Search results for: panel data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42409

Search results for: panel data analysis

38149 Assessing the Effect of Urban Growth on Land Surface Temperature: A Case Study of Conakry Guinea

Authors: Arafan Traore, Teiji Watanabe

Abstract:

Conakry, the capital city of the Republic of Guinea, has experienced a rapid urban expansion and population increased in the last two decades, which has resulted in remarkable local weather and climate change, raise energy demand and pollution and treating social, economic and environmental development. In this study, the spatiotemporal variation of the land surface temperature (LST) is retrieved to characterize the effect of urban growth on the thermal environment and quantify its relationship with biophysical indices, a normalized difference vegetation index (NDVI) and a normalized difference built up Index (NDBI). Landsat data TM and OLI/TIRS acquired respectively in 1986, 2000 and 2016 were used for LST retrieval and Land use/cover change analysis. A quantitative analysis based on the integration of a remote sensing and a geography information system (GIS) has revealed an important increased in the LST pattern in the average from 25.21°C in 1986 to 27.06°C in 2000 and 29.34°C in 2016, which was quite eminent with an average gain in surface temperature of 4.13°C over 30 years study period. Additionally, an analysis using a Pearson correlation (r) between (LST) and the biophysical indices, normalized difference vegetation index (NDVI) and a normalized difference built-up Index (NDBI) has revealed a negative relationship between LST and NDVI and a strong positive relationship between LST and NDBI. Which implies that an increase in the NDVI value can reduce the LST intensity; conversely increase in NDBI value may strengthen LST intensity in the study area. Although Landsat data were found efficient in assessing the thermal environment in Conakry, however, the method needs to be refined with in situ measurements of LST in the future studies. The results of this study may assist urban planners, scientists and policies makers concerned about climate variability to make decisions that will enhance sustainable environmental practices in Conakry.

Keywords: Conakry, land surface temperature, urban heat island, geography information system, remote sensing, land use/cover change

Procedia PDF Downloads 247
38148 The Morphology and Flash Flood Characteristics of the Transboundary Khowai River: A Catchment Scale Analysis

Authors: Jonahid Chakder, Mahfuzul Haque

Abstract:

Flash flood is among the foremost disastrous characteristic hazards which cause hampering within the environment and social orders due to climate change across the world. In Northeastern region of Bangladesh faces severe flash floods regularly, Such, the Khowai river is a flash flood-prone river. But until now, there are no previous studies about the flash flood of this river. Farmlands Building resilience, protection of crops & fish enclosures of wetland in Habiganj Haor areas, regional roads, and business establishments were submerged due to flash floods. The flash floods of the Khowai River are frequent events, which happened in 1988, 1998, 2000, 2007, 2017, and 2019. Therefore, this study tries to analyze Khowai river morphology, Precipitation, Water level, Satellite image, and Catchment characteristics: a catchment scale analysis that helps to comprehend Khowai river flash flood characteristics and factors of influence. From precipitation analysis, the finding outcome disclosed the data about flash flood accurate zones at the Khowai district watershed. The morphological analysis workout from satellite image and find out the consequence of sinuosity and gradient of this river. The sinuosity indicates that the Khowai river is an antecedent and a meandering river and a meandering river can’t influence the flash flood of any region, but other factors respond here. It is understood that the Khowai river catchment elevation analysis from DEM is directly influenced. The left Baramura and Right Atharamura anticline of the Khowai basin watershed reflects a major impact on the stratigraphy as an impermeable clay layer and this consequence the water passes downward with the drainage pattern and Tributary. This drainage system, the gradient of tributary and their runoff, and the confluence of water in the pre-monsoon season rise the Khowai river water level which influences flash floods (within six hours of Precipitation).

Keywords: geology, gradient, tributary, drainage, watershed, flash flood

Procedia PDF Downloads 126
38147 Physiological Action of Anthraquinone-Containing Preparations

Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina, Evgenii N. Kojaev

Abstract:

In review the generalized data about biological activity of anthraquinone-containing plants and specimens on their basis is presented. Data of traditional medicine, results of bioscreening and clinical researches of specimens are analyzed.

Keywords: anthraquinones, physiologically active substances, phytopreparation, Ramon

Procedia PDF Downloads 376
38146 The Changing Role of Technology-Enhanced University Library Reform in Improving College Student Learning Experience and Career Readiness – A Qualitative Comparative Analysis (QCA)

Authors: Xiaohong Li, Wenfan Yan

Abstract:

Background: While it is widely considered that the university library plays a critical role in fulfilling the institution's mission and providing students’ learning experience beyond the classrooms, how the technology-enhanced library reform changed college students’ learning experience hasn’t been thoroughly investigated. The purpose of this study is to explore how technology-enhanced library reform affects students’ learning experience and career readiness and further identify the factors and effective conditions that enable the quality learning outcome of Chinese college students. Methodologies: This study selected the qualitative comparative analysis (QCA) method to explore the effects of technology-enhanced university library reform on college students’ learning experience and career readiness. QCA is unique in explaining the complex relationship between multiple factors from a holistic perspective. Compared with the traditional quantitative and qualitative analysis, QCA not only adds some quantitative logic but also inherits the characteristics of qualitative research focusing on the heterogeneity and complexity of samples. Shenyang Normal University (SNU) selected a sample of the typical comprehensive university in China that focuses on students’ learning and application of professional knowledge and trains professionals to different levels of expertise. A total of 22 current university students and 30 graduates who joined the Library Readers Association of SNU from 2011 to 2019 were selected for semi-structured interviews. Based on the data collected from these participating students, qualitative comparative analysis (QCA), including univariate necessity analysis and the multi-configuration analysis, was conducted. Findings and Discussion: QCA analysis results indicated that the influence of technology-enhanced university library restructures and reorganization on student learning experience and career readiness is the result of multiple factors. Technology-enhanced library equipment and other hardware restructured to meet the college students learning needs and have played an important role in improving the student learning experience and learning persistence. More importantly, the soft characteristics of technology-enhanced library reform, such as library service innovation space and culture space, have a positive impact on student’s career readiness and development. Technology-enhanced university library reform is not only the change in the building's appearance and facilities but also in library service quality and capability. The study also provides suggestions for policy, practice, and future research.

Keywords: career readiness, college student learning experience, qualitative comparative analysis (QCA), technology-enhanced library reform

Procedia PDF Downloads 79
38145 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 258
38144 Development and Acceptance of a Proposed Module for Enhancing the Reading and Writing Skills in Baybayin: The Traditional Writing System in the Philippines

Authors: Maria Venus G. Solares

Abstract:

The ancient Filipinos had their own spelling or alphabet that differed from the modern Roman alphabet brought by the Spaniards. It consists of seventeen letters, three vowels, and fourteen consonants and is called Baybayin. The word Baybayin is a Tagalog word that refers to all the letters used in writing a language, an alphabet; however, it is also a syllable. The House Bill 4395, first proposed by Rep. Leopoldo Bataoil of the second district of Pangasinan in 2011, which later became House Bill 1022 of what he called The Declaration of the Baybayin as the National Writing System of the Philippines, prompted the researcher to conduct a study on the topic. The main objective of this study was to develop and assess the proposed module for enhancing the reading and writing skills in Baybayin of the students. The researchers wanted to ensure the acceptability of the Baybayin using the proposed module and meet the needs of students in developing their ability to read and write Baybayin through the module. The researchers used quasi-experimental research in this study. The data was collected through the initial and final analysis of the students of Adamson University's ABM 1102 using convenient sampling techniques. Based on statistical analysis of data using weighted mean, standard deviation, and paired t-tests, the proposed module helped improve the students' literacy skills, and the response exercises in the proposed module changed the acceptability of the Baybayin in their minds. The study showed that there was an important difference in the scores of students before and after the use of the module. The student's response to the assessment of their reading and writing skills on Baybayin was highly acceptable. This study will help develop the reading and writing skills of the students in Baybayin and teach Baybayin in response to the revival of a part of Philippine culture that has been long forgotten.

Keywords: Baybayin, proposed module, skill, acceptability

Procedia PDF Downloads 147
38143 The Derivation of a Four-Strain Optimized Mohr's Circle for Use in Experimental Reinforced Concrete Research

Authors: Edvard P. G. Bruun

Abstract:

One of the best ways of improving our understanding of reinforced concrete is through large-scale experimental testing. The gathered information is critical in making inferences about structural mechanics and deriving the mathematical models that are the basis for finite element analysis programs and design codes. An effective way of measuring the strains across a region of a specimen is by using a system of surface mounted Linear Variable Differential Transformers (LVDTs). While a single LVDT can only measure the linear strain in one direction, by combining several measurements at known angles a Mohr’s circle of strain can be derived for the whole region under investigation. This paper presents a method that can be used by researchers, which improves the accuracy and removes experimental bias in the calculation of the Mohr’s circle, using four rather than three independent strain measurements. Obtaining high quality strain data is essential, since knowing the angular deviation (shear strain) and the angle of principal strain in the region are important properties in characterizing the governing structural mechanics. For example, the Modified Compression Field Theory (MCFT) developed at the University of Toronto, is a rotating crack model that requires knowing the direction of the principal stress and strain, and then calculates the average secant stiffness in this direction. But since LVDTs can only measure average strains across a plane (i.e., between discrete points), localized cracking and spalling that typically occur in reinforced concrete, can lead to unrealistic results. To build in redundancy and improve the quality of the data gathered, the typical experimental setup for a large-scale shell specimen has four independent directions (X, Y, H, and V) that are instrumented. The question now becomes, which three should be used? The most common approach is to simply discard one of the measurements. The problem is that this can produce drastically different answers, depending on the three strain values that are chosen. To overcome this experimental bias, and to avoid simply discarding valuable data, a more rigorous approach would be to somehow make use of all four measurements. This paper presents the derivation of a method to draw what is effectively a Mohr’s circle of 'best-fit', which optimizes the circle by using all four independent strain values. The four-strain optimized Mohr’s circle approach has been utilized to process data from recent large-scale shell tests at the University of Toronto (Ruggiero, Proestos, and Bruun), where analysis of the test data has shown that the traditional three-strain method can lead to widely different results. This paper presents the derivation of the method and shows its application in the context of two reinforced concrete shells tested in pure torsion. In general, the constitutive models and relationships that characterize reinforced concrete are only as good as the experimental data that is gathered – ensuring that a rigorous and unbiased approach exists for calculating the Mohr’s circle of strain during an experiment, is of utmost importance to the structural research community.

Keywords: reinforced concrete, shell tests, Mohr’s circle, experimental research

Procedia PDF Downloads 235
38142 Personal Data Protection: A Legal Framework for Health Law in Turkey

Authors: Veli Durmus, Mert Uydaci

Abstract:

Every patient who needs to get a medical treatment should share health-related personal data with healthcare providers. Therefore, personal health data plays an important role to make health decisions and identify health threats during every encounter between a patient and caregivers. In other words, health data can be defined as privacy and sensitive information which is protected by various health laws and regulations. In many cases, the data are an outcome of the confidential relationship between patients and their healthcare providers. Globally, almost all nations have own laws, regulations or rules in order to protect personal data. There is a variety of instruments that allow authorities to use the health data or to set the barriers data sharing across international borders. For instance, Directive 95/46/EC of the European Union (EU) (also known as EU Data Protection Directive) establishes harmonized rules in European borders. In addition, the General Data Protection Regulation (GDPR) will set further common principles in 2018. Because of close policy relationship with EU, this study provides not only information on regulations, directives but also how they play a role during the legislative process in Turkey. Even if the decision is controversial, the Board has recently stated that private or public healthcare institutions are responsible for the patient call system, for doctors to call people waiting outside a consultation room, to prevent unlawful processing of personal data and unlawful access to personal data during the treatment. In Turkey, vast majority private and public health organizations provide a service that ensures personal data (i.e. patient’s name and ID number) to call the patient. According to the Board’s decision, hospital or other healthcare institutions are obliged to take all necessary administrative precautions and provide technical support to protect patient privacy. However, this application does not effectively and efficiently performing in most health services. For this reason, it is important to draw a legal framework of personal health data by stating what is the main purpose of this regulation and how to deal with complicated issues on personal health data in Turkey. The research is descriptive on data protection law for health care setting in Turkey. Primary as well as secondary data has been used for the study. The primary data includes the information collected under current national and international regulations or law. Secondary data include publications, books, journals, empirical legal studies. Consequently, privacy and data protection regimes in health law show there are some obligations, principles and procedures which shall be binding upon natural or legal persons who process health-related personal data. A comparative approach presents there are significant differences in some EU member states due to different legal competencies, policies, and cultural factors. This selected study provides theoretical and practitioner implications by highlighting the need to illustrate the relationship between privacy and confidentiality in Personal Data Protection in Health Law. Furthermore, this paper would help to define the legal framework for the health law case studies on data protection and privacy.

Keywords: data protection, personal data, privacy, healthcare, health law

Procedia PDF Downloads 224
38141 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling

Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König

Abstract:

As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.

Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling

Procedia PDF Downloads 513
38140 Public Policy as a Component of Entrepreneurship Ecosystems: Challenges of Implementation

Authors: José Batista de Souza Neto

Abstract:

This research project has as its theme the implementation of public policies to support micro and small businesses (MSEs). The research problem defined was how public policies for access to markets that drive the entrepreneurial ecosystem of MSEs are implemented. The general objective of this research is to understand the process of implementing a public policy to support the entrepreneurial ecosystem of MSEs by the Support Service for Micro and Small Enterprises of the State of São Paulo (SEBRAESP). Public policies are constituent elements of entrepreneurship ecosystems that influence the creation and development of ventures from the action of the entrepreneur. At the end of the research, it is expected to achieve the results for the following specific objectives: (a) understand how the entrepreneurial ecosystem of MSEs is constituted; (b) understand how market access public policies for MSEs are designed and implemented; (c) understand SEBRAE's role in the entrepreneurship ecosystem; and (d) offer an action plan and monitor its execution up to march, 2023. The field research will be conducted based on Action Research, with a qualitative and longitudinal approach to the data. Data collection will be based on narratives produced since 2019 when the decision to implement Comércio Brasil program, a public policy focused on generating market access for 4280 MSEs yearly, was made. The narratives will be analyzed by the method of document analysis and narrative analysis. It is expected that the research will consolidate the relevance of public policies to market access for MSEs and the role of SEBRAE as a protagonist in the implementation of these public policies in the entrepreneurship ecosystem will be demonstrated. Action research is recognized as an intervention method, it is expected that this research will corroborate its role in supporting management processes.

Keywords: entrepreneurship, entrepreneurship ecosystem, public policies, SEBRAE, action research

Procedia PDF Downloads 187
38139 Frequency of Alloimmunization in Sickle Cell Disease Patients in Africa: A Systematic Review with Meta-analysis

Authors: Theresa Ukamaka Nwagha, Angela Ogechukwu Ugwu, Martins Nweke

Abstract:

Background and Objectives: Blood transfusion is an effective and proven treatment for some severe complications of sickle cell disease. Recurrent transfusions have put patients with sickle cell disease at risk of developing antibodies against the various antigens they were exposed to. This study aims to investigate the frequency of red blood cell alloimmunization in patients with sickle disease in Africa. Materials and Methods: This is a systematic review of peer-reviewed literature published in English. The review was conducted consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. Data sources for the review include MEDLINE, PubMed, CINAHL, and Academic Search Complete. Included in this review are articles that reported the frequency/prevalence of red blood cell alloimmunization in sickle cell disease patients in Africa. Eligible studies were subjected to independent full-text screening and data extraction. Risk of bias assessment was conducted with the aid of the mixed method appraisal tool. We employed a random-effects model of meta-analysis to estimate the pooled prevalence. We computed Cochrane’s Q statistics and I2 and prediction interval to quantify heterogeneity in effect size. Results: The prevalence estimates range from 2.6% to 29%. Pooled prevalence was estimated to be 10.4% (CI 7.7.–13.8); PI = 3.0 – 34.0%), with significant heterogeneity (I2 = 84.62; PI = 2.0-32.0%) and publication bias (Egger’s t-test = 1.744, p = 0.0965). Conclusion: The frequency of red cell alloantibody varies considerably in Africa. The alloantibodies appeared frequent in this order: the Rhesus, Kell, Lewis, Duffy, MNS, and Lutheran

Keywords: frequency, red blood cell, alloimmunization, sickle cell disease, Africa

Procedia PDF Downloads 100
38138 Enhancing Academic Achievement of University Student through Stress Management Training: A Study from Southern Punjab, Pakistan

Authors: Rizwana Amin, Afshan Afroze Bhatti

Abstract:

The study was a quasi-experimental pre-post test design including two groups. Data was collected from 127 students through non-probability random sampling from Bahaudin Zakariya University Multan. The groups were given pre-test using perceived stress scale and information about academic achievement was taken by self-report. After screening, 27 participants didn’t meet the criterion. Remaining 100 participants were divided into two groups (experimental and control). Further, 4 students of experimental group denied taking intervention. Then 46 understudies were separated into three subgroups (16, 15 and 15 in each) for training. The experimental groups were given the stress management training, each of experimental group attended one 3-hour training sessions separately while the control group was only given pre-post assessment. The data were analyzed using ANCOVA method (analysis of covariance) t–test. Results of the study indicate that stress training will lead to increased emotional intelligence and academic achievement of students.

Keywords: stress, stress management, academic achievement, students

Procedia PDF Downloads 340
38137 Authorship Patterns in the Literature on English and Literary Studies of Bayero University, Kano: 2007 – 2017

Authors: Murtala Musa

Abstract:

The purpose of this study was to look at the authorship patterns of Master's Degree Dissertations submitted to the Department of English and Literary Studies at Bayero University in Kano between 2007 and 2017, with the goal of determining the pattern and degree of collaboration between authors. The study was conducted utilizing quantitative research methods and an Ex-post factor research design. A total of 176 copies of Masters Dissertations were examined, yielding a total of 12061 citations. The data collection instrument was a citation analysis checklist created by the researcher. Subramanyam's Law of Collaboration of Authors was used to determine the degree of collaboration among authors using descriptive statistics such as tables, frequency distributions, percentages, and charts. Single-authored publications, followed by double-authored articles, accounted for the majority of the contributions.

Keywords: authorship patterns, bibliometrics, English and Literary studies, citation analysis

Procedia PDF Downloads 76
38136 Mirna Expression Profile is Different in Human Amniotic Mesenchymal Stem Cells Isolated from Obese Respect to Normal Weight Women

Authors: Carmela Nardelli, Laura Iaffaldano, Valentina Capobianco, Antonietta Tafuto, Maddalena Ferrigno, Angela Capone, Giuseppe Maria Maruotti, Maddalena Raia, Rosa Di Noto, Luigi Del Vecchio, Pasquale Martinelli, Lucio Pastore, Lucia Sacchetti

Abstract:

Maternal obesity and nutrient excess in utero increase the risk of future metabolic diseases in the adult life. The mechanisms underlying this process are probably based on genetic, epigenetic alterations and changes in foetal nutrient supply. In mammals, the placenta is the main interface between foetus and mother, it regulates intrauterine development, modulates adaptive responses to sub optimal in uterus conditions and it is also an important source of human amniotic mesenchymal stem cells (hA-MSCs). We previously highlighted a specific microRNA (miRNA) profiling in amnion from obese (Ob) pregnant women, here we compared the miRNA expression profile of hA-MSCs isolated from (Ob) and control (Co) women, aimed to search for any alterations in metabolic pathways that could predispose the new-born to the obese phenotype. Methods: We isolated, at delivery, hA-MSCs from amnion of 16 Ob- and 7 Co-women with pre-pregnancy body mass index (mean/SEM) 40.3/1.8 and 22.4/1.0 kg/m2, respectively. hA-MSCs were phenotyped by flow cytometry. Globally, 384 miRNAs were evaluated by the TaqMan Array Human MicroRNA Panel v 1.0 (Applied Biosystems). By the TargetScan program we selected the target genes of the miRNAs differently expressed in Ob- vs Co-hA-MSCs; further, by KEGG database, we selected the statistical significant biological pathways. Results: The immunophenotype characterization confirmed the mesenchymal origin of the isolated hA-MSCs. A large percentage of the tested miRNAs, about 61.4% (232/378), was expressed in hA-MSCs, whereas 38.6% (146/378) was not. Most of the expressed miRNAs (89.2%, 207/232) did not differ between Ob- and Co-hA-MSCs and were not further investigated. Conversely, 4.8% of miRNAs (11/232) was higher and 6.0% (14/232) was lower in Ob- vs Co-hA-MSCs. Interestingly, 7/232 miRNAs were obesity-specific, being expressed only in hA-MSCs isolated from obese women. Bioinformatics showed that these miRNAs significantly regulated (P<0.001) genes belonging to several metabolic pathways, i.e. MAPK signalling, actin cytoskeleton, focal adhesion, axon guidance, insulin signaling, etc. Conclusions: Our preliminary data highlight an altered miRNA profile in Ob- vs Co-hA-MSCs and suggest that an epigenetic miRNA-based mechanism of gene regulation could affect pathways involved in placental growth and function, thereby potentially increasing the newborn’s risk of metabolic diseases in the adult life.

Keywords: hA-MSCs, obesity, miRNA, biosystem

Procedia PDF Downloads 528
38135 Artificial Intelligence in Management Simulators

Authors: Nuno Biga

Abstract:

Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.

Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant

Procedia PDF Downloads 105
38134 The Effectiveness of Psychodrama on Anxiety Enhancement in Adolescent Boys

Authors: Saeed Dehnavi, Marjan Pooee

Abstract:

Background - Psychodrama, as a form of art therapy, helps people to enact and use role-plays for a specific problem, rather than just talking about it, in an effort to review the problem, gain feedback from group members, find appropriate solutions, and practice them for their life. This paper evaluated the effectiveness of psychodrama on enhancing anxiety of young adolescent boys. Methodology - This is aquasi-experimental research study, using a pre-post testing plan with control group. From four secondary schools in Kermanshah - Iran, 210 adolescent boys (aged 13 and 14 years) were asked to complete Koper Smith's self-esteem measure scale. Given the low self-esteem scores (less than the cut-off of 23), a number of 20 individuals were selected and randomly placed into two control and experimental groups. The experimental group participated in a twelve-session psychodrama therapy plan for 6 weeks, while the control group received no intervention. Data analysis was carried out by the analysis of covariance (ANCOVA). Results - The results of ANCOVA analysis showed an increase in the post-test scores for anxiety, and such increase was statistically significant. Conclusion - The findings indicated the effectiveness of psychodrama on anxiety enhancement of young boys. During psychodrama sessions, the adolescents learned to take the initiative, communicate with others in an excited state, and improve their anxiety with positive and constructive experiences.

Keywords: anxiety, art therapy, psychodrama, young adolescents

Procedia PDF Downloads 543
38133 Remittances, Unemployement and Demographic Changes between Tunisia and Europe

Authors: Hajer Habib, Ghazi Boulila

Abstract:

The objective of this paper is to present our contribution to the theoretical literature through a simple theoretical model dealing with the effect of transferring funds on the labor market of the countries of origin and on the other hand to test this relationship empirically in the case of Tunisia. The methodology used consists of estimating a panel of the nine main destinations of the Tunisian diaspora in Europe between 1994 and 2014 in order to better value the net effect of these migratory financial flows on unemployment through population growth. The empirical results show that the main factors explaining the decision to emigrate are the economic factors related mainly to the income differential, the demographic factors related to the differential age structure of the origin and host populations, and the cultural factors linked basically to the mastery of the language. Indeed, the stock of migrants is one of the main determinants of the transfer of migratory funds to Tunisia. But there are other variables that do not lack importance such as the economic conditions linked by the host countries. This shows that Tunisian migrants react more to economic conditions in European countries than in Tunisia. The economic situation of European countries dominates the numbers of emigrants as an explanatory factor for the amount of transfers from Tunisian emigrants to their country of origin. Similarly, it is clear that there is an indirect effect of transfers on unemployment in Tunisia. This suggests that the demographic transition conditions the effects of transferring funds on the level of unemployment.

Keywords: demographic changes, international migration, labor market, remittances

Procedia PDF Downloads 150
38132 Data Integrity: Challenges in Health Information Systems in South Africa

Authors: T. Thulare, M. Herselman, A. Botha

Abstract:

Poor system use, including inappropriate design of health information systems, causes difficulties in communication with patients and increased time spent by healthcare professionals in recording the necessary health information for medical records. System features like pop-up reminders, complex menus, and poor user interfaces can make medical records far more time consuming than paper cards as well as affect decision-making processes. Although errors associated with health information and their real and likely effect on the quality of care and patient safety have been documented for many years, more research is needed to measure the occurrence of these errors and determine the causes to implement solutions. Therefore, the purpose of this paper is to identify data integrity challenges in hospital information systems through a scoping review and based on the results provide recommendations on how to manage these. Only 34 papers were found to be most suitable out of 297 publications initially identified in the field. The results indicated that human and computerized systems are the most common challenges associated with data integrity and factors such as policy, environment, health workforce, and lack of awareness attribute to these challenges but if measures are taken the data integrity challenges can be managed.

Keywords: data integrity, data integrity challenges, hospital information systems, South Africa

Procedia PDF Downloads 181
38131 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect

Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev

Abstract:

The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.

Keywords: film condensation, heat transfer, plain tube, shear stress

Procedia PDF Downloads 245
38130 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly

Procedia PDF Downloads 230
38129 Municipal Solid Waste (MSW) Composition and Generation in Nablus City, Palestine

Authors: Issam A. Al-Khatib

Abstract:

In order to achieve a significant reduction of waste amount flowing into landfills, it is important to first understand the composition of the solid municipal waste generated. Hence a detailed analysis of municipal solid waste composition has been conducted in Nablus city. The aim is to provide data on the potential recyclable fractions in the actual waste stream, with a focus on the plastic fraction. Hence, waste-sorting campaigns were conducted on mixed waste containers from five districts in Nablus city. The districts vary in terms of infrastructure and average income. The target is to obtain representative data about the potential quantity and quality of household plastic waste. The study has measured the composition of municipal solid waste collected/ transported by Nablus municipality. The analysis was done by categorizing the samples into eight primary fractions (organic and food waste, paper and cardboard, glass, metals, textiles, plastic, a fine fraction (<10 mm), and others). The study results reveal that the MSW stream in Nablus city has a significant bio- and organic waste fraction (about 68% of the total MSW). The second largest fraction is paper and cardboard (13.6%), followed by plastics (10.1%), textiles (3.2%), glass (1.9%), metals (1.8%), a fine fraction (0.5%), and other waste (0.3%). After this complete and detailed characterization of MSW collected in Nablus and taking into account the content of biodegradable organic matter, the composting could be a solution for the city of Nablus where the surrounding areas of Nablus city have agricultural activities and could be a natural outlet to the compost product. Different waste management options could be practiced in the future in addition to composting, such as energy recovery and recycling, which result in a greater possibility of reducing substantial amounts that are disposed of at landfills.

Keywords: developing countries, composition, management, recyclable, waste.

Procedia PDF Downloads 90
38128 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
38127 Iron Deficiency and Iron Deficiency Anaemia/Anaemia as a Diagnostic Indicator for Coeliac Disease: A Systematic Review With Meta-Analysis

Authors: Sahar Shams

Abstract:

Coeliac disease (CD) is a widely reported disease particularly in countries with predominant Caucasian populations. It presents with many signs and symptoms including iron deficiency (ID) and iron deficiency anaemia/anaemia (IDA/A). The exact association between ID, IDA/A and CD and how accurate these signs are in diagnosing CD is not fully known. This systematic review was conducted to investigate the accuracy of both ID & IDA/A as a diagnostic indicator for CD and whether it warrants point of care testing. A systematic review was performed looking at studies published in MEDLINE, Embase, Cochrane Library, and Web of Science. QUADAS-2 tool was used to assess risk of bias in each study. ROC curve and forest plots were generated as part of the meta-analysis after data extraction. 16 studies were identified in total, 13 of which were IDA/A studies and 3 ID studies. The prevalence of CD regardless of diagnostic indicator was assumed as 1%. The QUADAS-2 tool indicated most of studies as having high risk of bias. The PPV for CD was higher in those with ID than for those with IDA/A. Meta-analysis showed the overall odds of having CD is 5 times higher in individuals with ID & IDA/A. The ROC curve showed that there is definitely an association between both diagnostic indicators and CD, the association is not a particularly strong one due to great heterogeneity between studies. Whilst an association between IDA/A & ID and coeliac disease was evident, the results were not deemed significant enough to prompt coeliac disease testing in those with IDA/A & ID.

Keywords: anemia, iron deficiency anemia, coeliac disease, point of care testing

Procedia PDF Downloads 131
38126 The Role of Demographics and Service Quality in the Adoption and Diffusion of E-Government Services: A Study in India

Authors: Sayantan Khanra, Rojers P. Joseph

Abstract:

Background and Significance: This study is aimed at analyzing the role of demographic and service quality variables in the adoption and diffusion of e-government services among the users in India. The study proposes to examine the users' perception about e-Government services and investigate the key variables that are most salient to the Indian populace. Description of the Basic Methodologies: The methodology to be adopted in this study is Hierarchical Regression Analysis, which will help in exploring the impact of the demographic variables and the quality dimensions on the willingness to use e-government services in two steps. First, the impact of demographic variables on the willingness to use e-government services is to be examined. In the second step, quality dimensions would be used as inputs to the model for explaining variance in excess of prior contribution by the demographic variables. Present Status: Our study is in the data collection stage in collaboration with a highly reliable, authentic and adequate source of user data. Assuming that the population of the study comprises all the Internet users in India, a massive sample size of more than 10,000 random respondents is being approached. Data is being collected using an online survey questionnaire. A pilot survey has already been carried out to refine the questionnaire with inputs from an expert in management information systems and a small group of users of e-government services in India. The first three questions in the survey pertain to the Internet usage pattern of a respondent and probe whether the person has used e-government services. If the respondent confirms that he/she has used e-government services, then an aggregate of 15 indicators are used to measure the quality dimensions under consideration and the willingness of the respondent to use e-government services, on a five-point Likert scale. If the respondent reports that he/she has not used e-government services, then a few optional questions are asked to understand the reason(s) behind the same. Last four questions in the survey are dedicated to collect data related to the demographic variables. An indication of the Major Findings: Based on the extensive literature review carried out to develop several propositions; a research model is prescribed to start with. A major outcome expected at the completion of the study is the development of a research model that would help to understand the relationship involving the demographic variables and service quality dimensions, and the willingness to adopt e-government services, particularly in an emerging economy like India. Concluding Statement: Governments of emerging economies and other relevant agencies can use the findings from the study in designing, updating, and promoting e-government services to enhance public participation, which in turn, would help to improve efficiency, convenience, engagement, and transparency in implementing these services.

Keywords: adoption and diffusion of e-government services, demographic variables, hierarchical regression analysis, service quality dimensions

Procedia PDF Downloads 267
38125 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder

Procedia PDF Downloads 289
38124 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 106
38123 Comparative Study of Dynamic Effect on Analysis Approaches for Circular Tanks Using Codal Provisions

Authors: P. Deepak Kumar, Aishwarya Alok, P. R. Maiti

Abstract:

Liquid storage tanks have become widespread during the recent decades due to their extensive usage. Analysis of liquid containing tanks is known to be complex due to hydrodynamic force exerted on tank which makes the analysis a complex one. The objective of this research is to carry out analysis of liquid domain along with structural interaction for various geometries of circular tanks considering seismic effects. An attempt has been made to determine hydrodynamic pressure distribution on the tank wall considering impulsive and convective components of liquid mass. To get a better picture, a comparative study of Draft IS 1893 Part 2, ACI 350.3 and Eurocode 8 for Circular Shaped Tank has been performed. Further, the differences in the magnitude of shear and moment at base as obtained from static (IS 3370 IV) and dynamic (Draft IS 1892 Part 2) analysis of ground supported circular tank highlight the need for us to mature from the old code to a newer code, which is more accurate and reliable.

Keywords: liquid filled containers, circular tanks, IS 1893 (part 2), seismic analysis, sloshing

Procedia PDF Downloads 353
38122 Immobilization of Lipase Enzyme by Low Cost Material: A Statistical Approach

Authors: Md. Z. Alam, Devi R. Asih, Md. N. Salleh

Abstract:

Immobilization of lipase enzyme produced from palm oil mill effluent (POME) by the activated carbon (AC) among the low cost support materials was optimized. The results indicated that immobilization of 94% was achieved by AC as the most suitable support material. A sequential optimization strategy based on a statistical experimental design, including one-factor-at-a-time (OFAT) method was used to determine the equilibrium time. Three components influencing lipase immobilization were optimized by the response surface methodology (RSM) based on the face-centered central composite design (FCCCD). On the statistical analysis of the results, the optimum enzyme concentration loading, agitation rate and carbon active dosage were found to be 30 U/ml, 300 rpm and 8 g/L respectively, with a maximum immobilization activity of 3732.9 U/g-AC after 2 hrs of immobilization. Analysis of variance (ANOVA) showed a high regression coefficient (R2) of 0.999, which indicated a satisfactory fit of the model with the experimental data. The parameters were statistically significant at p<0.05.

Keywords: activated carbon, POME based lipase, immobilization, adsorption

Procedia PDF Downloads 243
38121 Development of a Symbiotic Milk Chocolate Using Inulin and Bifidobacterium Lactis

Authors: Guity Karim, Valiollah Ayareh

Abstract:

Probiotic dairy products are those that contain biologically active components that may affect beneficially one or more target functions in the body, beyond their adequate nutritional effects. As far as chocolate milk is a popular dairy product in the country especially among children and youth, production of a symbiotic (probiotic + peribiotic) new product using chocolate milk, Bifidobacterium lactis (DSM, Netherland) and inulin (Bene, Belgium) would help to promote the nutritional and functional properties of this product. Bifidobacterium Lactis is used as a probiotic in a variety of foods, particularly dairy products like yogurt and as a probiotic bacterium has benefit effects on the human health. Inulin as a peribiotic agent is considered as functional food ingredient. Experimental studies have shown its use as bifidogenic agent. Chocolate milk with different percent of fat (1 and 2 percent), 6 % of sugar and 0.9 % cacao was made, sterilized (UHT) and supplemented with Bifidobacterium lactis and inulin (0.5 %) after cooling . A sample was made without inulin as a control. Bifidobacterium lactis population was enumerated at days 0, 4, 8 and 12 together with measurement of pH, acidity and viscosity of the samples. Also sensory property of the product was evaluated by a 15 panel testers. The number of live bacterial cells was maintained at the functional level of 106-108 cfu/ml after keeping for 12 days in refrigerated temperature (4°C). Coliforms were found to be absent in the products during the storage. Chocolate milk containing 1% fat and inulin has the best effect on the survival and number of B. lactis at day 8 and after that. Moreover, the addition of inulin did not affect the sensorial quality of the product. In this work, chocolate has been evaluated as a potential protective carrier for oral delivery of B. lactis and inulin.

Keywords: chocolate milk, synbiotic, bifidobacterium lactis, inulin

Procedia PDF Downloads 360
38120 A Gap Analysis of Attitude Towards Sustainable Sportswear Product Development between Consumers and Suppliers

Authors: Y. N. Fung, R. Liu, T. M. Choi

Abstract:

Over the past decades, previous studies have explored different consumers’ attitudes towards sustainable fashion and how these attitudes affect consumer behaviors. Researchers have attempted to provide solutions for product suppliers (e.g., retailers, designers, developers, and manufacturers) through studying consumers’ attitudes towards sustainable fashion. However, based on the studies of consumer attitudes, investigations on the sales and market share of sustainable sportswear products remain under-explored. Gaps may exist between the consumers’ expectations and the developed sustainable sportswear products. In this study, a novel study has been carried out to examine the attitude gaps existing between the sustainable sportswear suppliers’ (SSSs) and the sustainable sportswear consumers (SSCs). This study firstly identifies the key attitudes towards sustainable sportswear product development. It analyses how sustainable attitudes affect the products being developed, as well as the effects of the attitude’s difference between the SSSs and the SSCs on the consumers’ satisfaction towards sportswear product consumption. A gap analysis research framework is adopted with the use of collected questionnaire survey data. The results indicate that a significant difference exists between SSSs and SSCs’ attitudes towards sustainable design, manufacture, product features, and branding. Based on in-depth interviews, the major causes of the difference in attitudes are studied to provide managerial insights for sustainable sportswear product management and business development.

Keywords: sustainability, sportswear, attitude, gap analysis, suppliers, consumers

Procedia PDF Downloads 114