Search results for: Wiener model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16904

Search results for: Wiener model

12644 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model

Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang

Abstract:

The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.

Keywords: absorber plates, dual-phase-lag, non-Fourier, solar collector

Procedia PDF Downloads 394
12643 Partially-Averaged Navier-Stokes for Computations of Flow Around Three-Dimensional Ahmed Bodies

Authors: Maryam Mirzaei, Sinisa Krajnovic´

Abstract:

The paper reports a study about the prediction of flows around simplified vehicles using Partially-Averaged Navier-Stokes (PANS). Numerical simulations are performed for two simplified vehicles: A slanted-back Ahmed body at Re=30 000 and a square back Ahmed body at Re=300 000. A comparison of the resolved and modeled physical flow scales is made with corresponding LES and experimental data for a better understanding of the performance of the PANS model. The PANS model is compared for coarse and fine grid resolutions and it is indicated that even a coarse-grid PANS simulation is able to produce fairly close flow predictions to those from a well-resolved LES simulation. The results indicate the possibility of improvement of the predictions by employing a finer grid resolution.

Keywords: partially-averaged Navier-Stokes, large eddy simulation, PANS, LES, Ahmed body

Procedia PDF Downloads 602
12642 Reactivity Study on South African Calcium Based Material Using a pH-Stat and Citric Acid: A Statistical Approach

Authors: Hilary Rutto, Mbali Chiliza, Tumisang Seodigeng

Abstract:

The study on reactivity of calcined calcium-based material is very important in dry flue gas desulphurisation (FGD) process, so as to produce absorbent with high sulphur dioxide capture capacity during the hydration process. The effect of calcining temperature and time on the reactivity of calcined limestone material were investigated. In this study, the reactivity was measured using a pH stat apparatus and also confirming the result by performing citric acid reactivity test. The reactivity was calculated using the shrinking core model. Based on the experiments, a mathematical model is developed to correlate the effect of time and temperature to the reactivity of absorbent. The calcination process variables were temperature (700 -1000°C) and time (1-6 hrs). It was found that reactivity increases with an increase in time and temperature.

Keywords: reactivity, citric acid, calcination, time

Procedia PDF Downloads 222
12641 Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets

Authors: Shahriar Shahbazpanahi, Alaleh Kamgar

Abstract:

So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks.

Keywords: crack, FRP, shear, strengthening

Procedia PDF Downloads 553
12640 Molecular Docking Study of Rosmarinic Acid and Its Analog Compounds on Sickle Cell Hemoglobin

Authors: Roohallah Yousefi

Abstract:

Introduction: Voxelotor, also known as GBT 440, binds to the alpha cleft in HbS tetramers and promotes the stability of the relaxed or oxygenated state of HbS. This process hinders the conformational change of the HbS tetramers into the deoxygenated state. Voxelotor prevents interactions between HbS tetramers in the deoxygenated state, ultimately inhibiting the polymerization of HbS tetramers and resulting in significant clinical improvements, particularly in raising hemoglobin levels in patients. In this study, we have explored the use of herbal compound models, such as rosmarinic acid and compounds with similar structures that exhibit high binding affinity to Voxelotor's hemoglobin binding site. Materials and methods: The molecular model of hemoglobin (PDB: 5E83) was initially obtained from the RCSB PDB database. In addition, we collected 453 ligand models with structural similarity to rosmarinic acid from the PubChem database. To prepare these models for molecular docking, we utilized the Molegro Virtual Docker tool. Subsequently, we used the SwissADME web tool to predict the physicochemical properties and pharmacokinetics of these compounds. Results: We investigated the affinity and binding site of 453 compounds similar to rosmarinic acid on the hemoglobin model (PDB: 5E83). Our focus was on the alpha cleft between two alpha chains of the hemoglobin model (PDB: 5E83). The results showed that most compounds had molecular weights above 500 daltons, and some exhibited acceptable hydrophobicity. Furthermore, their solubility in aqueous solutions was good. None of the compounds were able to cross the blood-brain barrier or have gastrointestinal absorption. However, they did have varying inhibitory effects on CYP2C9 cytochromes. The skin penetration rate was generally low. Conclusion: Through our study, we identified three compounds (CID: 162739375, CID: 141386569, and CID: 24015539) with promising potential for further research. These compounds demonstrated high binding affinity to the hemoglobin model, favorable dissolution and digestive absorption rates, as well as suitable hydrophobicity, making them ideal candidates for continued laboratory investigation.

Keywords: voxelotor, binding site, hemoglobin, rosmarinic acid

Procedia PDF Downloads 19
12639 Comparisons between Student Leaning Achievements and Their Problem Solving Skills on Stoichiometry Issue with the Think-Pair-Share Model and Stem Education Method

Authors: P. Thachitasing, N. Jansawang, W. Rakrai, T. Santiboon

Abstract:

The aim of this study is to investigate of the comparing the instructional design models between the Think-Pair-Share and Conventional Learning (5E Inquiry Model) Processes to enhance students’ learning achievements and their problem solving skills on stoichiometry issue for concerning the 2-instructional method with a sample consisted of 80 students in 2 classes at the 11th grade level in Chaturaphak Phiman Ratchadaphisek School. Students’ different learning outcomes in chemistry classes with the cluster random sampling technique were used. Instructional Methods designed with the 40-experimenl student group by Think-Pair-Share process and the 40-controlling student group by the conventional learning (5E Inquiry Model) method. These learning different groups were obtained using the 5 instruments; the 5-lesson instructional plans of Think-Pair-Share and STEM Education Method, students’ learning achievements and their problem solving skills were assessed with the pretest and posttest techniques, students’ outcomes of their instructional the Think-Pair-Share (TPSM) and the STEM Education Methods were compared. Statistically significant was differences with the paired t-test and F-test between posttest and pretest technique of the whole students in chemistry classes were found, significantly. Associations between student learning outcomes in chemistry and two methods of their learning to students’ learning achievements and their problem solving skills also were found. The use of two methods for this study is revealed that the students perceive their learning achievements to their problem solving skills to be differently learning achievements in different groups are guiding practical improvements in chemistry classrooms to assist teacher in implementing effective approaches for improving instructional methods. Students’ learning achievements of mean average scores to their controlling group with the Think-Pair-Share Model (TPSM) are lower than experimental student group for the STEM education method, evidence significantly. The E1/E2 process were revealed evidence of 82.56/80.44, and 83.02/81.65 which results based on criteria are higher than of 80/80 standard level with the IOC, consequently. The predictive efficiency (R2) values indicate that 61% and 67% and indicate that 63% and 67% of the variances in chemistry classes to their learning achievements on posttest in chemistry classes of the variances in students’ problem solving skills to their learning achievements to their chemistry classrooms on Stoichiometry issue with the posttest were attributable to their different learning outcomes for the TPSM and STEMe instructional methods.

Keywords: comparisons, students’ learning achievements, think-pare-share model (TPSM), stem education, problem solving skills, chemistry classes, stoichiometry issue

Procedia PDF Downloads 249
12638 Web-Based Paperless Campus: An Approach to Reduce the Cost and Complexity of Education Administration

Authors: Yekini N. Asafe, Haastrup A. Victor, Lawal N. Olawale, Okikiola F. Mercy

Abstract:

Recent increase in access to personal computer and networking systems have made it feasible to perform much of cumbersome and costly paper-based administration in all organization. Desktop computers, networking systems, high capacity storage devices and telecommunications system is currently allowing the transfer of various format of data to be processed, stored and dissemination for the purpose of decision making. Going paperless is more of benefits compare to full paper-based office. This paper proposed a model for design and implementation of e-administration system (paperless campus) for an institution of learning. If this model is design and implemented it will reduced cost and complexity of educational administration also eliminate menaces and environmental hazards attributed to paper-based administration within schools and colleges.

Keywords: e-administration, educational administration, paperless campus, paper-based administration

Procedia PDF Downloads 383
12637 Analysis of Hydraulic Velocity in Fishway Using CCHE2D Model

Authors: Amir Abbas Kamanbedast, Masood Mohammad Shafipor, Amir Ghotboddin

Abstract:

Fish way is a structure that in generally using to migrate to the place where they are spawned and is made near the spillway. Preventing fish spawning or migrating to their original place by fishway structures can affect their lives in the river or even erase one access to intended environment. The main objective of these structures is establishing a safe path for fish migration. In the present study first the hydraulic specifications of Hamidieh diversion dam were assessed and then it is problems were evaluated. In this study the dimensions of the fish way, including velocity of pools, were evaluated by CCHE2D software. Then by change slope in this structure streamlines like velocity in the pools were measured. For calibration can be use measuring local velocities in some pools. The information can be seen the fishway width of 0.3 m has minimum rate of descent in the total number of structures (pools and overflow).

Keywords: fishway, velocity, Hamidieh-Diversion Dam, CCHE2D model

Procedia PDF Downloads 498
12636 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: connected-car, data modeling, route planning, navigation system

Procedia PDF Downloads 377
12635 Towards a Model of Support in the Areas of Services of Educational Assistance and Tutoring in Middle Education in Mexico

Authors: Margarita Zavala, Julio Rolón, Gabriel Chavira, José González, Jorge Orozco, Roberto Pichardo

Abstract:

Adolescence is a neuralgic stage in the formation of every human being, generally at this stage is when the middle school level is studied. In 2006 in Mexico incorporated “mentoring" space to assist students in their integration and participation in life. In public middle schools, is sometimes difficult to be aware of situations that affect students because of the number of them and traditional records management. Whit this they lose the opportunity to provide timely support as a preventive way. In order to provide this support, it is required to know the students by detecting the relevant information that has greater impact on their learning process. This research is looking to check if it is possible to identify student’s relevant information to detect when it is at risk, and then to propose a model to manage in a proper way such information.

Keywords: adolescence, mentoring, middle school students, mentoring system support

Procedia PDF Downloads 426
12634 Fault-Tolerant Fuzzy Gain-Adaptive PID Control for a 2 DOF Helicopter, TRMS System

Authors: Abderrahmen Bouguerra, Kamel Kara, Djamel Saigaa, Samir Zeghlache, Keltoum Loukal

Abstract:

In this paper, a Fault-Tolerant control of 2 DOF Helicopter (TRMS System) Based on Fuzzy Gain-Adaptive PID is presented. In particular, the introduction part of the paper presents a Fault-Tolerant Control (FTC), the first part of this paper presents a description of the mathematical model of TRMS, an adaptive PID controller is proposed for fault-tolerant control of a TRMS helicopter system in the presence of actuator faults, A fuzzy inference scheme is used to tune in real-time the controller gains, The proposed adaptive PID controller is compared with the conventional PID. The obtained results show the effectiveness of the proposed method.

Keywords: fuzzy control, gain-adaptive PID, helicopter model, PID control, TRMS system

Procedia PDF Downloads 490
12633 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 113
12632 The Attitude and Intention to Purchase Halal Cosmetic Products: A Study of Muslim Consumers in Saudi Arabia

Authors: Abdulwahab S. Shmailan

Abstract:

The links between the halalan tayyiban dimensions and their impact on the propensity to purchase halal cosmetics in Muslim culture are investigated in this study. The information was gathered by a self-administered questionnaire survey of 207 Saudi Muslim customers using purposive sampling. The suggested model was tested using Pearson correlation coefficients and an ANOVA test. Significant and positive connections were found between halalan tayyiban dimensions, attitudes, and purchasing intent. There were also substantial changes in the study parameters depending on the respondent's work title. This is one of the first empirical tests of the halalan tayyiban, attitudes, and intention to purchase model among Saudi Muslim customers. The study offers helpful recommendations for cosmetics sector marketers as well as strategy formulation.

Keywords: cosmetics, halal cosmetics, halalan tayyiban, halal certificate, customers attitude, intention to purchase

Procedia PDF Downloads 181
12631 Simulation Research of City Bus Fuel Consumption during the CUEDC Australian Driving Cycle

Authors: P. Kacejko, M. Wendeker

Abstract:

The fuel consumption of city buses depends on a number of factors that characterize the technical properties of the bus and driver, as well as traffic conditions. This parameter related to greenhouse gas emissions is regulated by law in many countries. This applies to both fuel consumption and exhaust emissions. Simulation studies are a way to reduce the costs of optimization studies. The paper describes simulation research of fuel consumption city bus driving. Parameters of the developed model are based on experimental results obtained on chassis dynamometer test stand and road tests. The object of the study was a city bus equipped with a compression-ignition engine. The verified model was applied to simulate the behavior of a bus during the CUEDC Australian Driving Cycle. The results of the calculations showed a direct influence of driving dynamics on fuel consumption.

Keywords: Australian Driving Cycle, city bus, diesel engine, fuel consumption

Procedia PDF Downloads 125
12630 A Fuzzy Multi-Criteria Model for Sustainable Development of Community-Based Tourism through the Homestay Program in Malaysia

Authors: Azizah Ismail, Zainab Khalifah, Abbas Mardani

Abstract:

Sustainable community-based tourism through homestay programme is a growing niche market that has impacted destinations in many countries including Malaysia. With demand predicted to continue increasing, the importance of the homestay product will grow in the tourism industry. This research examines the sustainability criteria for homestay programme in Malaysia covering economic, socio-cultural and environmental dimensions. This research applied a two-stage methodology for data analysis. Specifically, the researcher implements a hybrid method which combines two multi-criteria decision making approaches. In the first stage of the methodology, the Decision Making Trial and Evaluation Laboratory (DEMATEL) technique is applied. Then, Analytical Network Process (ANP) is employed for the achievement of the objective of the current research. After factors identification and problem formulation, DEMATEL is used to detect complex relationships and to build a Network Relation Map (NRM). Then ANP is used to prioritize and find the weights of the criteria and sub-criteria of the decision model. The research verifies the framework of multi-criteria for sustainable community-based tourism from the perspective of stakeholders. The result also provides a different perspective on the importance of sustainable criteria from the view of multi-stakeholders. Practically, this research gives the framework model and helps stakeholders to improve and innovate the homestay programme and also promote community-based tourism.

Keywords: community-based tourism, homestay programme, sustainable tourism criteria, sustainable tourism development

Procedia PDF Downloads 134
12629 The Effect of Inlet Baffle Position in Improving the Efficiency of Oil and Water Gravity Separator Tanks

Authors: Haitham A. Hussein, Rozi Abdullah, Issa Saket, Md. Azlin

Abstract:

The gravitational effect has been extensively applied to separate oil from water in water and wastewater treatment systems. The maximum oil globules removal efficiency is improved by obtaining the best flow uniformity in separator tanks. This study used 2D computational fluid dynamics (CFD) to investigate the effect of different inlet baffle positions inside the separator tank. Laboratory experiment has been conducted, and the measured velocity fields which were by Nortek Acoustic Doppler Velocimeter (ADV) are used to verify the CFD model. Computational investigation results indicated that the construction of an inlet baffle in a suitable location provides the minimum recirculation zone volume, creates the best flow uniformity, and dissipates kinetic energy in the oil and water separator tank. Useful formulas were predicted to design the oil and water separator tanks geometry based on an experimental model.

Keywords: oil/water separator tanks, inlet baffles, CFD, VOF

Procedia PDF Downloads 373
12628 Highly Glazed Office Spaces: Simulated Visual Comfort vs Real User Experiences

Authors: Zahra Hamedani, Ebrahim Solgi, Henry Skates, Gillian Isoardi

Abstract:

Daylighting plays a pivotal role in promoting productivity and user satisfaction in office spaces. There is an ongoing trend in designing office buildings with a high proportion of glazing which relatively increases the risk of high visual discomfort. Providing a more realistic lighting analysis can be of high value at the early stages of building design when necessary changes can be made at a very low cost. This holistic approach can be achieved by incorporating subjective evaluation and user behaviour in computer simulation and provide a comprehensive lighting analysis. In this research, a detailed computer simulation model has been made using Radiance and Daysim. Afterwards, this model was validated by measurements and user feedback. The case study building is the school of science at Griffith University, Gold Coast, Queensland, which features highly glazed office spaces. In this paper, the visual comfort predicted by the model is compared with a preliminary survey of the building users to evaluate how user behaviour such as desk position, orientation selection, and user movement caused by daylight changes and other visual variations can inform perceptions of visual comfort. This work supports preliminary design analysis of visual comfort incorporating the effects of gaze shift patterns and views with the goal of designing effective layout for office spaces.

Keywords: lighting simulation, office buildings, user behaviour, validation, visual comfort

Procedia PDF Downloads 216
12627 The Relevance of the U-Shaped Learning Model to the Acquisition of the Difference between C'est and Il Est in the English Learners of French Context

Authors: Pooja Booluck

Abstract:

A U-shaped learning curve entails a three-step process: a good performance followed by a bad performance followed by a good performance again. U-shaped curves have been observed not only in language acquisition but also in various fields such as temperature face recognition object permanence to name a few. Building on previous studies of the curve child language acquisition and Second Language Acquisition this empirical study seeks to investigate the relevance of the U-shaped learning model to the acquisition of the difference between cest and il est in the English Learners of French context. The present study was developed to assess whether older learners of French in the ELF context follow the same acquisition pattern. The empirical study was conducted on 15 English learners of French which lasted six weeks. Compositions and questionnaires were collected from each subject at three time intervals (after one week after three weeks after six weeks) after which students work were graded as being either correct or incorrect. The data indicates that there is evidence of a U-shaped learning curve in the acquisition of cest and il est and students did follow the same acquisition pattern as children in regards to rote-learned terms and subject clitics. This paper also discusses the need to introduce modules on U-shaped learning curve in teaching curriculum as many teachers are unaware of the trajectory learners undertake while acquiring core components in grammar. In addition this study also addresses the need to conduct more research on the acquisition of rote-learned terms and subject clitics in SLA.

Keywords: child language acquisition, rote-learning, subject clitics, u-shaped learning model

Procedia PDF Downloads 295
12626 Neighborhood Linking Social Capital as a Predictor of Drug Abuse: A Swedish National Cohort Study

Authors: X. Li, J. Sundquist, C. Sjöstedt, M. Winkleby, K. S. Kendler, K. Sundquist

Abstract:

Aims: This study examines the association between the incidence of drug abuse (DA) and linking (communal) social capital, a theoretical concept describing the amount of trust between individuals and societal institutions. Methods: We present results from an 8-year population-based cohort study that followed all residents in Sweden, aged 15-44, from 2003 through 2010, for a total of 1,700,896 men and 1,642,798 women. Social capital was conceptualized as the proportion of people in a geographically defined neighborhood who voted in local government elections. Multilevel logistic regression was used to estimate odds ratios (ORs) and between-neighborhood variance. Results: We found robust associations between linking social capital (scored as a three level variable) and DA in men and women. For men, the OR for DA in the crude model was 2.11 [95% confidence interval (CI) 2.02-2.21] for those living in areas with the lowest vs. highest level of social capital. After accounting for neighborhood-level deprivation, the OR fell to 1.59 (1.51-1-68), indicating that neighborhood deprivation lies in the pathway between linking social capital and DA. The ORs remained significant after accounting for age, sex, family income, marital status, country of birth, education level, and region of residence, and after further accounting for comorbidities and family history of comorbidities and family history of DA. For women, the OR decreased from 2.15 (2.03-2.27) in the crude model to 1.31 (1.22-1.40) in the final model, adjusted for multiple neighborhood-level and individual-level variables. Conclusions: Our study suggests that low linking social capital may have important independent effects on DA.

Keywords: drug abuse, social linking capital, environment, family

Procedia PDF Downloads 475
12625 Commodity Price Shocks and Monetary Policy

Authors: Faisal Algosair

Abstract:

We examine the role of monetary policy in the presence of commodity price shocks using a Dynamic stochastic general equilibrium (DSGE) model with price and wage rigidities. The model characterizes a commodity exporter by its degree of export diversification, and explores the following monetary regimes: flexible domestic inflation targeting; flexible Consumer Price Index inflation targeting; exchange rate peg; and optimal rule. An increase in the degree of diversification is found to mitigate responses to commodity shocks. The welfare comparison suggests that a flexible exchange rate regime under the optimal rule is preferred to an exchange rate peg. However, monetary policy provides limited stabilization effects in an economy with low degree of export diversification.

Keywords: business cycle, commodity price, exchange rate, global financial cycle

Procedia PDF Downloads 101
12624 Using Predictive Analytics to Identify First-Year Engineering Students at Risk of Failing

Authors: Beng Yew Low, Cher Liang Cha, Cheng Yong Teoh

Abstract:

Due to a lack of continual assessment or grade related data, identifying first-year engineering students in a polytechnic education at risk of failing is challenging. Our experience over the years tells us that there is no strong correlation between having good entry grades in Mathematics and the Sciences and excelling in hardcore engineering subjects. Hence, identifying students at risk of failure cannot be on the basis of entry grades in Mathematics and the Sciences alone. These factors compound the difficulty of early identification and intervention. This paper describes the development of a predictive analytics model in the early detection of students at risk of failing and evaluates its effectiveness. Data from continual assessments conducted in term one, supplemented by data of student psychological profiles such as interests and study habits, were used. Three classification techniques, namely Logistic Regression, K Nearest Neighbour, and Random Forest, were used in our predictive model. Based on our findings, Random Forest was determined to be the strongest predictor with an Area Under the Curve (AUC) value of 0.994. Correspondingly, the Accuracy, Precision, Recall, and F-Score were also highest among these three classifiers. Using this Random Forest Classification technique, students at risk of failure could be identified at the end of term one. They could then be assigned to a Learning Support Programme at the beginning of term two. This paper gathers the results of our findings. It also proposes further improvements that can be made to the model.

Keywords: continual assessment, predictive analytics, random forest, student psychological profile

Procedia PDF Downloads 139
12623 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building

Authors: Aaditya U. Jhamb

Abstract:

Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.

Keywords: energy efficient buildings, heating load, cooling load, machine learning models

Procedia PDF Downloads 100
12622 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 96
12621 Use of Front-Face Fluorescence Spectroscopy and Multiway Analysis for the Prediction of Olive Oil Quality Features

Authors: Omar Dib, Rita Yaacoub, Luc Eveleigh, Nathalie Locquet, Hussein Dib, Ali Bassal, Christophe B. Y. Cordella

Abstract:

The potential of front-face fluorescence coupled with chemometric techniques, namely parallel factor analysis (PARAFAC) and multiple linear regression (MLR) as a rapid analysis tool to characterize Lebanese virgin olive oils was investigated. Fluorescence fingerprints were acquired directly on 102 Lebanese virgin olive oil samples in the range of 280-540 nm in excitation and 280-700 nm in emission. A PARAFAC model with seven components was considered optimal with a residual of 99.64% and core consistency value of 78.65. The model revealed seven main fluorescence profiles in olive oil and was mainly associated with tocopherols, polyphenols, chlorophyllic compounds and oxidation/hydrolysis products. 23 MLR regression models based on PARAFAC scores were generated, the majority of which showed a good correlation coefficient (R > 0.7 for 12 predicted variables), thus satisfactory prediction performances. Acid values, peroxide values, and Delta K had the models with the highest predictions, with R values of 0.89, 0.84 and 0.81 respectively. Among fatty acids, linoleic and oleic acids were also highly predicted with R values of 0.8 and 0.76, respectively. Factors contributing to the model's construction were related to common fluorophores found in olive oil, mainly chlorophyll, polyphenols, and oxidation products. This study demonstrates the interest of front-face fluorescence as a promising tool for quality control of Lebanese virgin olive oils.

Keywords: front-face fluorescence, Lebanese virgin olive oils, multiple Linear regressions, PARAFAC analysis

Procedia PDF Downloads 456
12620 Solving Definition and Relation Problems in English Navigation Terminology

Authors: Ayşe Yurdakul, Eckehard Schnieder

Abstract:

Because of the growing multidisciplinarity and multilinguality, communication problems in different technical fields grows more and more. Therefore, each technical field has its own specific language, terminology which is characterised by the different definition of terms. In addition to definition problems, there are also relation problems between terms. Among these problems of relation, there are the synonymy, antonymy, hypernymy/hyponymy, ambiguity, risk of confusion, and translation problems etc. Thus, the terminology management system iglos of the Institute for Traffic Safety and Automation Engineering of the Technische Universität Braunschweig has the target to solve these problems by a methodological standardisation of term definitions with the aid of the iglos sign model and iglos relation types. The focus of this paper should be on solving definition and relation problems between terms in English navigation terminology.

Keywords: iglos, iglos sign model, methodological resolutions, navigation terminology, common language, technical language, positioning, definition problems, relation problems

Procedia PDF Downloads 336
12619 Comparative Study of Ecological City Criteria in Traditional Iranian Cities

Authors: Zahra Yazdani Paraii, Zohreh Yazdani Paraei

Abstract:

Many urban designers and planners have been involved in the design of environmentally friendly or nature adaptable urban development models due to increase in urban populations in the recent century, limitation on natural resources, climate change, and lack of enough water and food. Ecological city is one of the latest models proposed to accomplish the latter goal. In this work, the existing establishing indicators of the ecological city are used regarding energy, water, land use and transportation issues. The model is used to compare the function of traditional settlements of Iran. The result of investigation shows that the specifications and functions of the traditional settlements of Iran fit well into the ecological city model. It is found that the inhabitants of the old cities and villages in Iran had founded ecological cities based on their knowledge of the environment and its natural opportunities and limitations.

Keywords: ecological city, traditional city, urban design, environment

Procedia PDF Downloads 259
12618 Development of a Miniature Laboratory Lactic Goat Cheese Model to Study the Expression of Spoilage by Pseudomonas Spp. In Cheeses

Authors: Abirami Baleswaran, Christel Couderc, Loubnah Belahcen, Jean Dayde, Hélène Tormo, Gwénaëlle Jard

Abstract:

Cheeses are often reported to be spoiled by Pseudomonas spp., responsible for defects in appearance, texture, taste, and smell, leading to their non-marketing and even their destruction. Despite preventive actions, problems linked to Pseudomonas spp. are difficult to control by the lack of knowledge and control of these contaminants during the cheese manufacturing. Lactic goat cheese producers are not spared by this problem and are looking for solutions to decrease the number of spoiled cheeses. To explore different hypotheses, experiments are needed. However, cheese-making experiments at the pilot scale are expensive and time consuming. Thus, there is a real need to develop a miniature cheeses model system under controlled conditions. In a previous study, several miniature cheese models corresponding to different type of commercial cheeses have been developed for different purposes. The models were, for example, used to study the influence of milk, starters cultures, pathogen inhibiting additives, enzymatic reactions, microflora, freezing process on cheese. Nevertheless, no miniature model was described on the lactic goat cheese. The aim of this work was to develop a miniature cheese model system under controlled laboratory conditions which resembles commercial lactic goat cheese to study Pseudomonas spp. spoilage during the manufacturing and ripening process. First, a protocol for the preparation of miniature cheeses (3.5 times smaller than a commercial one) was designed based on the cheese factorymanufacturing process. The process was adapted from “Rocamadour” technology and involves maturation of pasteurized milk, coagulation, removal of whey by centrifugation, moulding, and ripening in a little scale cellar. Microbiological (total bacterial count, yeast, molds) and physicochemical (pH, saltinmoisture, moisture in fat-free)analyses were performed on four key stages of the process (before salting, after salting, 1st day of ripening, and end of ripening). Factory and miniature cheeses volatilomewere also obtained after full scan Sift-MS cheese analysis. Then, Pseudomonas spp. strains isolated from contaminated cheeses were selected on their origin, their ability to produce pigments, and their enzymatic activities (proteolytic, lecithinasic, and lipolytic). Factory and miniature curds were inoculated by spotting selected strains on the cheese surface. The expression of cheese spoilage was evaluated by counting the level of Pseudomonas spp. during the ripening and by visual observation and under UVlamp. The physicochemical and microbiological compositions of miniature cheeses permitted to assess that miniature process resembles factory process. As expected, differences involatilomes were observed, probably due to the fact that miniature cheeses are made usingpasteurized milk to better control the microbiological conditions and also because the little format of cheese induced probably a difference during the ripening even if the humidity and temperature in the cellar were quite similar. The spoilage expression of Pseudomonas spp. was observed in miniature and factory cheeses. It confirms that the proposed model is suitable for the preparation of miniature cheese specimens in the spoilage study of Pseudomonas spp. in lactic cheeses. This kind of model could be deployed for other applications and other type of cheese.

Keywords: cheese, miniature, model, pseudomonas spp, spoilage

Procedia PDF Downloads 135
12617 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation

Procedia PDF Downloads 218
12616 Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats

Authors: Rajesh Kumar Suman, Ipseeta Ray Mohanty, Manjusha K. Borde, Ujjawala maheswari, Y. A. Deshmukh

Abstract:

Background: Metabolic syndrome encompasses cluster of risk factors for cardiovascular disease which includes abdominal obesity, dyslipidemia, hypertension, and hyperglycemia. The incidence of metabolic syndrome is on the rise globally. Objective: The present study was designed to develop a unique animal model that will mimic the pathological features seen in a large pool of individuals with diabetes and metabolic syndrome; suitable for pharmacological screening of drugs beneficial in this condition. Material and Methods: A combination of high fat diet (HFD) and low dose of streptozotocin (STZ) at 30, 35 and 40 mg/kg was used to induce metabolic syndrome co-existing with diabetes mellitus in Wistar rats. Results: The 40 mg/kg STZ produced sustained hyperglycemia and the dose was thus selected for our study to induce diabetes mellitus. Rat fed HFD (HF-DC) group showed significant (p < 0.001) increase in body weight on 4th and 7th week as compared with NC (Normal Control) group rats. However, the increase in body weight of HF-DC group rats was not sustained at the end of 10th weeks. Various components of metabolic syndrome such as dyslipidemia {(Increased Triglyceride, total Cholesterol, LDL Cholesterol and decreased HDL Cholesterol)}, diabetes mellitus (Blood Glucose, HbA1c, Serum Insulin, C-peptide), hypertension {Systolic Blood pressure (p < 0.001)} were mimicked in the developed model of metabolic syndrome co existing with diabetes mellitus. In addition significant cardiac injury as indicated by CPK-MB levels, artherogenic index, hs-CRP. The decline in hepatic function {(p < 0.01) increase in the level of SGPT (U/L)} and renal function {(increase in creatinine levels (p < 0.01)} when compared to NC group rats. The histopathological assessment confirmed presence of edema, necrosis and inflammation in Heart, Pancreas, Liver and Kidney of HFD-DC group as compared to NC. Conclusion: The present study has developed a unique rodent model of metabolic syndrome; with diabetes as an essential component.

Keywords: diabetes, metabolic syndrome, high fat diet, streptozotocin, rats

Procedia PDF Downloads 351
12615 Mining Riding Patterns in Bike-Sharing System Connecting with Public Transportation

Authors: Chong Zhang, Guoming Tang, Bin Ge, Jiuyang Tang

Abstract:

With the fast growing road traffic and increasingly severe traffic congestion, more and more citizens choose to use the public transportation for daily travelling. Meanwhile, the shared bike provides a convenient option for the first and last mile to the public transit. As of 2016, over one thousand cities around the world have deployed the bike-sharing system. The combination of these two transportations have stimulated the development of each other and made significant contribution to the reduction of carbon footprint. A lot of work has been done on mining the riding behaviors in various bike-sharing systems. Most of them, however, treated the bike-sharing system as an isolated system and thus their results provide little reference for the public transit construction and optimization. In this work, we treat the bike-sharing and public transit as a whole and investigate the customers’ bike-and-ride behaviors. Specifically, we develop a spatio-temporal traffic delivery model to study the riding patterns between the two transportation systems and explore the traffic characteristics (e.g., distributions of customer arrival/departure and traffic peak hours) from the time and space dimensions. During the model construction and evaluation, we make use of large open datasets from real-world bike-sharing systems (the CitiBike in New York, GoBike in San Francisco and BIXI in Montreal) along with corresponding public transit information. The developed two-dimension traffic model, as well as the mined bike-and-ride behaviors, can provide great help to the deployment of next-generation intelligent transportation systems.

Keywords: riding pattern mining, bike-sharing system, public transportation, bike-and-ride behavior

Procedia PDF Downloads 790