as such, coming to a deeper understanding of the sociocultural practices that shape, and possibly impede, inclusive early childhood education in an African country, Ghana, is a worthwhile research endeavour. Using cultural-historical activity theory as a methodological framework, this study employed classroom observations, and in-depth interviews and focus group discussions of preschool teachers in three kindergarten centres in the Greater Accra Region of Ghana to qualitatively explore inclusive early childhood education and the development of children with learning disabilities. The findings showed that literature from Ghana rarely discusses child informed consent as an on-going process that must be articulated throughout the research process from data collection to analysis, reporting and dissemination. Further, the study showed that the introduction and implementation of inclusive education framework – with its concomitant revisions in the curriculum, policies, and school rules, as well as enhanced community and parent involvement – into existing schooling practices, generated contradictions in inclusive teachers’ approaches to teaching and learning, and classroom management. Generally, contradictions in the understanding and acceptability of approaches to teaching and learning occur when a new way of doing things is incorporated into existing practices. These contradictions are thought to be a source of change and development. Thus, they guide teachers to unlearn outmoded practices, relearn or learn new approaches that are beneficial to the development of all children. Nonetheless, the findings of the current study showed that preschool teachers’ belief systems and perceptions of disabilities mediated the outcomes of such contradictions. Also, that was evidenced in the way they engaged children with learning disabilities compared to their typically developing counterparts, showing disregard for what was prescribed by new policies and school rules. The findings have implications for research with young children and the development outcomes of children with learning disabilities in inclusive early childhood education settings.

Keywords: CHAT, classroom management, cultural-historical activity theory, ghana, inclusive early childhood education, schooling practices, young children with learning disabilities

Procedia PDF Downloads 131
6503 Saving Lives from a Laptop: How to Produce a Live Virtual Media Briefing That Will Inform, Educate, and Protect Communities in Crisis

Authors: Cory B. Portner, Julie A. Grauert, Lisa M. Stromme, Shelby D. Anderson, Franji H. Mayes

Abstract:

Introduction: WASHINGTON state in the Pacific Northwest of the United States is internationally known for its technology industry, fisheries, agriculture, and vistas. On January 21, 2020, Washington state also became known as the first state with a confirmed COVID-19 case in the United States, thrusting the state into the international spotlight as the world came to grips with the global threat of this disease presented. Tourism is Washington state’s fourth-largest industry. Tourism to the state generates over 1.8 billion dollars (USD) in local and state tax revenue and employs over 180,000 people. Communicating with residents, stakeholders, and visitors on the status of disease activity, prevention measures, and response updates was vital to stopping the pandemic and increasing compliance and awareness. Significance: In order to communicate vital public health updates, guidance implementation, and safety measures to the public, the Washington State Department of Health established routine live virtual media briefings to reach audiences via social media, internet television, and broadcast television. Through close partnership with regional broadcast news stations and the state public affairs news network, the Washington State Department of Health hosted 95 media briefings from January 2020 through September 2022 and continues to regularly host live virtual media briefings to accommodate the needs of the public and media. Methods: Our methods quickly evolved from hosting briefings in the cement closet of a military base to being able to produce and stream the briefings live from any home-office location. The content was tailored to the hot topic of the day and to the reporter's questions and needs. Virtual media briefings hosted through inexpensive or free platforms online are extremely cost-effective: the only mandatory components are WiFi, a laptop, and a monitor. There is no longer a need for a fancy studio or expensive production software to achieve the goal of communicating credible, reliable information promptly. With minimal investment and a small learning curve, facilitators and panelists are able to host highly produced and engaging media availabilities from their living rooms. Results: The briefings quickly developed a reputation as the best source for local and national journalists to get the latest and most factually accurate information about the pandemic. In the height of the COVID-19 response, 135 unique media outlets logged on to participate in the briefing. The briefings typically featured 4-5 panelists, with as many as 9 experts in attendance to provide information and respond to media questions. Preparation was always a priority: Public Affairs staff for the Washington State Department of Health produced over 170 presenter remarks, including guidance on talking points for 63 expert guest panelists. Implication For Practice: Information is today’s most valuable currency. The ability to disseminate correct information urgently and on a wide scale is the most effective tool in crisis communication. Due to our role as the first state with a confirmed COVID-19 case, we were forced to develop the most accurate and effective way to get life-saving information to the public. The cost-effective, web-based methods we developed can be applied in any crisis to educate and protect communities under threat, ultimately saving lives from a laptop.

Keywords: crisis communications, public relations, media management, news media

Procedia PDF Downloads 188
6502 Provider Perceptions of the Effects of Current U.S. Immigration Enforcement Policies on Service Utilization in a Border Community

Authors: Isabel Latz, Mark Lusk, Josiah Heyman

Abstract:

The rise of restrictive U.S. immigration policies and their strengthened enforcement has reportedly caused concerns among providers about their inadvertent effects on service utilization among Latinx and immigrant communities. This study presents perceptions on this issue from twenty service providers in health care, mental health, nutrition assistance, legal assistance, and immigrant advocacy in El Paso, Texas. All participants were experienced professionals, with fifteen in CEO, COO, executive director, or equivalent positions, and based at organizations that provide services for immigrant and/or low-income populations in a bi-national border community. Quantitative and qualitative data were collected by two primary investigators via semi-structured telephone interviews with an average length of 20 minutes. A survey script with closed and open-ended questions inquired about participants’ demographic information and perceptions of impacts of immigration enforcement policies under the current federal administration on their work and patient or client populations. Quantitative and qualitative data were analyzed to produce descriptive statistics and identify salient themes, respectively. Nearly all respondents stated that their work has been negatively (N=13) or both positively and negatively (N=5) affected by current immigration enforcement policies. Negative effects were most commonly related to immigration enforcement-related fear and uncertainty among patient or client populations. Positive effects most frequently referred to a sense of increased community organizing and greater cooperation among organizations. Similarly, the majority of service providers either reported an increase (N=8) or decrease (N=6) in service utilization due to changes in immigration enforcement policies. Increased service needs were primarily related to a need for public education about immigration enforcement policy changes, information about how new policies impact individuals’ service eligibility, legal status, and civil rights, as well as a need to correct misinformation. Decreased service utilization was primarily related to fear-related service avoidance. While providers observed changes in service utilization among undocumented immigrants and mixed-immigration status families, in particular, participants also noted ‘spillover’ effects on the larger Latinx community, including legal permanent and temporary residents, refugees or asylum seekers, and U.S. citizens. This study reveals preliminary insights into providers’ widespread concerns about the effects of current immigration enforcement policies on health, social, and legal service utilization among Latinx individuals. Further research is necessary to comprehensively assess impacts of immigration enforcement policies on service utilization in Latinx and immigrant communities. This information is critical to address gaps in service utilization and prevent an exacerbation of health disparities among Latinx, immigrant, and border populations. In a global climate of rising nationalism and xenophobia, it is critical for policymakers to be aware of the consequences of immigration enforcement policies on the utilization of essential services to protect the well-being of minority and immigrant communities.

Keywords: immigration enforcement, immigration policy, provider perceptions, service utilization

Procedia PDF Downloads 153
6501 Emerging Technologies in Distance Education

Authors: Eunice H. Li

Abstract:

This paper discusses and analyses a small portion of the literature that has been reviewed for research work in Distance Education (DE) pedagogies that I am currently undertaking. It begins by presenting a brief overview of Taylor's (2001) five-generation models of Distance Education. The focus of the discussion will be on the 5th generation, Intelligent Flexible Learning Model. For this generation, educational and other institutions make portal access and interactive multi-media (IMM) an integral part of their operations. The paper then takes a brief look at current trends in technologies – for example smart-watch wearable technology such as Apple Watch. The emergent trends in technologies carry many new features. These are compared to former DE generational features. Also compared is the time span that has elapsed between the generations that are referred to in Taylor's model. This paper is a work in progress. The paper therefore welcome new insights, comparisons and critique of the issues discussed.

Keywords: distance education, e-learning technologies, pedagogy, generational models

Procedia PDF Downloads 466
6500 Impressions of HyFlex in an Engineering Technology Program in an Undergraduate Urban Commuter Institution

Authors: Zory Marantz

Abstract:

Hybrid flexible (HyFlex) is a pedagogical methodology whereby an instructor delivers content in three modalities, i.e. live in-person (LIP), live online synchronous (LOS), and non-live online asynchronous (nLOaS). HyFlex is focused on providing the largest level of flexibility needed to achieve a cohesive environment across all modalities and incorporating four basic principles – learner’s choice, reusability, accessibility, and equivalency. Much literature has focused on the advantages of this methodology in providing students with the flexibility to choose their learning modality as best suits their schedules and learning styles. Initially geared toward graduate-level students, the concept has been applied to undergraduate studies, particularly during our national pedagogical response to the COVID19 pandemic. There is still little literature about the practicality and feasibility of HyFlex for hardware laboratory intensive engineering technology programs, particularly in dense, urban commuter institutions of higher learning. During a semester of engineering, a lab-based course was taught in the HyFlex modality, and students were asked to complete a survey about their experience. The data demonstrated that there is no single mode that is preferred by a majority of students and the usefulness of any modality is limited to how familiar the student and instructor are with the technology being applied. The technology is only as effective as our understanding and comfort with its functionality. For HyFlex to succeed in its implementation in an engineering technology environment within an urban commuter institution, faculty and students must be properly introduced to the technology being used.

Keywords: education, HyFlex, technology, urban, commuter, pedagogy

Procedia PDF Downloads 99
6499 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 107
6498 Linking the Built Environment, Activities and Well-Being: Examining the Stories among Older Adults during Ageing-in-Place

Authors: Wenquan Gan, Peiyu Zhao, Xinyu Zhao

Abstract:

Under the background of the rapid development of China’s ageing population, ageing-in-place has become a primary strategy to cope with this problem promoted by the Chinese government. However, most older adults currently living in old residential communities are insufficient to support their ageing-in-place. Therefore, exploring how to retrofit existing communities towards ageing-friendly standards to support older adults is essential for healthy ageing. To better cope with this issue, this study aims to shed light on the inter-relationship among the built environment, daily activities, and well-being of older adults in urban China. Using mixed research methods including GPS tracking, structured observation, and in-depth interview to examine: (a) what specific places or facilities are most commonly used by the elderly in the ageing-in-place process; (b) what specific built environment characteristics attract older adults in these frequently used places; (c) how has the use of these spaces impacted the well-being of older adults. Specifically, structured observation and GPS are used to record and map the older residents’ behaviour and movement in Suzhou, China, a city with a highly aged population and suitable as a research case. Subsequently, a follow-up interview is conducted to explore what impact of activities and the built environment on their well-being. Results showed that for the elderly with good functional ability, the facilities promoted by the Chinese government to support ageing-in-place, such as community nursing homes for the aged, day-care centre, and activity centres for the aged, are rarely used by older adults. Additionally, older adults have their preferred activities and built environment characteristics that contribute to their well-being. Our findings indicate that a complex interrelationship between the built environment and activities can influence the well-being of the elderly. Further investigations are needed to understand how to support healthy ageing-in-place, especially in addition to providing permanent elder-ly-care facilities, but to attend to the design interventions that can enhance these particularly built environment characteristics to facilitate a healthy lifestyle in later life.

Keywords: older adults, built environment, spatial behavior, community activity, healthy ageing

Procedia PDF Downloads 111
6497 The Impact of Animal-Assisted Learning on Emotional Wellbeing and Engagement with Reading

Authors: Jill Steel

Abstract:

Introduction: Animal-assisted learning (AAL) interventions are increasing exponentially, yet a paucity of quality research in the field exists. The aim of this study was to evaluate how the promotion of emotional wellbeing, through AAL, in this case, a dog, may support children’s engagement with reading in a Primary 1 classroom. Research indicates that dogs can provide emotional support to children; by forming a trusting attachment with a non-critical ‘friend’ who confers unconditional positive regard on the child, confidence may be boosted and anxiety reduced. By promoting emotional wellbeing through interactions with the dog, it is hoped that children begin to associate reading with feelings of wellbeing, which then results in increased engagement with reading. Methodology: A review of the literature was conducted. The relationship between emotional wellbeing and learning was explored, followed by an examination of the literature relating to Animal-Assisted Therapy and AAL. Scottish educational policy and legislation were analysed to establish the extent to which AAL might be suitable for the Scottish pedagogical context. An empirical study was conducted in a mainstream Primary 1 classroom over a four-week period. An inclusive approach was adopted whereby all children that wanted to interact with the dog were given the opportunity to do so, and all 25 children subsequently chose to participate. Children were not withdrawn from the classroom. Primary methods included interviews, observations, and questionnaires. Three focus children were selected for closer study. Main Results: Results were remarkably close to previous research and literature. Children’s emotional wellbeing was boosted, and engagement in reading improved. Principal Conclusions and Implications for Field: It was concluded that AAL could support emotional wellbeing and, in turn, promote children’s engagement with reading. The main limitation of the study was its short-term nature, and a longer randomised controlled trial with a larger sample, currently being undertaken by the author, would provide a fuller answer to the research question. Barriers to AAL include health and safety concerns and steps to ensure the welfare of the dog.

Keywords: animal-assisted learning, emotional wellbeing, reading, reading to dogs

Procedia PDF Downloads 133
6496 Predicting Response to Cognitive Behavioral Therapy for Psychosis Using Machine Learning and Functional Magnetic Resonance Imaging

Authors: Eva Tolmeijer, Emmanuelle Peters, Veena Kumari, Liam Mason

Abstract:

Cognitive behavioral therapy for psychosis (CBTp) is effective in many but not all patients, making it important to better understand the factors that determine treatment outcomes. To date, no studies have examined whether neuroimaging can make clinically useful predictions about who will respond to CBTp. To this end, we used machine learning methods that make predictions about symptom improvement at the individual patient level. Prior to receiving CBTp, 22 patients with a diagnosis of schizophrenia completed a social-affective processing task during functional MRI. Multivariate pattern analysis assessed whether treatment response could be predicted by brain activation responses to facial affect that was either socially threatening or prosocial. The resulting models did significantly predict symptom improvement, with distinct multivariate signatures predicting psychotic (r=0.54, p=0.01) and affective (r=0.32, p=0.05) symptoms. Psychotic symptom improvement was accurately predicted from relatively focal threat-related activation across hippocampal, occipital, and temporal regions; affective symptom improvement was predicted by a more dispersed profile of responses to prosocial affect. These findings enrich our understanding of the neurobiological underpinning of treatment response. This study provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.

Keywords: cognitive behavioral therapy, machine learning, psychosis, schizophrenia

Procedia PDF Downloads 275
6495 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model

Authors: Anshika Kankane, Dongshik Kang

Abstract:

Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.

Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching

Procedia PDF Downloads 110
6494 Managing Configuration Management in Different Types of Organizations

Authors: Dilek Bilgiç

Abstract:

Configuration Management (CM) is a discipline assuring the consistency between product information the reality all along the product lifecycle. Although the extensive benefits of this discipline, such as the direct impact on increasing return on investment, reducing lifecycle costs, are realized by most organizations. It is worth evaluating that CM functions might be successfully implemented in some organized anarchies. This paper investigates how to manage ambiguity in CM processes as an opportunity within an environment that has different types of complexities and choice arenas. It is not explained how to establish a configuration management organization in a company; more specifically, it is analyzed how to apply configuration management processes when different types of streams exist. From planning to audit, all the CM functions may provide different organization learning opportunities when those applied with the right leadership methods.

Keywords: configuration management, leadership, organizational analysis, organized anarchy, cm process, organizational learning, organizational maturity, configuration status accounting, leading innovation, change management

Procedia PDF Downloads 215
6493 Academic Staff Identity and Emotional Labour: Exploring Pride, Motivation, and Relationships in Universities

Authors: Keith Schofield, Garry R. Prentice

Abstract:

The perceptions of the work an academic does, and the environment in which they do it, contributes to the professional identity of that academic. In turn, this has implications for the level of involvement they have in their job, their satisfaction, and their work product. This research explores academic identities in British and Irish institutions and considers the complex interplay between identity, practice, and participation. Theoretical assumptions made in this paper assert that meaningful work has positive effects on work pride, organisational commitment, organisational citizenship, and motivation; when employees participate enthusiastically they are likely to be more engaged, more successful, and more satisfied. Further examination is given to the context in which this participation happens; the nature of institutional process, management, and relationships with colleagues, team members, and students is considered. The present study follows a mixed-methods approach to explore work satisfaction constructs in a number of academic contexts in the UK and Ireland. The quantitative component of this research (Convenience Sample: 155 academics, and support/ administrative staff; 36.1% male, 63.9% female; 60.8% academic staff, 39.2% support/ administration staff; across a number of universities in the UK and Ireland) was based on an established emotional labour model and was tested across gender groups, job roles, and years of service. This was complimented by qualitative semi-structured interviews (Purposive Sample: 10 academics, and 5 support/ administrative staff across the same universities in the UK and Ireland) to examine various themes including values within academia, work conditions, professional development, and transmission of knowledge to students. Experiences from both academic and support perspectives were sought in order to gain a holistic view of academia and to provide an opportunity to explore the dynamic of the academic/administrator relationship within the broader institutional context. The quantitative emotional labour model, tested via a path analysis, provided a robust description of the relationships within the data. The significant relationships found within the quantitative emotional labour model included a link between non-expression of true feelings resulting in emotional labourious work and lower levels of intrinsic motivation and higher levels of extrinsic motivation. Higher levels of intrinsic motivation also linked positively to work pride. These findings were further explored in the qualitative elements of the research where themes emerged including the disconnection between faculty management and staff, personal fulfilment and the friction between the identities of teacher, researcher/ practitioner and administrator. The implications of the research findings from this study are combined and discussed in relation to possible identity-related and emotional labour management-related interventions. Further, suggestions are made to institutions concerning the application of these findings including the development of academic practices, with specific reference to the duality of identity required to service the combined teacher/ researcher role. Broader considerations of the paper include how individuals and institutions may engage with the changing nature of students-as-consumers as well as a recommendation to centralise personal fulfillment through the development of professional academic identities.

Keywords: academic work, emotional labour, identity friction, mixed methods

Procedia PDF Downloads 282
6492 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems

Authors: Bruno Trstenjak, Dzenana Donko

Abstract:

Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.

Keywords: case based reasoning, classification, expert's knowledge, hybrid model

Procedia PDF Downloads 369
6491 Fostering Organizational Learning across the Canadian Sport System through Leadership and Mentorship Development of Sport Science Leaders

Authors: Jennifer Walinga, Samantha Heron

Abstract:

The goal of the study was to inform the design of effective leadership and mentorship development programming for sport science leaders within the network of Canadian sport institutes and centers. The LEAD (Learn, Engage, Accelerate, Develop) program was implemented to equip sport science leaders with the leadership knowledge, skills, and practice to foster a high - performance culture, enhance the daily training environment, and contribute to optimal performance in sport. After two years of delivery, this analysis of LEAD’s effect on individual and organizational health and performance factors informs the quality of future deliveries and identifies best practice for leadership development across the Canadian sport system and beyond. A larger goal for this project was to inform the public sector more broadly and position sport as a source of best practice for human and social health, development, and performance. The objectives of this study were to review and refine the LEAD program in collaboration with Canadian Sport Institute and Centre leaders, 40-50 participants from three cohorts, and the LEAD program advisory committee, and to trace the effects of the LEAD leadership development program on key leadership mentorship and organizational health indicators across the Canadian sport institutes and centers so as to capture best practice. The study followed a participatory action research framework (PAR) using semi structured interviews with sport scientist participants, program and institute leaders inquiring into impact on specific individual and organizational health and performance factors. Findings included a strong increase in self-reported leadership knowledge, skill, language and confidence, enhancement of human and organizational health factors, and the opportunity to explore more deeply issues of diversity and inclusion, psychological safety, team dynamics, and performance management. The study was significant in building sport leadership and mentorship development strategies for managing change efforts, addressing inequalities, and building personal and operational resilience amidst challenges of uncertainty, pressure, and constraint in real time.

Keywords: sport leadership, sport science leader, leadership development, professional development, sport education, mentorship

Procedia PDF Downloads 30
6490 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 61
6489 Barriers and Facilitators of Implementing Digital Mental Health Resources in Underserved Regions of Ontario during the COVID-19 Pandemic

Authors: Samaneh Abedini, Diana Urajnik, Nicole Naccarato

Abstract:

A high prevalence of mental health problems was observed in marginalized youth living in underserved regions of Ontario during the COVID-19 pandemic. To address this issue, a growing number of community-based traditional mental health services are offering digital mental health resources due to their accessibility, affordability, and scalability. The feasibility of providing these resources in underserved regions has been examined by researchers rather than by representatives of effective services within a mental health system. Indeed, digitalized mental health contents are not routinely embedded within local mental health organizations' services in Northern Ontario, where they can make a substantial impact. To date, many technology-based mental health initiatives have not been effectively implemented in this region. The obstacles associated with implementing digitalized mental health resources in Northern Ontario may be unique to that region. Thus, specific context-based considerations might need to be applied for developing and implementing digital resources by regional mental health organizations in Northern Ontario. The target population was child-serving organizations situated in northeastern Ontario, specifically within Greater Sudbury and the Sudbury District. A sample of six organizations were selected with representation from the mental health, social, and healthcare sectors. The project supervisor was in a unique position to access the organizations by virtue of existing relationships with the practice and lay communities at large. Thus, recruitment was conducted through professional outreach in partnership with the Center for Rural and Northern Health Research (CRaNHR). Semi-structured interviews were conducted with 1-2 key personnel (e.g., administrator, clinician) from participating organizations. Audio recordings from the semi-structured interviews were transcribed verbatim and thematically analyzed supported by NVivo. Thematic analysis of the data resulted in a total of 13 excerpts which were categorized into two major themes including 1) digital mental health services as a valuable resource for organizations both during and after the pandemic, and 2) barriers and facilitators to a successful implementation of digital mental health resources in northern Ontario. Four secondary themes were identified: 1) perceived barriers to implementation of digital mental health resources to the offered services by mental health agencies; 2) acceptability and feasibility of digital health sources for people living in northern Ontario; 3) data security, safety, and risk; and 4) connecting with clients. The employees of mental health organizations in northern Ontario considered digital mental health resources as generally acceptable to youth. However, they raised several concerns that may affect their implementation into routine practice and service delivery. The implementation of digital systems should be simple and straightforward and should enhance rather than hinder clinical workflows for staff. A clear plan for implementing technological services is also required for the successful adoption of digital systems. For successful adoption and implementation of digital systems, staff views must be considered.

Keywords: COVID-19 pandemic, digital mental health resources, Ontario, underserved

Procedia PDF Downloads 107
6488 Experimental Model for Instruction of Pre-Service Teachers in ICT Tools and E-Learning Environments

Authors: Rachel Baruch

Abstract:

This article describes the implementation of an experimental model for teaching ICT tools and digital environments in teachers training college. In most educational systems in the Western world, new programs were developed in order to bridge the digital gap between teachers and students. In spite of their achievements, these programs are limited due to several factors: The teachers in the schools implement new methods incorporating technological tools into the curriculum, but meanwhile the technology changes and advances. The interface of tools changes frequently, some tools disappear and new ones are invented. These conditions require an experimental model of training the pre-service teachers. The appropriate method for instruction within the domain of ICT tools should be based on exposing the learners to innovations, helping them to gain experience, teaching them how to deal with challenges and difficulties on their own, and training them. This study suggests some principles for this approach and describes step by step the implementation of this model.

Keywords: ICT tools, e-learning, pre-service teachers, new model

Procedia PDF Downloads 469