Search results for: carbon fiber reinforced plastic(CFRP)
714 An Organocatalytic Construction of Vicinal Tetrasubstituted Stereocenters via Mannich Reaction of 2-Substituted Benzofuran-3-One with Isatin-Derived Ketimine
Authors: Koilpitchai Sivamuthuraman, Venkitasamy Kesavan
Abstract:
3-substituted 3-amino-2-oxindole skeleton bearing adjacent tetrasubstituted stereogenic centers is of great importance because of these heterocyclic motifs possess a wide range of pharmacological activity. The catalytic asymmetric construction of multi functionalised heterocyclic compound with adjacent tetrasubstituted stereocenters is one of the most difficult tasks in organic synthesis. To date, the most straightforward methodologies have been developed for synthesis of chiral 3-substituted 3-amino-2-oxindoles through the addition of carbon nucleophiles to isatin-derived ketimines. However, only a few successful examples have been described for the assembly of vicinal tetrasubstituted stereocenters using isatin derived ketimines as electrophiles. On the other hand, 2,2-Disubstituted benzofuran-3(2H)-ones and related frameworks are characteristic of a quaternary stereogenic center at C2 position present in quite a number of natural products and bioactive Molecules.Despite the intensive efforts devoted for the construction of 2,2-Disubstituted Benzofuran-3[2H]-one, there are only a few asymmetric methods such as organocatalytic Michael addition and enantioselective halogenations were reported till now. Due to the biological importance of oxindole and benzofuran-3-one, it is proposed here with the synthesis of hybrid molecule containing tetrasubstituted stereo centers through asymmetric organocatalysis. The addition of 2-substituted Benzofuran-3-one(1a) to isatin-derived ketimines(2a) using a bifunctional organocatalyst(catalyst IV or V), leading to chiral heterocyclic compounds containing both 3-amino 2-oxindole and benzofurn-3-one bearing vicinal quaternary stereocenters with good yields and excellent enantioselectivity. The present study extends the scope of the catalytic asymmetric Mannich reaction with isatin-derived ketimines, providing a new class of amino oxindole derivatives having benzofuran-3-one.Keywords: asymmetric synthesis, benzofuran-3-one, isatin-derived ketimines, quaternary stereocenters
Procedia PDF Downloads 190713 The Determination of the Phosphorous Solubility in the Iron by the Function of the Other Components
Authors: Andras Dezső, Peter Baumli, George Kaptay
Abstract:
The phosphorous is the important components in the steels, because it makes the changing of the mechanical properties and possibly modifying the structure. The phosphorous can be create the Fe3P compounds, what is segregated in the ferrite grain boundary in the intervals of the nano-, or microscale. This intermetallic compound is decreasing the mechanical properties, for example it makes the blue brittleness which means that the brittle created by the segregated particles at 200 ... 300°C. This work describes the phosphide solubility by the other components effect. We make calculations for the Ni, Mo, Cu, S, V, C, Si, Mn, and the Cr elements by the Thermo-Calc software. We predict the effects by approximate functions. The binary Fe-P system has a solubility line, which has a determinating equation. The result is below: lnwo = -3,439 – 1.903/T where the w0 means the weight percent of the maximum soluted concentration of the phosphorous, and the T is the temperature in Kelvin. The equation show that the P more soluble element when the temperature increasing. The nickel, molybdenum, vanadium, silicon, manganese, and the chromium make dependence to the maximum soluted concentration. These functions are more dependent by the elements concentration, which are lower when we put these elements in our steels. The copper, sulphur and carbon do not make effect to the phosphorous solubility. We predict that all of cases the maximum solubility concentration increases when the temperature more and more high. Between 473K and 673 K, in the phase diagram, these systems contain mostly two or three phase eutectoid, and the singe phase, ferritic intervals. In the eutectoid areas the ferrite, the iron-phosphide, and the metal (III)-phospide are in the equilibrium. In these modelling we predicted that which elements are good for avoid the phosphide segregation or not. These datas are important when we make or choose the steels, where the phosphide segregation stopping our possibilities.Keywords: phosphorous, steel, segregation, thermo-calc software
Procedia PDF Downloads 623712 Fibrin Glue Reinforcement of Choledochotomy Closure Suture Line for Prevention of Bile Leak in Patients Undergoing Laparoscopic Common Bile Duct Exploration with Primary Closure: A Pilot Study
Authors: Rahul Jain, Jagdish Chander, Anish Gupta
Abstract:
Introduction: Laparoscopic common bile duct exploration (LCBDE) allows cholecystectomy and the removal of common bile duct (CBD) stones to be performed during the same sitting, thereby decreasing hospital stay. CBD exploration through choledochotomy can be closed primarily with an absorbable suture material, but can lead to biliary leakage postoperatively. In this study we tried to find a solution to further lower the incidence of bile leakage by using fibrin glue to reinforce the sutures put on choledochotomy suture line. It has haemostatic and sealing action, through strengthening the last step of the physiological coagulation and biostimulation, which favours the formation of new tissue matrix. Methodology: This study was conducted at a tertiary care teaching hospital in New Delhi, India, from 2011 to 2013. 20 patients with CBD stones documented on MRCP with CBD diameter of 9 mm or more were included in this study. Patients were randomized into two groups namely Group A in which choledochotomy was closed with polyglactin 4-0 suture and suture line reinforced with fibrin glue, and Group ‘B’ in which choledochotomy was closed with polyglactin 4-0 suture alone. Both the groups were evaluated and compared on clinical parameters such as operative time, drain content, drain output, no. of days drain was required, blood loss & transfusion requirements, length of postoperative hospital stay and conversion to open surgery. Results: The operative time for Group A ranged from 60 to 210 min (mean 131.50 min) and Group B 65 to 300 min (mean 140 minutes). The blood loss in group A ranged from 10 to 120 ml (mean 51.50 ml), in group B it ranged from 10 to 200 ml (mean 53.50 ml). In Group A, there was no case of bile leak but there was bile leak in 2 cases in Group B, minimum 0 and maximum 900 ml with a mean of 97 ml and p value of 0.147 with no statistically significant difference in bile leak in test and control groups. The minimum and maximum serous drainage in Group A was nil & 80 ml (mean 11 ml) and in Group B was nil & 270 ml (mean 72.50 ml). The p value came as 0.028 which is statistically significant. Thus serous leakage in Group A was significantly less than in Group B. The drains in Group A were removed from 2 to 4 days (mean: 3 days) while in Group B from 2 to 9 days (mean: 3.9 days). The patients in Group A stayed in hospital post operatively from 3 to 8 days (mean: 5.30) while in Group B it ranged from 3 to 10 days with a mean of 5 days. Conclusion: Fibrin glue application on CBD decreases bile leakage but in statistically insignificant manner. Fibrin glue application on CBD can significantly decrease post operative serous drainage after LCBDE. Fibrin glue application on CBD is safe and easy technique without any significant adverse effects and can help less experienced surgeons performing LCBDE.Keywords: bile leak, fibrin glue, LCBDE, serous leak
Procedia PDF Downloads 214711 Sustainable Approach to Fabricate Titanium Nitride Film on Steel Substrate by Using Automotive Plastics Waste
Authors: Songyan Yin, Ravindra Rajarao, Veena Sahajwalla
Abstract:
Automotive plastics waste (widely known as auto-fluff or ASR) is a complicated mixture of various plastics incorporated with a wide range of additives and fillers like titanium dioxide, magnesium oxide, and silicon dioxide. Automotive plastics waste is difficult to recycle and its landfilling poses the significant threat to the environment. In this study, a sustainable technology to fabricate protective nanoscale TiN thin film on a steel substrate surface by using automotive waste plastics as titanium and carbon resources is suggested. When heated automotive plastics waste with steel at elevated temperature in a nitrogen atmosphere, titanium dioxide contented in ASR undergo carbothermal reduction and nitridation reactions on the surface of the steel substrate forming a nanoscale thin film of titanium nitride on the steel surface. The synthesis of TiN film on steel substrate under this technology was confirmed by X-ray photoelectron spectrometer, high resolution X-ray diffraction, field emission scanning electron microscope, a high resolution transmission electron microscope fitted with energy dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry techniques. This sustainably fabricated TiN film was verified of dense, well crystallized and could provide good oxidation resistance to the steel substrate. This sustainable fabrication technology is maneuverable, reproducible and of great economic and environmental benefit. It not only reduces the fabrication cost of TiN coating on steel surface, but also provides a sustainable environmental solution to recycling automotive plastics waste. Moreover, high value copper droplets and char residues were also extracted from this unique fabrication process.Keywords: automotive plastics waste, carbonthermal reduction and nitirdation, sustainable, TiN film
Procedia PDF Downloads 391710 Feeding Value Improvement of Rice Straw Fermented by Spent Mushroom Substrate on Growth and Lactating Performance of Dairy Goat
Authors: G. J. Fan, T. T. Lee, M. H. Chen, T. F. Shiao, B. Yu, C. F. Lee
Abstract:
Rice straw with poor feed quality and spent mushroom substrate are both the most abundant agricultural residues in Taiwan. Edible mushrooms from white rot fungi possess lignocellulase activity. It was expected to improve the feeding value of rice straw for ruminant by solid-state fermentation pretreatment using spent mushroom substrate. Six varieties or subspecies of spent edible mushrooms (Pleurotus ostreatus (blue or white color), P. sajor-caju, P. citrinopileatus, P. eryngii and Ganoderma lucidium) substrate were evaluated in solid-state fermentation process with rice straw for 8 wks. Quality improvement of fermented rice straw was determined by its in vitro digestibility, lignocellulose degradability, and cell wall breakdown checked by scanning electron microscope. Results turned out that Pleurotus ostreatus (white color) and P. sajor-caju had the better lignocellulose degradation effect than the others and was chosen for advance in vivo study. Rice straw fermented with spent Pleurotus ostreatus or Pleurotus sajor-caju mushroom substrate 8 wks was prepared for growing and lactating feeding trials of dairy goat, respectively. Pangolagrass hay at 15% diet dry matter was the control diet. Fermented or original rice straw was added to substitute pangolagrass hay in both feeding trials. A total of 30 head of Alpine castrated ram were assigned into three groups for 11 weeks, 5 pens (2 head/pen) each group. A total of 21 head of Saanen and Alpine goats were assigned into three treatments and individually fed in two repeat lactating trials with 28-d each. In castrated ram study, results showed that fermented rice straw by spent Pleurotus ostreatus mushroom substrate attributed the higher daily dry matter intakes (DMI, 1.53 vs. 1.20 kg) and body weight gain (138 vs. 101 g) than goats fed original rice straw. DMI (2.25 vs. 1.81 kg) and milk yield (3.31 vs. 3.02 kg) of lactating goats fed control pangolagrass diet and fermented rice straw by spent Pleurotus sajor-caju mushroom substrate were also higher than those fed original rice straw diet (P < 0.05). Milk compositions, milk fat, protein, total solid and lactose, were similar among treatments. In conclusion, solid-state fermentation by spent Pleurotus ostreatus or Pleurotus sajor-caju mushroom substrate could effectively improve the feeding value of rice straw. Fermented rice straw is a good alternative fiber feed resource for growing and lactating dairy goats and 15% in diet dry matter is recommended.Keywords: feeding value, fermented rice straw, growing and lactating dairy goat, spent Pleurotus ostreatus and Pleurotus sajor-caju mushroom substrate
Procedia PDF Downloads 173709 Study of Structural Behavior and Proton Conductivity of Inorganic Gel Paste Electrolyte at Various Phosphorous to Silicon Ratio by Multiscale Modelling
Authors: P. Haldar, P. Ghosh, S. Ghoshdastidar, K. Kargupta
Abstract:
In polymer electrolyte membrane fuel cells (PEMFC), the membrane electrode assembly (MEA) is consisting of two platinum coated carbon electrodes, sandwiched with one proton conducting phosphoric acid doped polymeric membrane. Due to low mechanical stability, flooding and fuel cell crossover, application of phosphoric acid in polymeric membrane is very critical. Phosphorous and silica based 3D inorganic gel gains the attention in the field of supercapacitors, fuel cells and metal hydrate batteries due to its thermally stable highly proton conductive behavior. Also as a large amount of water molecule and phosphoric acid can easily get trapped in Si-O-Si network cavities, it causes a prevention in the leaching out. In this study, we have performed molecular dynamics (MD) simulation and first principle calculations to understand the structural, electronics and electrochemical and morphological behavior of this inorganic gel at various P to Si ratios. We have used dipole-dipole interactions, H bonding, and van der Waals forces to study the main interactions between the molecules. A 'structure property-performance' mapping is initiated to determine optimum P to Si ratio for best proton conductivity. We have performed the MD simulations at various temperature to understand the temperature dependency on proton conductivity. The observed results will propose a model which fits well with experimental data and other literature values. We have also studied the mechanism behind proton conductivity. And finally we have proposed a structure for the gel paste with optimum P to Si ratio.Keywords: first principle calculation, molecular dynamics simulation, phosphorous and silica based 3D inorganic gel, polymer electrolyte membrane fuel cells, proton conductivity
Procedia PDF Downloads 126708 Crooked Wood: Finding Potential in Local Hardwood
Authors: Livia Herle
Abstract:
A large part of the Principality of Liechtenstein is covered by forest. Three-quarters of this forest is defined as protective due to the alpine landscape of the country, which is deteriorating the quality of the wood. Nevertheless, the forest is one of the most important sources of raw material. However, out of the wood harvested annually in Liechtenstein, about two-thirds are used directly as an energy source, drastically shortening up the carbon storage cycle of wood. Furthermore, due to climate change, forest structures are changing. Predictions for the forest in Liechtenstein have stated that the spruce will mostly vanish in low altitudes, only being able to survive in the higher regions. In contrast, hardwood species will experience a rise, resulting in a more mixed forest. Thus, the main research focus will be put upon the potential of hardwood as well as prolonging the lifespan of a timber log before ending up as an energy source. An analysis of the local occurrence of hardwood species and their quality will serve as a tool to implement this knowledge upon constructional solutions. As a system that works with short spam timber and thus qualifies for the regional conditions of hardwood, reciprocal frame systems will be further investigated. These can be defined as load-bearing structures with only two beams connecting at a time, avoiding complex joining situations. Furthermore, every beam is mutually supporting. This allows the usage of short pieces of preferably massive wood. As a result, the system permits for an easy assembly but also disassembly. To promote a more circular application of wood, possible cascading scenarios of the structural solutions will be added. In a workshop at the School of Architecture of the University of Liechtenstein in the Sommer Semester 2024, prototypes in 1:1 of reciprocal frame systems using only local hardwood will help as a tool to further test the theoretical analyses.Keywords: hardwood, cascading wood, reciprocal frames, crooked wood, forest structures, climate change
Procedia PDF Downloads 71707 Sustainability Assessment of a Deconstructed Residential House
Authors: Atiq U. Zaman, Juliet Arnott
Abstract:
This paper analyses the various benefits and barriers of residential deconstruction in the context of environmental performance and circular economy based on a case study project in Christchurch, New Zealand. The case study project “Whole House Deconstruction” which aimed, firstly, to harvest materials from a residential house, secondly, to produce new products using the recovered materials, and thirdly, to organize an exhibition for the local public to promote awareness on resource conservation and sustainable deconstruction practices. Through a systematic deconstruction process, the project recovered around 12 tonnes of various construction materials, most of which would otherwise be disposed of to landfill in the traditional demolition approach. It is estimated that the deconstruction of a similar residential house could potentially prevent around 27,029 kg of carbon emission to the atmosphere by recovering and reusing the building materials. In addition, the project involved local designers to produce 400 artefacts using the recovered materials and to exhibit them to accelerate public awareness. The findings from this study suggest that the deconstruction project has significant environmental benefits, as well as social benefits by involving the local community and unemployed youth as a part of their professional skills development opportunities. However, the project faced a number of economic and institutional challenges. The study concludes that with proper economic models and appropriate institutional support a significant amount of construction and demolition waste can be reduced through a systematic deconstruction process. Traditionally, the greatest benefits from such projects are often ignored and remain unreported to wider audiences as most of the external and environmental costs have not been considered in the traditional linear economy.Keywords: circular economy, construction and demolition waste, resource recovery, systematic deconstruction, sustainable waste management
Procedia PDF Downloads 182706 The Results of Longitudinal Water Quality Monitoring of the Brandywine River, Chester County, Pennsylvania by High School Students
Authors: Dina L. DiSantis
Abstract:
Strengthening a sense of responsibility while relating global sustainability concepts such as water quality and pollution to a local water system can be achieved by teaching students to conduct and interpret water quality monitoring tests. When students conduct their own research, they become better stewards of the environment. Providing outdoor learning and place-based opportunities for students helps connect them to the natural world. By conducting stream studies and collecting data, students are able to better understand how the natural environment is a place where everything is connected. Students have been collecting physical, chemical and biological data along the West and East Branches of the Brandywine River, in Pennsylvania for over ten years. The stream studies are part of the advanced placement environmental science and aquatic science courses that are offered as electives to juniors and seniors at the Downingtown High School West Campus in Downingtown, Pennsylvania. Physical data collected includes: temperature, turbidity, width, depth, velocity, and volume of flow or discharge. The chemical tests conducted are: dissolved oxygen, carbon dioxide, pH, nitrates, alkalinity and phosphates. Macroinvertebrates are collected with a kick net, identified and then released. Students collect the data from several locations while traveling by canoe. In the classroom, students prepare a water quality data analysis and interpretation report based on their collected data. The summary of the results from longitudinal water quality data collection by students, as well as the strengths and weaknesses of student data collection will be presented.Keywords: place-based, student data collection, sustainability, water quality monitoring
Procedia PDF Downloads 155705 The Potential in the Use of Building Information Modelling and Life-Cycle Assessment for Retrofitting Buildings: A Study Based on Interviews with Experts in Both Fields
Authors: Alex Gonzalez Caceres, Jan Karlshøj, Tor Arvid Vik
Abstract:
Life cycle of residential buildings are expected to be several decades, 40% of European residential buildings have inefficient energy conservation measure. The existing building represents 20-40% of the energy use and the CO₂ emission. Since net zero energy buildings are a short-term goal, (should be achieved by EU countries after 2020), is necessary to plan the next logical step, which is to prepare the existing outdated stack of building to retrofit them into an energy efficiency buildings. In order to accomplish this, two specialize and widespread tool can be used Building Information Modelling (BIM) and life-cycle assessment (LCA). BIM and LCA are tools used by a variety of disciplines; both are able to represent and analyze the constructions in different stages. The combination of these technologies could improve greatly the retrofitting techniques. The incorporation of the carbon footprint, introducing a single database source for different material analysis. To this is added the possibility of considering different analysis approaches such as costs and energy saving. Is expected with these measures, enrich the decision-making. The methodology is based on two main activities; the first task involved the collection of data this is accomplished by literature review and interview with experts in the retrofitting field and BIM technologies. The results of this task are presented as an evaluation checklist of BIM ability to manage data and improve decision-making in retrofitting projects. The last activity involves an evaluation using the results of the previous tasks, to check how far the IFC format can support the requirements by each specialist, and its uses by third party software. The result indicates that BIM/LCA have a great potential to improve the retrofitting process in existing buildings, but some modification must be done in order to meet the requirements of the specialists for both, retrofitting and LCA evaluators.Keywords: retrofitting, BIM, LCA, energy efficiency
Procedia PDF Downloads 216704 Evaluation of Biological Seed Coating Technology On-Field Performance of Wheat in Regenerative Agriculture and Conventional Systems
Authors: S. Brain, P. J. Storer, H. Strydom, Z. M. Solaiman
Abstract:
Increasing farmer awareness of soil health, the impact of agricultural management practices, and the requirement for high-quality agricultural produce are major factors driving the rapid adoption of biological seed treatments - currently valued globally at USD 1.5 billion. Biological seed coatings with multistrain plant beneficial microbial technology have the capability to affect plant establishment, growth, and development positively. These beneficial plant microbes can potentially increase soil health, plant yield, and nutrition – acting as bio fertilisers, rhizoremediators, phytostimulators, and stress modulators, and can ultimately reduce the overall use of agrichemicals. A field trial was conducted on MACE wheat in the central wheat belt of Western Australia to evaluate a proprietary seed coating technology (Langleys Bio-EnergeticTM Microbe blend (BMB)) on a conventional program (+/- BMB microbes) and a Regenerative Biomineral fertiliser program (+/- BMB microbes). The Conventional (+BMB) and Biomineral (+BMB) treated plants had no fungicide treatments and had no disease issues. Control (No fertiliser, No microbes), Conventional (No Microbes), and Biomineral (No Microbes) were treated with fungicides (seed dressing and foliar). From the research findings, compared to control and no microbe treatments, both the Conventional (+ BMB) and Biomineral (+ BMB) showed significant increases in Soil Carbon (SOC), Seed germination, nutrient use efficiency (NUE) of nitrogen, phosphate and mineral nutrients, grain mineral nutrient uptake, protein %, hectolitre weight, and fewer screenings, yield, and gross margins.Keywords: biological seed coating, biomineral fertiliser, plant nutrition, regenerative and conventional agriculture
Procedia PDF Downloads 77703 Management of Distillery Spentwash to Enhance Productivity of Dryland Crops and Reduce Environmental Pollution: A Case Study in Southern Dry Zone of Karnataka, India
Authors: A. Sathish, N. N. Lingaraju, K. N. Geetha, C. A. Srinivasamurthy, S. Bhaskar
Abstract:
Under dryland conditions, it is observed that the soil organic matter is low due to low organic carbon content due to poor management with less use of inputs. On the other hand, disposal of sugar industry waste, i.e., spentwash is a major concern with limited space for land based treatment and disposal which causes environmental pollution. Spentwash is also a resource that can be applied for productive uses since it contains nutrients that have the potential for use in agriculture. The disposal of spent wash may lead to environmental pollution. Hence as an alternative mechanism, it was applied once to dry lands, and the experiments were conducted from 2012-13 to 2016-17 in kharif season in Maddur Taluk, Mandya District, Karnataka State, India. The study conducted was in 93 different farmers field (maize-11, finger millet-80 & horsegram-14). Spentwash was applied at the rate of 100 m³ ha⁻¹ before sowing of the crops. The results showed that yield of dryland crops like finger millet, horse gram and maize was recorded 14.75 q ha⁻¹, 6 q ha⁻¹ and 31.00 q ha⁻¹, respectively and the yield increase to an extent of 10-25 per cent with one time application of spentwash to dry lands compared to farmers practice, i.e., chemical fertilizer application. The higher yield may be attributed to slow and steady release of nutrients by spentwash throughout the crop growth period. In addition, the growth promoting and other beneficial substances present in spentwash might have also helped in better plant growth and yield. The soil sample analysis after harvest of the crops indicate acidic to neutral pH, EC of 0.11 dSm⁻¹ and Na of 0.20 C mol (P⁺) kg⁻¹ in the normal range which are not harmful. Hence, it can be applied to drylands at least once in 3 years which enhances yield as well as reduces environmental pollution.Keywords: dryland crops, pollution, sugar industry waste, spentwash
Procedia PDF Downloads 237702 Diffuse CO₂ Degassing to Study Blind Geothermal Systems: The Acoculco, Puebla (Mexico) Case Study
Authors: Mirna Guevara, Edgar Santoyo, Daniel Perez-Zarate, Erika Almirudis
Abstract:
The Acoculco caldera located in Puebla (Mexico) has been preliminary identified as a blind hot-dry rock geothermal system. Two drilled wells suggest the existence of high temperatures >300°C and non-conventional tools are been applied to study this system. A comprehensive survey of soil-gas (CO₂) flux measurements (1,500 sites) was carried out during the dry seasons over almost two years (2015 and 2016). Isotopic analyses of δ¹³CCO₂ were performed to discriminate the origin source of the CO2 fluxes. The soil CO2 flux measurements were made in situ by the accumulation chamber method, whereas gas samples for δ13CCO2 were selectively collected from the accumulation chamber with evacuated gas vials via a septum. Two anomalous geothermal zones were identified as a result of these campaigns: Los Azufres (19°55'29.4'' N; 98°08'39.9'' W; 2,839 masl) and Alcaparrosa (19°55'20.6'' N; 98°08'38.3'' W; 2,845 masl). To elucidate the origin of the C in soil CO₂ fluxes, the isotopic signature of δ¹³C was used. Graphical Statistical Analysis (GSA) and a three end-member mixing diagram were used to corroborate the presence of distinctive statistical samples, and trends for the diffuse gas fluxes. Spatial and temporal distributions of the CO₂ fluxes were studied. High CO₂ emission rates up to 38,217 g/m2/d and 33,706 g/m2/d were measured for the Los Azufres and Alcaparrosa respectively; whereas the δ¹³C signatures showed values ranging from -3.4 to -5.5 o/oo for both zones, confirming their magmatic origin. This study has provided a valuable framework to set the direction of further exploration campaigns in the Acoculco caldera. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).Keywords: accumulation chamber method, carbon dioxide, diffusive degassing, geothermal exploration
Procedia PDF Downloads 263701 [Keynote Talk]: Quest for Sustainability in the Midst of Conflict Between Climate and Energy Security
Authors: Deepak L. Waikar
Abstract:
Unprecedented natural as well as human made disasters have been responsible for loss of hundreds of thousands of lives, injury & displacement of millions of people and damages in billions of dollars in various parts of the world. Scientists, experts, associations and united nation have been warning about colossal disregard for human safety and environment in exploiting natural resources for insatiable greed for economic growth and rising lavish life style of the rich. Usual blame game is routinely played at international forums & summits by vested interests in developing and developed nations, while billions of people continue to suffer in abject energy poverty. Energy security, on the other hand, is becoming illusive with the dominance of few players in the market, poor energy governance mechanisms, volatile prices and geopolitical conflicts in supply chain. Conflicting scenarios have been cited as one of the major barriers for transformation to a low carbon economy. Policy makers, researchers, academics, businesses, industries and communities have been evaluating sustainable alternatives, albeit at snail’s pace. This presentation focuses on technologies, energy governance, policies & practices, economics and public concerns about safe, prudent & sustainable harnessing of energy resources. Current trends and potential research & development projects in power & energy sectors which students can undertake will be discussed. Speaker will highlight on how youths can be engaged in meaningful, safe, enriching, inspiring and value added self-development programmes in our quest for sustainability in the midst of conflict between climate and energy security.Keywords: clean energy, energy policy, energy security, sustainable energy
Procedia PDF Downloads 487700 Partial Replacement for Cement and Coarse Aggregate in Concrete by Using Egg Shell Powder and Coconut Shell
Authors: A. K. Jain, M. C. Paliwal
Abstract:
The production of cement leads to the emission of large amounts of carbon-dioxide gas into the atmosphere which is a major contributor for the greenhouse effect and the global warming; hence it is mandatory either to quest for another material or partly replace it with some other material. According to the practical demonstrations and reports, Egg Shell Powder (ESP) can be used as a binding material for different field applications as it contains some of the properties of lime. It can partially replace the cement and further; it can be used in different proportion for enhancing the performance of cement. It can be used as a first-class alternative, for material reuse and waste recycling practices. Eggshell is calcium rich and analogous to limestone in chemical composition. Therefore, use of eggshell waste for partial replacement of cement in concrete is feasible. Different studies reveal that plasticity index of the soil can be improved by adding eggshell wastes in all the clay soil and it has wider application in construction projects including earth canals and earthen dams. The scarcity of aggregates is also increasing nowadays. Utilization of industrial waste or secondary materials is increasing in different construction applications. Coconut shell was successfully used in the construction industry for partial or full replacement for coarse aggregates. The use of coconut shell gives advantage of using waste material to partially replace the coarse aggregate. Studies carried on coconut shell indicate that it can partially replace the aggregate. It has good strength and modulus properties along with the advantage of high lignin content. It absorbs relatively low moisture due to its low cellulose content. In the paper, study carried out on eggshell powder and coconut shell will be discussed. Optimum proportions of these materials to be used for partial replacement of cement and aggregate will also be discussed.Keywords: greenhouse, egg shell powder, binding material, aggregates, coconut shell, coarse aggregates
Procedia PDF Downloads 252699 Solvent-Free Conductive Coatings Containing Chemically Coupled Particles for Functional Textiles
Authors: Jagadeshvaran P. L., Kamlesh Panwar, Indumathi Ramakrishnan, Suryasarathi Bose
Abstract:
The surge in the usage of wireless electronics and communication devices has engendered a different form of pollution, viz. the electromagnetic (EM) pollution and yet another serious issue, electromagnetic interference (EMI). There is a legitimate need to develop strategies and materials to combat this issue, otherwise leading to dreadful consequences. Functional textiles have emerged as the modern materials to help attenuate EM waves due to the numerous advantages – flexibility being the most important. In addition to this, there is an inherent advantage of multiple interfaces in coated fabrics that can engender significant attenuation. Herein we report a coating having multifunctional properties – capable of blocking both UV and EM radiation (predominantly of the microwave frequencies) with flame-retarding properties. The layer described here comprises iron titanate(FT) synthesized from its sustainable precursor – ilmenite sand and carbon nanotubes (CNT) dispersed in waterborne polyurethane. It is worth noting that FT's use as a multifunctional material is being reported for the first time. It was observed that a single layer of coated fabric shows EMI shielding effectiveness of -40 dB translating to 99.99% attenuation and similarly a UV blocking of 99.99% in the wavelength ranging from 200-400 nm. The microwave shielding properties of the fabric were demonstrated using a Bluetooth module – where the coated fabric was able to block the incoming Bluetooth signals to the module from a mobile phone. Besides, the coated fabrics exhibited phenomenal enhancement in thermal stability - a five percent increase in the limiting oxygen index (LOI) was observed upon the application of the coating. Such exceptional properties complement cotton fabrics' existing utility, thereby extending their use to specialty applications.Keywords: multifunctional coatings, EMI shielding, UV blocking, iron titanate, CNT, waterborne polyurethane, cotton fabrics
Procedia PDF Downloads 116698 A Detailed Computational Investigation into Copper Catalyzed Sonogashira Coupling Reaction
Authors: C. Rajalakshmi, Vibin Ipe Thomas
Abstract:
Sonogashira coupling reactions are widely employed in the synthesis of molecules of biological and pharmaceutical importance. Copper catalyzed Sonogashira coupling reactions are gaining importance owing to the low cost and less toxicity of copper as compared to the palladium catalyst. In the present work, a detailed computational study has been carried out on the Sonogashira coupling reaction between aryl halides and terminal alkynes catalyzed by Copper (I) species with trans-1, 2 Diaminocyclohexane as ligand. All calculations are performed at Density Functional Theory (DFT) level, using the hybrid Becke3LYP functional. Cu and I atoms are described using an effective core potential (LANL2DZ) for the inner electrons and its associated double-ζ basis set for the outer electrons. For all other atoms, 6-311G+* basis set is used. We have identified that the active catalyst species is a neutral 3-coordinate trans-1,2 diaminocyclohexane ligated Cu (I) alkyne complex and found that the oxidative addition and reductive elimination occurs in a single step proceeding through one transition state. This is owing to the ease of reductive elimination involving coupling of Csp2-Csp carbon atoms and the less stable Cu (III) intermediate. This shows the mechanism of copper catalyzed Sonogashira coupling reactions are quite different from those catalyzed by palladium. To gain further insights into the mechanism, substrates containing various functional groups are considered in our study to traverse their effect on the feasibility of the reaction. We have also explored the effect of ligand on the catalytic cycle of the coupling reaction. The theoretical results obtained are in good agreement with the experimental observation. This shows the relevance of a combined theoretical and experimental approach for rationally improving the cross-coupling reaction mechanisms.Keywords: copper catalysed, density functional theory, reaction mechanism, Sonogashira coupling
Procedia PDF Downloads 115697 Precursor Muscle Cell’s Phenotype under Compression in a Biomimetic Mechanical Niche
Authors: Fatemeh Abbasi, Arne Hofemeier, Timo Betz
Abstract:
Muscle growth and regeneration critically depend on satellite cells (SCs) which are muscle stem cells located between the basal lamina and myofibres. Upon damage, SCs become activated, enter the cell cycle, and give rise to myoblasts that form new myofibres, while a sub-population self-renew and re-populate the muscle stem cell niche. In aged muscle as well as in certain muscle diseases such as muscular dystrophy, some of the SCs lose their regenerative ability. Although it is demonstrated that the chemical composition of SCs quiescent niche is different from the activated niche, the mechanism initially activated in the SCs remains unknown. While extensive research efforts focused on potential chemical activation, no such factor has been identified to the author’s best knowledge. However, it is substantiated that niche mechanics affects SCs behaviors, such as stemness and engraftment. We hypothesize that mechanical stress in the healthy niche (homeostasis) is different from the regenerative niche and that this difference could serve as an early signal activating SCs upon fiber damage. To investigate this hypothesis, we develop a biomimetic system to reconstitute both, the mechanical and the chemical environment of the SC niche. Cells will be confined between two elastic polyacrylamide (PAA) hydrogels with controlled elastic moduli and functionalized surface chemistry. By controlling the distance between the PAA hydrogel surfaces, we vary the compression forces exerted by the substrates on the cells, while the lateral displacement of the upper hydrogel will create controlled shear forces. To establish such a system, a simplified system is presented. We engineered a sandwich-like configuration of two elastic PAA layer with stiffnesses between 1 and 10 kPa and confined a precursor myoblast cell line (C2C12) in between these layers. Our initial observations in this sandwich model indicate that C2C12 cells show different behaviors under mechanical compression if compared to a control one-layer gel without compression. Interestingly, this behavior is stiffness-dependent. While the shape of C2C12 cells in the sandwich consisting of two stiff (10 kPa) layers was much more elongated, showing almost a neuronal phenotype, the cell shape in a sandwich situation consisting of one stiff and one soft (1 kPa) layer was more spherical. Surprisingly, even in proliferation medium and at very low cell density, the sandwich situation stimulated cell differentiation with increased striation and myofibre formation. Such behavior is commonly found for confluent cells in differentiation medium. These results suggest that mechanical changes in stiffness and applied pressure might be a relevant stimulation for changes in muscle cell behavior.Keywords: C2C12 cells, compression, force, satellite cells, skeletal muscle
Procedia PDF Downloads 121696 Evaluation of Arsenic Removal in Synthetic Solutions and Natural Waters by Rhizofiltration
Authors: P. Barreto, A. Guevara, V. Ibujes
Abstract:
In this study, the removal of arsenic from synthetic solutions and natural water from Papallacta Lagoon was evaluated, by using the rhizofiltration method with terrestrial and aquatic plant species. Ecuador is a country of high volcanic activity, that is why most of water sources come from volcanic glaciers. Therefore, it is necessary to find new, affordable and effective methods for treating water. The water from Papallacta Lagoon shows levels from 327 µg/L to 803 µg/L of arsenic. The evaluation for the removal of arsenic began with the selection of 16 different species of terrestrial and aquatic plants. These plants were immersed to solutions of 4500 µg/L arsenic concentration, for 48 hours. Subsequently, 3 terrestrial species and 2 aquatic species were selected based on the highest amount of absorbed arsenic they showed, analyzed by plasma optical emission spectrometry (ICP-OES), and their best capacity for adaptation into the arsenic solution. The chosen terrestrial species were cultivated from their seed with hydroponics methods, using coconut fiber and polyurethane foam as substrates. Afterwards, the species that best adapted to hydroponic environment were selected. Additionally, a control of the development for the selected aquatic species was carried out using a basic nutrient solution to provide the nutrients that the plants required. Following this procedure, 30 plants from the 3 types of species selected were exposed to a synthetic solution with levels of arsenic concentration of 154, 375 and 874 µg/L, for 15 days. Finally, the plant that showed the highest level of arsenic absorption was placed in 3 L of natural water, with arsenic levels of 803 µg/L. The plant laid in the water until it reached the desired level of arsenic of 10 µg/L. This experiment was carried out in a total of 30 days, in which the capacity of arsenic absorption of the plant was measured. As a result, the five species initially selected to be used in the last part of the evaluation were: sunflower (Helianthus annuus), clover (Trifolium), blue grass (Poa pratensis), water hyacinth (Eichhornia crassipes) and miniature aquatic fern (Azolla). The best result of arsenic removal was showed by the water hyacinth with a 53,7% of absorption, followed by the blue grass with 31,3% of absorption. On the other hand, the blue grass was the plant that best responded to the hydroponic cultivation, by obtaining a germination percentage of 97% and achieving its full growth in two months. Thus, it was the only terrestrial species selected. In summary, the final selected species were blue grass, water hyacinth and miniature aquatic fern. These three species were evaluated by immersing them in synthetic solutions with three different arsenic concentrations (154, 375 and 874 µg/L). Out of the three plants, the water hyacinth was the one that showed the highest percentages of arsenic removal with 98, 58 and 64%, for each one of the arsenic solutions. Finally, 12 plants of water hyacinth were chosen to reach an arsenic level up to 10 µg/L in natural water. This significant arsenic concentration reduction was obtained in 5 days. In conclusion, it was found that water hyacinth is the best plant to reduce arsenic levels in natural water.Keywords: arsenic, natural water, plant species, rhizofiltration, synthetic solutions
Procedia PDF Downloads 120695 The Feasibility Evaluation Of The Compressed Air Energy Storage System In The Porous Media Reservoir
Authors: Ming-Hong Chen
Abstract:
In the study, the mechanical and financial feasibility for the compressed air energy storage (CAES) system in the porous media reservoir in Taiwan is evaluated. In 2035, Taiwan aims to install 16.7 GW of wind power and 40 GW of photovoltaic (PV) capacity. However, renewable energy sources often generate more electricity than needed, particularly during winter. Consequently, Taiwan requires long-term, large-scale energy storage systems to ensure the security and stability of its power grid. Currently, the primary large-scale energy storage options are Pumped Hydro Storage (PHS) and Compressed Air Energy Storage (CAES). Taiwan has not ventured into CAES-related technologies due to geological and cost constraints. However, with the imperative of achieving net-zero carbon emissions by 2050, there's a substantial need for the development of a considerable amount of renewable energy. PHS has matured, boasting an overall installed capacity of 4.68 GW. CAES, presenting a similar scale and power generation duration to PHS, is now under consideration. Taiwan's geological composition, being a porous medium unlike salt caves, introduces flow field resistance affecting gas injection and extraction. This study employs a program analysis model to establish the system performance analysis capabilities of CAES. The finite volume model is then used to assess the impact of porous media, and the findings are fed back into the system performance analysis for correction. Subsequently, the financial implications are calculated and compared with existing literature. For Taiwan, the strategic development of CAES technology is crucial, not only for meeting energy needs but also for decentralizing energy allocation, a feature of great significance in regions lacking alternative natural resources.Keywords: compressed-air energy storage, efficiency, porous media, financial feasibility
Procedia PDF Downloads 65694 Performance of an Automotive Engine Running on Gasoline-Condensate Blends
Authors: Md. Ehsan, Cyrus Ashok Arupratan Atis
Abstract:
Significantly lower cost, bulk availability, absence of identification color additives and relative ease of mixing with fuels have made gas-field condensates a lucrative option as adulterant for gasoline in Bangladesh. Widespread adulteration of fuels with gas-field condensates being a problem existing mainly in developing countries like Bangladesh, Nigeria etc., research works regarding the effect of such fuel adulteration are very limited. Since the properties of the gas-field condensate vary widely depending on geographical location, studies need to be based on local condensate feeds. This study quantitatively evaluates the effects of blending of gas-field condensates with gasoline(octane) in terms of - fuel properties, engine performance and exhaust emission. Condensate samples collected from Kailashtila gas field were blended with octane, ranging from 30% to 75% by volume. However for blends with above 60% condensate, cold starting of engine became difficult. Investigation revealed that the condensate samples had significantly higher distillation temperatures compared to octane, but were not far different in terms of heating value and carbon residues. Engine tests showed Kailashtila blends performing quite similar to octane in terms of power and thermal efficiency. No noticeable knocking was observed from in-cylinder pressure traces. For all the gasoline-condensate blends the test engine ran with relatively leaner air-fuel mixture delivering slightly lower CO emissions but HC and NOx emissions were similar to octane. Road trials of a test vehicle in real traffic condition and on a standard gradient using 50%(v/v) gasoline-condensate blend were also carried out. The test vehicle did not exhibit any noticeable difference in drivability compared to octane.Keywords: condensates, engine performance, fuel adulteration, gasoline-condensate blends
Procedia PDF Downloads 249693 Low Sulfur Diesel-Like Fuel From Quick Remediation Process of Waste Oil Sludge
Authors: Isam A. H. Al Zubaidy
Abstract:
A quick process may be needed to get the benefit the big generated quantity of waste oil sludge (WOS). The process includes the mixing process of WOS with commercial diesel fuel. Different ratios of WOS to diesel fuel were prepared ranging 1:1 to 20:1 by mass. The mixture was continuously mixing for 10 minutes using bench type overhead stirrer and followed by filtration process to separate the soil waste from filtrate oil product. The quantity and the physical properties of the oil filtrate were measured. It was found that the addition of up to 15% WOS to diesel fuel was accepted without dramatic changes to the properties of diesel fuel. The amount of waste oil sludge was decreased by about 60% by mass. This means that about 60 % of the mass of sludge was recovered as light fuel oil. The physical properties of the resulting fuel from 10% sludge mixing ratio showed that the specific gravity, ash content, carbon residue, asphaltene content, viscosity, diesel index, cetane number, and calorific value were affected slightly. The color was changed to light black color. The sulfur content was increased also. This requires other processes to reduce the sulfur content of the resulting light fuel. A new desulfurization process was achieved using adsorption techniques with activated biomaterial to reduce the sulfur content to acceptable limits. Adsorption process by ZnCl₂ activated date palm kernel powder was effective for improvement of the physical properties of diesel like fuel. The final sulfur content was increased to 0.185 wt%. This diesel like fuel can be used in all tractors, buses, tracks inside and outside the refineries. The solid remaining seems to be smooth and can be mixed with asphalt mixture for asphalting the roads or can be used with other materials as an asphalt coating material for constructed buildings. Through this process, valuable fuel has been recovered, and the amount of waste material had decreased.Keywords: oil sludge, diesel fuel, blending process, filtration process
Procedia PDF Downloads 117692 Gendered Experiences of the Urban Space in India as Portrayed by Hindi Cinema: A Quantitative Analysis
Authors: Hugo Ribadeau Dumas
Abstract:
In India, cities represent intense battlefields where patriarchal norms are simultaneously defied and reinforced. While Indian metropolises have witnessed numerous initiatives where women boldly claimed their right to the city, urban spaces still remain disproportionately unfriendly to female city-dwellers. As a result, the presence of strees (women, in Hindi) in the streets remains a socially and politically potent phenomenon. This paper explores how, in India, women engage with the city as compared to men. Borrowing analytical tools from urban geography, it uses Hindi cinema as a medium to map the extent to which activities, attitudes and experiences in urban spaces are highly gendered. The sample consists of 30 movies, both mainstream and independent, which were released between 2010 and 2020, were set in an urban environment and comprised at least one pivotal female character. The paper adopts a quantitative approach, consisting of the scrutiny of close to 3,000 minutes of footage, the labeling and time count of every scene, and the computation of regressions to identify statistical relationships between characters and the way they navigate the city. According to the analysis, female characters spend half less time in the public space than their male counterparts. When they do step out, women do it mostly for utilitarian reasons; inversely, in private spaces or in pseudo-public commercial places – like malls – they indulge in fun activities. For male characters, the pattern is the exact opposite: fun takes place in public and serious work in private. The characters’ attitudes in the streets are also greatly gendered: men spend a significant amount of time immobile, loitering, while women are usually on the move, displaying some sense of purpose. Likewise, body language and emotional expressiveness betray differentiated gender scripts: while women wander in the streets either smiling – in a charming role – or with a hostile face – in a defensive mode – men are more likely to adopt neutral facial expressions. These trends were observed across all movies, although some nuances were identified depending on the character's age group, social background, and city, highlighting that the urban experience is not the same for all women. The empirical pieces of evidence presented in this study are helpful to reflect on the meaning of public space in the context of contemporary Indian cities. The paper ends with a discussion on the link between universal access to public spaces and women's empowerment.Keywords: cinema, Indian cities, public space, women empowerment
Procedia PDF Downloads 155691 Influence of Environment-Friendly Organic Wastes on the Properties of Sandy Soil under Growing Zea mays L. in Arid Regions
Authors: Mohamed Rashad, Mohamed Hafez, Mohamed Emran, Emad Aboukila, Ibrahim Nassar
Abstract:
Environment-friendly organic wastes of Brewers' spent grain, a byproduct of the brewing process, have recently used as soil amendment to improve soil fertility and plant production. In this work, treatments of 1% (T1) and 2% (T2) of spent grains, 1% (C1) and 2% (C2) of compost and mix of both sources (C1T1) were used and compared to the control for growing Zea mays L. on sandy soil under arid Mediterranean climate. Soils were previously incubated at 65% saturation capacity for a month. The most relevant soil physical and chemical parameters were analysed. Water holding capacity and soil organic matter (OM) increased significantly along the treatments with the highest values in T2. Soil pH decreased along the treatments and the lowest pH was in C1T1. Bicarbonate decreased by 69% in C1T1 comparing to control. Total nitrogen (TN) and available P varied significantly among all treatments and T2, C1T1 and C2 treatments increased 25, 17 and 11 folds in TN and 1.2, 0.6 and 0.3 folds in P, respectively related to control. Available K showed the highest values in C1T1. Soil micronutrients increased significantly along all treatments with the highest values in T2. After corn germination, significant variation was observed in the velocity of germination coefficients (VGC) among all treatments in the order of C1T1>T2>T1>C2>C1>control. The highest records of final germination and germination index were in C1T1 and T2. The spent grains may compensate deficiencies of macro and micronutrients in newly reclaimed sandy soils without adverse effects to sustain crop production with a rider that excessive or continuous use need to be circumvented.Keywords: corn and squash germination, environmentally friendly organic wastes, soil carbon sequestration, spent grains as soil amendment, water holding capacity
Procedia PDF Downloads 506690 Nonlinear Multivariable Analysis of CO2 Emissions in China
Authors: Hsiao-Tien Pao, Yi-Ying Li, Hsin-Chia Fu
Abstract:
This paper addressed the impacts of energy consumption, economic growth, financial development, and population size on environmental degradation using grey relational analysis (GRA) for China, where foreign direct investment (FDI) inflows is the proxy variable for financial development. The more recent historical data during the period 2004–2011 are used, because the use of very old data for data analysis may not be suitable for rapidly developing countries. The results of the GRA indicate that the linkage effects of energy consumption–emissions and GDP–emissions are ranked first and second, respectively. These reveal that energy consumption and economic growth are strongly correlated with emissions. Higher economic growth requires more energy consumption and increasing environmental pollution. Likewise, more efficient energy use needs a higher level of economic development. Therefore, policies to improve energy efficiency and create a low-carbon economy can reduce emissions without hurting economic growth. The finding of FDI–emissions linkage is ranked third. This indicates that China do not apply weak environmental regulations to attract inward FDI. Furthermore, China’s government in attracting inward FDI should strengthen environmental policy. The finding of population–emissions linkage effect is ranked fourth, implying that population size does not directly affect CO2 emissions, even though China has the world’s largest population, and Chinese people are very economical use of energy-related products. Overall, the energy conservation, improving efficiency, managing demand, and financial development, which aim at curtailing waste of energy, reducing both energy consumption and emissions, and without loss of the country’s competitiveness, can be adopted for developing economies. The GRA is one of the best way to use a lower data to build a dynamic analysis model.Keywords: China, CO₂ emissions, foreign direct investment, grey relational analysis
Procedia PDF Downloads 402689 Microwave-Assisted 3D Porous Graphene for Its Multi-Functionalities
Authors: Jung-Hwan Oh, Rajesh Kumar, Il-Kwon Oh
Abstract:
Porous graphene has extensive potential applications in variety of fields such as hydrogen storage, CO oxidation, gas separation, supercapacitors, fuel cells, nanoelectronics, oil adsorption, and so on. However, the generation of some carbon atoms vacancies for precise small holes have been not extensively studied to prevent the agglomerates of graphene sheets and to obtain porous graphene with high surface area. Recently, many research efforts have been presented to develop physical and chemical synthetic approaches for porous graphene. But physical method has very high cost of manufacture and chemical method consumes so many hours for porous graphene. Herein, we propose a porous graphene contained holes with atomic scale precision by embedding metal nano-particles through microwave irradiation for hydrogen storage and CO oxidation multi- functionalities. This proposed synthetic method is appropriate for fast and convenient production of three dimensional nanostructures, which have nanoholes on the graphene surface in consequence of microwave irradiation. The metal nanoparticles are dispersed quickly on the graphene surface and generated uniform nanoholes on the graphene nanosheets. The morphological and structural characterization of the porous graphene were examined by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM) and RAMAN spectroscopy, respectively. The metal nanoparticle-embedded porous graphene exhibits a microporous volume of 2.586cm3g-1 with an average pore radius of 0.75 nm. HR-TEM analysis was carried out to further characterize the microstructures. By investigating the RAMAN spectra, we can understand the structural changes of graphene. The results of this work demonstrate a possibility to produce a new class of porous graphene. Furthermore, the newly acquired knowledge for the diffusion into graphene can provide useful guidance for the development of the growth of nanostructure.Keywords: CO oxidation, hydrogen storage, nanocomposites, porous graphene
Procedia PDF Downloads 371688 Recovery from Detrimental pH Troughs in a Moorland River Using Monitored Calcium Carbonate Introductions
Authors: Lauren Dawson, Sean Comber, Richard Sandford, Alan Tappin, Bruce Stockley
Abstract:
The West Dart River is underperforming for Salmon (Salmo salar) survival rates due to acidified pH troughs under the European Water Framework Directive (2000/60/EC). These troughs have been identified as being caused by historic acid rain pollution which is being held in situ by peat bog presence at site and released during flushing events. Natural recovery has been deemed unlikely by the year 2020 using steady state water chemistry models and therefore a program of monitored calcium carbonate (CaCO3) introductions are being conducted to eliminate these troughs, which can drop to pH 2.93 (salmon survival – pH 5.5). The river should be naturally acidic (pH 5.5-6) due to the granite geology of Dartmoor and therefore the CaCO3 introductions are under new methodology (the encasing of the CaCO3 in permeable sacks) to ensure removal should the water pH rise above neutral levels. The water chemistry and ecology are undergoing comprehensive monitoring, including pH and turbidity levels, dissolved organic carbon and aluminum concentration and speciation, while the aquatic biota is being used to assess the potential water chemistry changes. While this project is ongoing, results from the preliminary field trial show only a temporary, localized increase in pH following CaCO3 introductions into the water column. However, changes to the water chemistry have only been identified in the West Dart after methodology adjustments to account for flow rates and spate-dissolution, though no long-term changes have so far been found in the ecology of the river. However, this is not necessarily a negative factor, as the aim of the study is to protect the current ecological communities and the natural pH of the river while remediating only the detrimental pH troughs.Keywords: anthropogenic acidification recovery, calcium carbonate introductions, ecology monitoring, water chemistry monitoring
Procedia PDF Downloads 144687 Adsorption of Pb(II) with MOF [Co2(Btec)(Bipy)(DMF)2]N in Aqueous Solution
Authors: E. Gil, A. Zepeda, J. Rivera, C. Ben-Youssef, S. Rincón
Abstract:
Water pollution has become one of the most serious environmental problems. Multiple methods have been proposed for the removal of Pb(II) from contaminated water. Among these, adsorption processes have shown to be more efficient, cheaper and easier to handle with respect to other treatment methods. However, research for adsorbents with high adsorption capacities is still necessary. For this purpose, we proposed in this work the study of metal-organic Framework [Co2(btec)(bipy)(DMF)2]n (MOF-Co) as adsorbent material of Pb (II) in aqueous media. MOF-Co was synthesized by a simple method. Firstly 4, 4’ dipyridyl, 1,2,4,5 benzenetetracarboxylic acid, cobalt (II) and nitrate hexahydrate were first mixed each one in N,N dimethylformamide (DMF) and then, mixed in a reactor altogether. The obtained solution was heated at 363 K in a muffle during 68 h to complete the synthesis. It was washed and dried, obtaining MOF-Co as the final product. MOF-Co was characterized before and after the adsorption process by Fourier transforms infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The Pb(II) in aqueous media was detected by Absorption Atomic Spectroscopy (AA). In order to evaluate the adsorption process in the presence of Pb(II) in aqueous media, the experiments were realized in flask of 100 ml the work volume at 200 rpm, with different MOF-Co quantities (0.0125 and 0.025 g), pH (2-6), contact time (0.5-6 h) and temperature (298,308 and 318 K). The kinetic adsorption was represented by pseudo-second order model, which suggests that the adsorption took place through chemisorption or chemical adsorption. The best adsorption results were obtained at pH 5. Langmuir, Freundlich and BET equilibrium isotherms models were used to study the adsorption of Pb(II) with 0.0125 g of MOF-Co, in the presence of different concentration of Pb(II) (20-200 mg/L, 100 mL, pH 5) with 4 h of reaction. The correlation coefficients (R2) of the different models show that the Langmuir model is better than Freundlich and BET model with R2=0.97 and a maximum adsorption capacity of 833 mg/g. Therefore, the Langmuir model can be used to best describe the Pb(II) adsorption in monolayer behavior on the MOF-Co. This value is the highest when compared to other materials such as the graphene/activated carbon composite (217 mg/g), biomass fly ashes (96.8 mg/g), PVA/PAA gel (194.99 mg/g) and MOF with Ag12 nanoparticles (120 mg/g).Keywords: adsorption, heavy metals, metal-organic frameworks, Pb(II)
Procedia PDF Downloads 212686 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics
Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou
Abstract:
Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle
Procedia PDF Downloads 325685 Enhanced Growth of Microalgae Chlamydomonas reinhardtii Cultivated in Different Organic Waste and Effective Conversion of Algal Oil to Biodiesel
Authors: Ajith J. Kings, L. R. Monisha Miriam, R. Edwin Raj, S. Julyes Jaisingh, S. Gavaskar
Abstract:
Microalgae are a potential bio-source for rejuvenated solutions in various disciplines of science and technology, especially in medicine and energy. Biodiesel is being replaced for conventional fuels in automobile industries with reduced pollution and equivalent performance. Since it is a carbon neutral fuel by recycling CO2 in photosynthesis, global warming potential can be held in control using this fuel source. One of the ways to meet the rising demand of automotive fuel is to adopt with eco-friendly, green alternative fuels called sustainable microalgal biodiesel. In this work, a microalga Chlamydomonas reinhardtii was cultivated and optimized in different media compositions developed from under-utilized waste materials in lab scale. Using the optimized process conditions, they are then mass propagated in out-door ponds, harvested, dried and oils extracted for optimization in ambient conditions. The microalgal oil was subjected to two step esterification processes using acid catalyst to reduce the acid value (0.52 mg kOH/g) in the initial stage, followed by transesterification to maximize the biodiesel yield. The optimized esterification process parameters are methanol/oil ratio 0.32 (v/v), sulphuric acid 10 vol.%, duration 45 min at 65 ºC. In the transesterification process, commercially available alkali catalyst (KOH) is used and optimized to obtain a maximum biodiesel yield of 95.4%. The optimized parameters are methanol/oil ratio 0.33(v/v), alkali catalyst 0.1 wt.%, duration 90 min at 65 ºC 90 with smooth stirring. Response Surface Methodology (RSM) is employed as a tool for optimizing the process parameters. The biodiesel was then characterized with standard procedures and especially by GC-MS to confirm its compatibility for usage in internal combustion engine.Keywords: microalgae, organic media, optimization, transesterification, characterization
Procedia PDF Downloads 233