Search results for: deep convolutional neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5315

Search results for: deep convolutional neural networks

1055 A Sectional Control Method to Decrease the Accumulated Survey Error of Tunnel Installation Control Network

Authors: Yinggang Guo, Zongchun Li

Abstract:

In order to decrease the accumulated survey error of tunnel installation control network of particle accelerator, a sectional control method is proposed. Firstly, the accumulation rule of positional error with the length of the control network is obtained by simulation calculation according to the shape of the tunnel installation-control-network. Then, the RMS of horizontal positional precision of tunnel backbone control network is taken as the threshold. When the accumulated error is bigger than the threshold, the tunnel installation control network should be divided into subsections reasonably. On each segment, the middle survey station is taken as the datum for independent adjustment calculation. Finally, by taking the backbone control points as faint datums, the weighted partial parameters adjustment is performed with the adjustment results of each segment and the coordinates of backbone control points. The subsections are jointed and unified into the global coordinate system in the adjustment process. An installation control network of the linac with a length of 1.6 km is simulated. The RMS of positional deviation of the proposed method is 2.583 mm, and the RMS of the difference of positional deviation between adjacent points reaches 0.035 mm. Experimental results show that the proposed sectional control method can not only effectively decrease the accumulated survey error but also guarantee the relative positional precision of the installation control network. So it can be applied in the data processing of tunnel installation control networks, especially for large particle accelerators.

Keywords: alignment, tunnel installation control network, accumulated survey error, sectional control method, datum

Procedia PDF Downloads 192
1054 Distributed Automation System Based Remote Monitoring of Power Quality Disturbance on LV Network

Authors: Emmanuel D. Buedi, K. O. Boateng, Griffith S. Klogo

Abstract:

Electrical distribution networks are prone to power quality disturbances originating from the complexity of the distribution network, mode of distribution (overhead or underground) and types of loads used by customers. Data on the types of disturbances present and frequency of occurrence is needed for economic evaluation and hence finding solution to the problem. Utility companies have resorted to using secondary power quality devices such as smart meters to help gather the required data. Even though this approach is easier to adopt, data gathered from these devices may not serve the required purpose, since the installation of these devices in the electrical network usually does not conform to available PQM placement methods. This paper presents a design of a PQM that is capable of integrating into an existing DAS infrastructure to take advantage of available placement methodologies. The monitoring component of the design is implemented and installed to monitor an existing LV network. Data from the monitor is analyzed and presented. A portion of the LV network of the Electricity Company of Ghana is modeled in MATLAB-Simulink and analyzed under various earth fault conditions. The results presented show the ability of the PQM to detect and analyze PQ disturbance such as voltage sag and overvoltage. By adopting a placement methodology and installing these nodes, utilities are assured of accurate and reliable information with respect to the quality of power delivered to consumers.

Keywords: power quality, remote monitoring, distributed automation system, economic evaluation, LV network

Procedia PDF Downloads 352
1053 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.

Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO

Procedia PDF Downloads 421
1052 Gas Network Noncooperative Game

Authors: Teresa Azevedo PerdicoúLis, Paulo Lopes Dos Santos

Abstract:

The conceptualisation of the problem of network optimisation as a noncooperative game sets up a holistic interactive approach that brings together different network features (e.g., com-pressor stations, sources, and pipelines, in the gas context) where the optimisation objectives are different, and a single optimisation procedure becomes possible without having to feed results from diverse software packages into each other. A mathematical model of this type, where independent entities take action, offers the ideal modularity and subsequent problem decomposition in view to design a decentralised algorithm to optimise the operation and management of the network. In a game framework, compressor stations and sources are under-stood as players which communicate through network connectivity constraints–the pipeline model. That is, in a scheme similar to tatonnementˆ, the players appoint their best settings and then interact to check for network feasibility. The devolved degree of network unfeasibility informs the players about the ’quality’ of their settings, and this two-phase iterative scheme is repeated until a global optimum is obtained. Due to network transients, its optimisation needs to be assessed at different points of the control interval. For this reason, the proposed approach to optimisation has two stages: (i) the first stage computes along the period of optimisation in order to fulfil the requirement just mentioned; (ii) the second stage is initialised with the solution found by the problem computed at the first stage, and computes in the end of the period of optimisation to rectify the solution found at the first stage. The liability of the proposed scheme is proven correct on an abstract prototype and three example networks.

Keywords: connectivity matrix, gas network optimisation, large-scale, noncooperative game, system decomposition

Procedia PDF Downloads 153
1051 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 130
1050 Alternative Housing Systems: Influence on Blood Profile of Egg-Type Chickens in Humid Tropics

Authors: Olufemi M. Alabi, Foluke A. Aderemi, Adebayo A. Adewumi, Banwo O. Alabi

Abstract:

General well-being of animals is of paramount interest in some developed countries and of global importance hence the shift onto alternative housing systems for egg-type chickens as replacement for conventional battery cage system. However, there is paucity of information on the effect of this shift on physiological status of the hens to judge their health via the blood profile. Therefore, investigation was carried out on two strains of hen kept in three different housing systems in humid tropics to evaluate changes in their blood parameters. 108, 17-weeks old super black (SBL) hens and 108, 17-weeks old super brown (SBR) hens were randomly allotted to three different intensive systems Partitioned Conventional Cage (PCC), Extended Conventional Cage (ECC) and Deep Litter System (DLS) in a randomized complete block design with 36 hens per housing system, each with three replicates. The experiment lasted 37 weeks during which blood samples were collected at 18th week of age and bi-weekly thereafter for analyses. Parameters measured are packed cell volume (PCV), hemoglobin concentration (Hb), red blood counts (RBC), white blood counts (WBC) and serum metabolites such as total protein (TP), albumin (Alb), globulin (Glb), glucose, cholesterol, urea, bilirubin, serum cortisol while blood indices such as mean corpuscular hemoglobin (MCH), mean cell volume (MCV) and mean corpuscular hemoglobin concentration (MCHC) were calculated. The hematological values of the hens were not significantly (p>0.05) affected by the housing system and strain, so also the serum metabolites except for the serum cortisol which was significantly (p<0.05) affected by the housing system only. Hens housed on PCC had higher values (20.05 ng/ml for SBL and 20.55 ng/ml for SBR) followed by hens on ECC (18.15ng/ml for SBL and 18.38ng/ml for SBL) while hens on DLS had the lowest value (16.50ng/ml for SBL and 16.00ng/ml for SBR) thereby confirming indication of stress with conventionally caged birds. Alternative housing systems can also be adopted for egg-type chickens in the humid tropics from welfare point of view with the results of this work confirming stress among caged hens.

Keywords: blood, housing, humid-tropics, layers

Procedia PDF Downloads 470
1049 Implicit and Explicit Mechanisms of Emotional Contagion

Authors: Andres Pinilla Palacios, Ricardo Tamayo

Abstract:

Emotional contagion is characterized as an automatic tendency to synchronize behaviors that facilitate emotional convergence among humans. It might thus play a pivotal role to understand the dynamics of key social interactions. However, a few research has investigated its potential mechanisms. We suggest two complementary but independent processes that may underlie emotional contagion. The efficient contagion hypothesis, based on fast and implicit bottom-up processes, modulated by familiarity and spread of activation in the emotional associative networks of memory. Secondly, the emotional contrast hypothesis, based on slow and explicit top-down processes guided by deliberated appraisal and hypothesis-testing. In order to assess these two hypotheses, an experiment with 39 participants was conducted. In the first phase, participants were induced (between-groups) to an emotional state (positive, neutral or negative) using a standardized video taken from the FilmStim database. In the second phase, participants classified and rated (within-subject) the emotional state of 15 faces (5 for each emotional state) taken from the POFA database. In the third phase, all participants were returned to a baseline emotional state using the same neutral video used in the first phase. In a fourth phase, participants classified and rated a new set of 15 faces. The accuracy in the identification and rating of emotions was partially explained by the efficient contagion hypothesis, but the speed with which these judgments were made was partially explained by the emotional contrast hypothesis. However, results are ambiguous, so a follow-up experiment is proposed in which emotional expressions and activation of the sympathetic system will be measured using EMG and EDA respectively.

Keywords: electromyography, emotional contagion, emotional valence, identification of emotions, imitation

Procedia PDF Downloads 317
1048 Unveiling the Nexus: A Holistic Investigation on the Role of Cultural Beliefs and Family Dynamics in Shaping Maternal Health in Primigravida Women

Authors: Anum Obaid, Bushra Noor, Zoshia Zainab

Abstract:

In South Asian countries, Pakistan faces significant public health challenges regarding maternal and neonatal health (MNH). Despite global efforts to improve maternal, newborn, child, and health (MNCH) outcomes through initiatives like the Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs), high maternal and neonatal mortality rates persist. In patriarchal societies, cultural norms, family dynamics, and gender roles heavily influence healthcare accessibility and decision-making processes, often leading to delayed and inadequate maternal care. Addressing these socio-cultural barriers and enhancing healthcare resources is crucial to improving maternal health outcomes in areas like Faisalabad. A qualitative study was conducted involving two groups of informants: gynecologists practicing in private clinics and first-time pregnant women receiving care in government hospitals. Data collection included obtaining institutional permission, conducting semi-structured in-depth interviews, and using non-probability sampling techniques. A proactive strategy to overcome maternal health challenges involves using aversion therapy and disseminating knowledge among family members. This approach aims to foster a deep understanding within the family unit regarding the importance of maternal well-being, thereby creating a supportive environment and facilitating informed decision-making related to healthcare access and lifestyle choices. The findings indicate that maternal health is compromised both physiologically and psychologically, with significant implications for the baby's health. Mental well-being is profoundly affected, largely due to familial behavior and entrenched cultural taboos.

Keywords: maternal health, neonatal health, socio-cultural norms, primigravida women, gynecologist, familial conduct, cultural taboos

Procedia PDF Downloads 43
1047 A Multi-Science Study of Modern Synergetic War and Its Information Security Component

Authors: Alexander G. Yushchenko

Abstract:

From a multi-science point of view, we analyze threats to security resulting from globalization of international information space and information and communication aggression of Russia. A definition of Ruschism is formulated as an ideology supporting aggressive actions of modern Russia against the Euro-Atlantic community. Stages of the hybrid war Russia is leading against Ukraine are described, including the elements of subversive activity of the special services, the activation of the military phase and the gradual shift of the focus of confrontation to the realm of information and communication technologies. We reveal an emergence of a threat for democratic states resulting from the destabilizing impact of a target state’s mass media and social networks being exploited by Russian secret services under freedom-of-speech disguise. Thus, we underline the vulnerability of cyber- and information security of the network society in regard of hybrid war. We propose to define the latter a synergetic war. Our analysis is supported with a long-term qualitative monitoring of representation of top state officials on popular TV channels and Facebook. From the memetics point of view, we have detected a destructive psycho-information technology used by the Kremlin, a kind of information catastrophe, the essence of which is explained in detail. In the conclusion, a comprehensive plan for information protection of the public consciousness and mentality of Euro-Atlantic citizens from the aggression of the enemy is proposed.

Keywords: cyber and information security, hybrid war, psycho-information technology, synergetic war, Ruschism

Procedia PDF Downloads 136
1046 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users

Authors: Devon Brown, Liu Chunmei

Abstract:

This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.

Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework

Procedia PDF Downloads 25
1045 Analytical Study: An M-Learning App Reflecting the Factors Affecting Student’s Adoption of M-Learning

Authors: Ahmad Khachan, Ahmet Ozmen

Abstract:

This study aims to introduce a mobile bite-sized learning concept, a mobile application with social networks motivation factors that will encourage students to practice critical thinking, improve analytical skills and learn knowledge sharing. We do not aim to propose another e-learning or distance learning based tool like Moodle and Edmodo; instead, we introduce a mobile learning tool called Interactive M-learning Application. The tool reconstructs and strengthens the bonds between educators and learners and provides a foundation for integrating mobile devices in education. The application allows learners to stay connected all the time, share ideas, ask questions and learn from each other. It is built on Android since the Android has the largest platform share in the world and is dominating the market with 74.45% share in 2018. We have chosen Google-Firebase server for hosting because of flexibility, ease of hosting and real time update capabilities. The proposed m-learning tool was offered to four groups of university students in different majors. An improvement in the relation between the students, the teachers and the academic institution was obvious. Student’s performance got much better added to better analytical and critical skills advancement and moreover a willingness to adopt mobile learning in class. We have also compared our app with another tool in the same class for clarity and reliability of the results. The student’s mobile devices were used in this experimental study for diversity of devices and platform versions.

Keywords: education, engineering, interactive software, undergraduate education

Procedia PDF Downloads 156
1044 Emerging Cyber Threats and Cognitive Vulnerabilities: Cyberterrorism

Authors: Oludare Isaac Abiodun, Esther Omolara Abiodun

Abstract:

The purpose of this paper is to demonstrate that cyberterrorism is existing and poses a threat to computer security and national security. Nowadays, people have become excitedly dependent upon computers, phones, the Internet, and the Internet of things systems to share information, communicate, conduct a search, etc. However, these network systems are at risk from a different source that is known and unknown. These network systems risk being caused by some malicious individuals, groups, organizations, or governments, they take advantage of vulnerabilities in the computer system to hawk sensitive information from people, organizations, or governments. In doing so, they are engaging themselves in computer threats, crime, and terrorism, thereby making the use of computers insecure for others. The threat of cyberterrorism is of various forms and ranges from one country to another country. These threats include disrupting communications and information, stealing data, destroying data, leaking, and breaching data, interfering with messages and networks, and in some cases, demanding financial rewards for stolen data. Hence, this study identifies many ways that cyberterrorists utilize the Internet as a tool to advance their malicious mission, which negatively affects computer security and safety. One could identify causes for disparate anomaly behaviors and the theoretical, ideological, and current forms of the likelihood of cyberterrorism. Therefore, for a countermeasure, this paper proposes the use of previous and current computer security models as found in the literature to help in countering cyberterrorism

Keywords: cyberterrorism, computer security, information, internet, terrorism, threat, digital forensic solution

Procedia PDF Downloads 97
1043 The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon

Authors: R. Chedid, R. Ghajar

Abstract:

Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.

Keywords: decentralized systems, distributed generation, microgrids, renewable energy

Procedia PDF Downloads 136
1042 Seismic Refraction and Resistivity Survey of Ini Local Government Area, South-South Nigeria: Assessing Structural Setting and Groundwater Potential

Authors: Mfoniso Udofia Aka

Abstract:

A seismic refraction and resistivity survey was conducted in Ini Local Government Area, South-South Nigeria, to evaluate the structural setting and groundwater potential. The study involved 20 Vertical Electrical Soundings (VES) using an ABEM Terrameter with a Schlumberger array and a 400-meter electrode spread, analyzed with WinResist software. Concurrently, 20 seismic refraction surveys were performed with a Geometric ES 3000 12-Channel seismograph, employing a 60-meter slant interval. The survey identified three distinct geological layers: top, middle, and lower. Seismic velocities (Vp) ranged from 209 to 500 m/s in the top layer, 221 to 1210 m/s in the middle layer, and 510 to 1700 m/s in the lower layer. Secondary seismic velocities (Vs) ranged from 170 to 410 m/s in the topsoil, 205 to 880 m/s in the middle layer, and 480 to 1120 m/s in the lower layer. Poisson’s ratios varied from -0.029 to -7.709 for the top layer, -0.027 to -6.963 for the middle layer, and -0.144 to -6.324 for the lower layer. The depths of these layers were approximately 1.0 to 3.0 meters for the top layer, 4.0 to 12.0 meters for the middle layer, and 8.0 to 14.5 meters for the lower layer. The topsoil consists of a surficial layer overlaid by reddish/clayey laterite and fine to medium coarse-grained sandy material, identified as the auriferous zone. Resistivity values were 1300 to 3215 Ωm for the topsoil, 720 to 1600 Ωm for the laterite, and 100 to 1350 Ωm for the sandy zone. Aquifer thickness and depth varied, with shallow aquifers ranging from 4.5 to 15.2 meters, medium-depth aquifers from 15.5 to 70.0 meters, and deep aquifers from 4.0 to 70.0 meters. Locations 1, 15, and 13 exhibited favorable water potential with shallow formations, while locations 5, 11, 9, and 14 showed less potential due to the lack of fractured or weathered zones. The auriferous sandy zone indicated significant potential for industrial development. Future surveys should consider using a more robust energy source to enhance data acquisition and accuracy.

Keywords: hydrogeological, aquifer, seismic section geo-electric section, stratigraphy

Procedia PDF Downloads 35
1041 Women Students’ Management of Alcohol- Related Sexual Risk at a South African University

Authors: Shakila Singh

Abstract:

This research was conducted at a selected South African university campus with women students who drink alcohol. The purpose of the study was to examine their perspectives on the role of alcohol in their lives, their understandings about women’s vulnerability to alcohol-related sexual risk and their strategies against these. The study draws on feminist principles and practices to challenge gendered inequalities that legitimate and facilitate violence against women. Recognising the danger of focusing on risk management in ways that place the burden of responsibility entirely on young women to prevent their violation, this article focuses on women students’ agency in managing risk while taking up opportunities for self-discovery. Participation was voluntary, and a student-researcher administered an open-ended questionnaire to 55 participants. The findings suggest that young women position alcohol- use as a common activity at university, and that it gives them much pleasure. They recognise that it is riskier for women and articulate valuable strategies to manage the risk to their sexual safety when drinking. These include drinking within supportive networks, avoiding financial dependence, and managing their alcohol intake. This article argues that alcohol at university is an integral part of expressions of gender and sexuality and that risk-taking is a normal part of university students’ lives. Consequently, arguments about equality need to consider risk-taking as part of young people’s lives and promote ways of managing alcohol-related risks, rather than imagining that alcohol can be avoided entirely.

Keywords: alcohol-related sexual risk, drinking at university, managing risk, women students

Procedia PDF Downloads 106
1040 Germination and Bulb Formation of Allium tuncelianum L. under in vitro Condition

Authors: Suleyman Kizil, Tahsin Sogut, Khalid M. Khawar

Abstract:

Genus Allium includes 600 to 750 species and most of these including Allium tuncelianum (Kollman) N. Ozhatay, B. Mathew & Siraneci; Syn; A. macrochaetum Boiss. and Hausskn. subsp. tuncelianum Kollman] or Tunceli garlic is endemic to Eastern Turkish Province of Tunceli and Munzur mountains. They are edible, bear attractive white-to-purple flowers and fertile black seeds with deep seed dormancy. This study aimed to break seed dormancy of Tunceli garlic and determine the conditions for induction of bulblets on these seeds and increase their diameter by culturing them on MS medium supplemented different strengths of KNO3. Tunceli garlic seeds were collected from field grown plants. They were germinated on MS medium with or without 20 g/l sucrose followed by their culture on 1 × 1900 mg/l, 2 × 1900 mg/l, 4 ×1900 mg/l and 6 × 1900 mg/l mg/l KNO3 supplemented with 20 g/l sucrose to increase bulb diameter. Improved seeds germination was noted on MS medium with and without sucrose but with variation compared to previous reports. The bulb development percentage on each of the sprouted seeds was not parallel to the percentage of seed germination. The results showed 34% and 28.5% bulb induction was noted on germinated seeds after 150 and 158 days on MS medium containing 20 g l-1 sucrose and no sucrose respectively showing a delay of 8 days on the latter compared to the former. The results emphatically noted role of cold stratification on agar solidified MS medium supplemented with sucrose to improve seed germination. The best increase in bulb diameter was noted on MS medium containing 1 × 1900 mg/l KNO3 after 178 days with bulblet diameter and bulblet weight of 0.54 cm and 0.048 g, respectively. Consequently, the bulbs induced on sucrose containing MS medium could be transferred to pots earlier. Increased (>1 × 1900 mg/l KNO3) strengths of KNO3 induced negative effect on growth and development of Tunceli garlic bulbs. The strategy of seed germination and bulblet induction reported in this study could be positively used for conservation of this endemic plant species.

Keywords: Tunceli garlic, seed, dormancy, bulblets, bulb growth

Procedia PDF Downloads 274
1039 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.

Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)

Procedia PDF Downloads 22
1038 Designing Stochastic Non-Invasively Applied DC Pulses to Suppress Tremors in Multiple Sclerosis by Computational Modeling

Authors: Aamna Lawrence, Ashutosh Mishra

Abstract:

Tremors occur in 60% of the patients who have Multiple Sclerosis (MS), the most common demyelinating disease that affects the central and peripheral nervous system, and are the primary cause of disability in young adults. While pharmacological agents provide minimal benefits, surgical interventions like Deep Brain Stimulation and Thalamotomy are riddled with dangerous complications which make non-invasive electrical stimulation an appealing treatment of choice for dealing with tremors. Hence, we hypothesized that if the non-invasive electrical stimulation parameters (mainly frequency) can be computed by mathematically modeling the nerve fibre to take into consideration the minutest details of the axon morphologies, tremors due to demyelination can be optimally alleviated. In this computational study, we have modeled the random demyelination pattern in a nerve fibre that typically manifests in MS using the High-Density Hodgkin-Huxley model with suitable modifications to account for the myelin. The internode of the nerve fibre in our model could have up to ten demyelinated regions each having random length and myelin thickness. The arrival time of action potentials traveling the demyelinated and the normally myelinated nerve fibre between two fixed points in space was noted, and its relationship with the nerve fibre radius ranging from 5µm to 12µm was analyzed. It was interesting to note that there were no overlaps between the arrival time for action potentials traversing the demyelinated and normally myelinated nerve fibres even when a single internode of the nerve fibre was demyelinated. The study gave us an opportunity to design DC pulses whose frequency of application would be a function of the random demyelination pattern to block only the delayed tremor-causing action potentials. The DC pulses could be delivered to the peripheral nervous system non-invasively by an electrode bracelet that would suppress any shakiness beyond it thus paving the way for wearable neuro-rehabilitative technologies.

Keywords: demyelination, Hodgkin-Huxley model, non-invasive electrical stimulation, tremor

Procedia PDF Downloads 130
1037 The Analysis of Internet and Social Media Behaviors of the Students in Vocational High School

Authors: Mehmet Balci, Sakir Tasdemir, Mustafa Altin, Ozlem Bozok

Abstract:

Our globalizing world has become almost a small village and everyone can access any information at any time. Everyone lets each other know who does whatever in which place. We can learn which social events occur in which place in the world. From the perspective of education, the course notes that a lecturer use in lessons in a university in any state of America can be examined by a student studying in a city of Africa or the Far East. This dizzying communication we have mentioned happened thanks to fast developments in computer technologies and in parallel with this, internet technology. While these developments in the world, has a very large young population and a rapidly evolving electronic communications infrastructure Turkey has been affected by this situation. Researches has shown that almost all young people in Turkey has an account in a social network. Especially becoming common of mobile devices causes data traffic in social networks to increase. In this study, has been surveyed on students in the different age groups and at the Selcuk University Vocational School of Technical Sciences Department of Computer Technology. Student’s opinions about the use of internet and social media has been gotten. Using the Internet and social media skills, purposes, operating frequency, access facilities and tools, social life and effects on vocational education etc. have been explored. Both internet and use of social media positive and negative effects on this department students results have been obtained by the obtained findings evaluating from various aspects. Relations and differences have been found out with statistic.

Keywords: computer technologies, internet use, social network, higher vocational school

Procedia PDF Downloads 544
1036 Embodied Spirituality in Gestalt Therapy

Authors: Silvia Alaimo

Abstract:

This lecture brings to our attention the theme of spirituality within Gestalt therapy’s theoretical and clinical perspectives and which is closely connected to the fertile emptiness and creative indifference’ experiences. First of all, the premise that must be done is the overcoming traditional western culture’s philosophical and religious misunderstandings, such as the dicotomy between spirituality and pratical/material daily life, as well as the widespread secular perspective of classic psychology. Even fullness and emptiness have traditionally been associated with the concepts of being and not being. "There is only one way through which we can contact the deepest layers of our existence, rejuvenate our thinking and reach intuition (the harmony of thought and being): inner silence" (Perls) *. Therefore, "fertile void" doesn't mean empty in itself, but rather an useful condition of every creative and responsible act, making room for a deeper dimension close to spirituality. Spirituality concerns questions about the meaning of existence, which lays beyond the concrete and literal dimension, looking for the essence of things, and looking at the value of personal experience. Looking at fundamentals of Gestalt epistemology, phenomenology, aesthetics, and the relationship, we can reach the heart of a therapeutic work that takes spiritual contours and which are based on an embodied (incarnate size), through the relational aesthetic knowledge (Spagnuolo Lobb ), the deep contact with each other, the role of compassion and responsibility, as the patient's recognition criteria (Orange, 2013) rooted in the body. The aesthetic dimension, like the spiritual dimension to which it is often associated, is a subtle dimension: it is the dimension of the essence of things, of their "soul." In clinical practice, it implies that the relationship between therapist and patient is "in the absence of judgment," also called "zero point of creative indifference," expressed by ‘therapeutic mentality’. It consists in following with interest and authentic curiosity where the patient wants to go and support him in his intentionality of contact. It’s a condition of pure and simple awareness, of the full acceptance of "what is," a moment of detachment from one's own life in which one does not take oneself too seriously, a starting point for finding a center of balance and integration that brings to the creative act, to growth, and, as Perls would say, to the excitement and adventure of living.

Keywords: spirituality, bodily, embodied aesthetics, phenomenology, relationship

Procedia PDF Downloads 138
1035 Autophagy Acceleration and Self-Healing by the Revolution against Frequent Eating, High Glycemic and Unabsorbable Substances as One Meal a Day Plan

Authors: Reihane Mehrparvar

Abstract:

Human age could exceed further by altering gene expression through food intaking, although as a consequence of recent century eating patterns, human life-span getting shorter by emerging irregulating in autophagy mechanism, insulin, leptin, gut microbiota which are important etiological factors of type-2 diabetes, obesity, infertility, cancer, metabolic and autoimmune diseases. However, restricted calorie intake and vigorous exercise might be beneficial for losing weight and metabolic regulation in a short period but could not be implementable in the long term as a way of life. Therefore, the lack of a dietary program that is compatible with the genes of the body is essential. Sweet and high-glycemic-index (HGI) foods were associated with type-2 diabetes and cancer morbidity. The neuropsychological perspective characterizes the inclination of sweet and HGI-food consumption as addictive behavior; hence this process engages preference of gut microbiota, neural node, and dopaminergic functions. Moreover, meal composition is not the only factor that affects body hemostasis. In this narrative review, it is believed to attempt to investigate how the body responded to different food intakes and represent an accurate model based on current evidence. Eating frequently and ingesting unassimilable protein and carbohydrates may not be compatible with human genes and could cause impairments in the self-renovation mechanism. This trajectory indicates our body is more adapted to starvation and eating animal meat and marrow. Here has been recommended a model that takes into account three important factors: frequent eating, meal composition, and circadian rhythm, which may offer a promising intervention for obesity, inflammation, cardiovascular, autoimmune disorder, type-2 diabetes, insulin resistance, infertility, and cancer through intensifying autophagy-mechanism and eliminate medical costs.

Keywords: metabolic disease, anti-aging, type-2 diabetes, autophagy

Procedia PDF Downloads 82
1034 Characterization of the Groundwater Aquifers at El Sadat City by Joint Inversion of VES and TEM Data

Authors: Usama Massoud, Abeer A. Kenawy, El-Said A. Ragab, Abbas M. Abbas, Heba M. El-Kosery

Abstract:

Vertical Electrical Sounding (VES) and Transient Electro Magnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo–Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal, and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along three profiles trending NE–SW with the elongation of the study area. The measuring points were arranged in a grid like pattern with both inter-station spacing and line–line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geo-electrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.

Keywords: El Sadat city, joint inversion, VES, TEM

Procedia PDF Downloads 370
1033 The Information-Seeking Behaviour of Kuwaiti Judges (KJs)

Authors: Essam Mansour

Abstract:

The key purpose of this study is to show information-seeking behaviour of Kuwaiti Judges (KJs). Being one of the few studies about the information needs and information-seeking behaviour conducted in Arab and developing countries, this study is a pioneer one among many studies conducted in information seeking, especially with this significant group of information users. The authors tried to investigate this seeking behavior in terms of KJs' thoughts, perceptions, motivations, techniques, preferences, tools and barriers met when seeking information. The authors employed a questionnaire, with a response rate 77.2 percent. This study showed that most of KJs were likely to be older, educated and with a work experience ranged from new to old experience. There is a statistically reliable significant difference between KJs' demographic characteristics and some sources of information, such as books, encyclopedias, references and mass media. KJs were using information moderately to make a decision, to be in line with current events, to collect statistics and to make a specific/general research. The office and home were the most frequent location KJs were accessing information from. KJs' efficiency level of the English language is described to be moderately good, and a little number of them confirmed that their efficiency level of French was not bad. The assistance provided by colleagues, followed by consultants, translators, sectaries and librarians were found to be most strong types of assistance needed when seeking information. Mobile apps, followed by PCs, information networks (the Internet) and information databases were the highest technology tool used by KJs. Printed materials, followed by non-printed and audiovisual materials were the most preferred information formats KJs use. The use of languages, the recency of information and the place of information, the deficit role of the library to deliver information were at least significant barriers to KJs when seeking information.

Keywords: information users, information-seeking behaviour, information needs, judges, Kuwait

Procedia PDF Downloads 309
1032 Survival Strategies of Street Children Using the Urban Space: A Case Study at Sealdah Railway Station Area, Kolkata, West Bengal, India

Authors: Sibnath Sarkar

Abstract:

Developing countries are facing many Social problems. In India, too there are several such problems. The problem of street children is one of them. No country or city anywhere in the world today is without the presence of street children, but the problem is most acute in developing countries. Thousands of street children can be seen in our populous cities like Mumbai, Kolkata, Delhi, and Chennai. Most of them are in the age group of 5-15 years. The number of street children is increasing gradually. Poverty, unemployment, rapid urbanization, rural-urban migrations are the root causes of street children. Being deprive from many of their, they have escaped to the street as a safe place for living. Street children always related with the urban spaces in the developing world and it represents a sad outcome of the rapid urbanization process. After coming to the streets, these children have to cope with the new situation every day. They also adopt or develop many complex survival strategies and a variety of different informal or even illegal activities in public space and form supportive social networks in order to survive in street life. Street children use the different suitable urban spaces as their earning, living, entertaining spot. Therefore, the livelihoods of young people on the street should analyze in relation to the spaces they use, as well as their age and length of stay on the streets. This paper tries to explore the livelihood strategies and copping situation of street children in Sealdah station area. One hundred seventy-five street living children are included in the study living in and around the railway station.

Keywords: strategies, street children, survive, urban-space

Procedia PDF Downloads 363
1031 Contextual SenSe Model: Word Sense Disambiguation using Sense and Sense Value of Context Surrounding the Target

Authors: Vishal Raj, Noorhan Abbas

Abstract:

Ambiguity in NLP (Natural language processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential am-biguities. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a novel method to create an affinity matrix to calculate the affinity be-tween any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an al-gorithm to create the sense clusters of tokens using affinity matrix under hierar-chy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contex-tual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and chal-lenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.

Keywords: word sense disambiguation (wsd), contextual sense model (csm), most frequent sense (mfs), part of speech (pos), natural language processing (nlp), oov (out of vocabulary), lemma_pos (a token where lemma and pos of word are joined by underscore), information retrieval (ir), machine translation (mt)

Procedia PDF Downloads 110
1030 Physical and Chemical Alternative Methods of Fresh Produce Disinfection

Authors: Tuji Jemal Ahmed

Abstract:

Fresh produce is an essential component of a healthy diet. However, it can also be a potential source of pathogenic microorganisms that can cause foodborne illnesses. Traditional disinfection methods, such as washing with water and chlorine, have limitations and may not effectively remove or inactivate all microorganisms. This has led to the development of alternative/new methods of fresh produce disinfection, including physical and chemical methods. In this paper, we explore the physical and chemical new methods of fresh produce disinfection, their advantages and disadvantages, and their suitability for different types of produce. Physical methods of disinfection, such as ultraviolet (UV) radiation and high-pressure processing (HPP), are crucial in ensuring the microbiological safety of fresh produce. UV radiation uses short-wavelength UV-C light to damage the DNA and RNA of microorganisms, and HPP applies high levels of pressure to fresh produce to reduce the microbial load. These physical methods are highly effective in killing a wide range of microorganisms, including bacteria, viruses, and fungi. However, they may not penetrate deep enough into the product to kill all microorganisms and can alter the sensory characteristics of the product. Chemical methods of disinfection, such as acidic electrolyzed water (AEW), ozone, and peroxyacetic acid (PAA), are also important in ensuring the microbiological safety of fresh produce. AEW uses a low concentration of hypochlorous acid and a high concentration of hydrogen ions to inactivate microorganisms, ozone uses ozone gas to damage the cell membranes and DNA of microorganisms, and PAA uses a combination of hydrogen peroxide and acetic acid to inactivate microorganisms. These chemical methods are highly effective in killing a wide range of microorganisms, but they may cause discoloration or changes in the texture and flavor of some products and may require specialized equipment and trained personnel to produce and apply. In conclusion, the selection of the most suitable method of fresh produce disinfection should take into consideration the type of product, the level of microbial contamination, the effectiveness of the method in reducing the microbial load, and any potential negative impacts on the sensory characteristics, nutritional composition, and safety of the produce.

Keywords: fresh produce, pathogenic microorganisms, foodborne illnesses, disinfection methods

Procedia PDF Downloads 74
1029 Thulium Laser Vaporisation and Enucleation of Prostate in Patients on Anticoagulants and Antiplatelet Agents

Authors: Abdul Fatah, Naveenchandra Acharya, Vamshi Krishna, T. Shivaprasad, Ramesh Ramayya

Abstract:

Background: Significant number of patients with bladder outlet obstruction due to BPH are on anti-platelets and anticoagulants. Prostate surgery in this group of patients either in the form of TURP or Open prostatectomy is associated with increased risk of bleeding complications requiring transfusions, packing of the prostatic fossa or ligation or embolization of internal iliac arteries. Withholding of antiplatelets and anticoagulants may be associated with cardiac and other complications. Efficacy of Thulium Laser in the above group of patients was evaluated in terms of peri-operative, postoperative and delayed bleeding complications as well as cardiac events in peri-operative and immediate postoperative period. Methods: 217 patients with a mean age of 68.8 years were enrolled between March 2009 and March 2013 (36 months), and treated for BPH with ThuLEP. Every patient was evaluated at base line according to: Digital Rectal Examination (DRE), prostate volume, Post-Voided volume (PVR), International Prostate Symptoms Score (I-PSS), PSA values, urine analysis and urine culture, uroflowmetry. The post operative complications in the form of drop in hemoglobin level, transfusion rates, post –operative cardiac events within a period of 30 days, delayed hematuria and events like deep vein thrombosis and pulmonary embolism were noted. Results: Our data showed a better post-operative outcome in terms of, postoperative bleeding requiring intervention 7 (3.2%), transfusion rate 4 (1.8%) and cardiac events within a period of 30 days 4(1.8%), delayed hematuria within 6 months 2(0.9 %) compared other series of prostatectomies. Conclusion: The thulium LASER prostatectomy is a safe and effective option for patients with cardiac comorbidties and those patients who are on antiplatelet agents and anticoagulants. The complication rate is less as compared to larger series reported with open and transurethral prostatectomies.

Keywords: thulium laser, prostatectomy, antiplatelet agents, bleeding

Procedia PDF Downloads 393
1028 Changing Emphases in Mental Health Research Methodology: Opportunities for Occupational Therapy

Authors: Jeffrey Chase

Abstract:

Historically the profession of Occupational Therapy was closely tied to the treatment of those suffering from mental illness; more recently, and especially in the U.S., the percentage of OTs identifying as working in the mental health area has declined significantly despite the estimate that by 2020 behavioral health disorders will surpass physical illnesses as the major cause of disability worldwide. In the U.S. less than 10% of OTs identify themselves as working with the mentally ill and/or practicing in mental health settings. Such a decline has implications for both those suffering from mental illness and the profession of Occupational Therapy. One reason cited for the decline of OT in mental health has been the limited research in the discipline addressing mental health practice. Despite significant advances in technology and growth in the field of neuroscience, major institutions and funding sources such as the National Institute of Mental Health (NIMH) have noted that research into the etiology and treatment of mental illness have met with limited success over the past 25 years. One major reason posited by NIMH is that research has been limited by how we classify individuals, that being mostly on what is observable. A new classification system being developed by NIMH, the Research Domain Criteria (RDoc), has the goal to look beyond just descriptors of disorders for common neural, genetic, and physiological characteristics that cut across multiple supposedly separate disorders. The hope is that by classifying individuals along RDoC measures that both reliability and validity will improve resulting in greater advances in the field. As a result of this change NIH and NIMH will prioritize research funding to those projects using the RDoC model. Multiple disciplines across many different setting will be required for RDoC or similar classification systems to be developed. During this shift in research methodology OT has an opportunity to reassert itself into the research and treatment of mental illness, both in developing new ways to more validly classify individuals, and to document the legitimacy of previously ill-defined and validated disorders such as sensory integration.

Keywords: global mental health and neuroscience, research opportunities for ot, greater integration of ot in mental health research, research and funding opportunities, research domain criteria (rdoc)

Procedia PDF Downloads 276
1027 A Qualitative Study of a Workplace International Employee Health Program

Authors: Jennifer Bradley

Abstract:

With opportunities to live and work abroad on the rise, effective preparation and support for international employees needs to be addressed within the work-site. International employees must build new habits, routines and social networks in an unfamiliar culture. Culture shock typically occurs within the first year and can affect both physical and psychological health. Employers have the opportunity to support staff through the adaptation process and foster healthy habits and routines. Cross-cultural training that includes a combination of instructional teaching, cultural experiences, and practice, is shown to increase the international employee adaptation process. However, little evidence demonstrates that organizations provide all of these aspects for international employees. The occupational therapy practitioner (OTP) offers a unique perspective focusing on the employee transactional relationship and engagement of meaningful occupations to enhance and enable participation in roles, habits and routines within new cultural contexts. This paper examines one such program developed and implemented by an OTP at the New England Center for Children, in Abu Dhabi, United Arab Emirates. The effectiveness of the program was assessed via participant feedback and concluded that an international employee support program that focuses on a variety of meaningful experiences and knowledge can empower employees to navigate healthy practices, develop habits and routines, and foster positive inter-cultural relationships in the organization and community.

Keywords: occupational therapy practitioner, cross cultural training, international employee health, international employee support

Procedia PDF Downloads 161
1026 Assessment of Level of Sedation and Associated Factors Among Intubated Critically Ill Children in Pediatric Intensive Care Unit of Jimma University Medical Center: A Fourteen Months Prospective Observation Study, 2023

Authors: Habtamu Wolde Engudai

Abstract:

Background: Sedation can be provided to facilitate a procedure or to stabilize patients admitted in pediatric intensive care unit (PICU). Sedation is often necessary to maintain optimal care for critically ill children requiring mechanical ventilation. However, if sedation is too deep or too light, it has its own adverse effects, and hence, it is important to monitor the level of sedation and maintain an optimal level. Objectives: The objective is to assess the level of sedation and associated factors among intubated critically ill children admitted to PICU of JUMC, Jimma. Methods: A prospective observation study was conducted in the PICU of JUMC in September 2021 in 105 patients who were going to be admitted to the PICU aged less than 14 and with GCS >8. Data was collected by residents and nurses working in PICU. Data entry was done by Epi data manager (version 4.6.0.2). Statistical analysis and the creation of charts is going to be performed using SPSS version 26. Data was presented as mean, percentage and standard deviation. The assumption of logistic regression and the result of the assumption will be checked. To find potential predictors, bi-variable logistic regression was used for each predictor and outcome variable. A p value of <0.05 was considered as statistically significant. Finally, findings have been presented using figures, AOR, percentages, and a summary table. Result: in this study, 105 critically ill children had been involved who were started on continuous or intermittent forms of sedative drugs. Sedation level was assessed using a comfort scale three times per day. Based on this observation, we got a 44.8% level of suboptimal sedation at the baseline, a 36.2% level of suboptimal sedation at eight hours, and a 24.8% level of suboptimal sedation at sixteen hours. There is a significant association between suboptimal sedation and duration of stay with mechanical ventilation and the rate of unplanned extubation, which was shown by P < 0.05 using the Hosmer-Lemeshow test of goodness of fit (p> 0.44).

Keywords: level of sedation, critically ill children, Pediatric intensive care unit, Jimma university

Procedia PDF Downloads 61