Search results for: multi-objective particle swarm optimization
523 Comparison of Fuel Properties from Species of Microalgae and Selected Second-Generation Oil Feedstocks
Authors: Andrew C. Eloka Eboka, Freddie L. Inambao
Abstract:
Comparative investigation and assessment of microalgal technology as a biodiesel production option was studied alongside other second generation feedstocks. This was carried out by comparing the fuel properties of species of Chlorella vulgaris, Duneliella spp, Synechococus spp and Senedesmus spp with the feedstock of Jatropha (ex-basirika variety), Hura crepitans, rubber and Natal mahogany seed oils. The micro-algae were cultivated in an open pond using a photobioreactor (New Brunsink set-up model BF-115 Bioflo/CelliGen made in the US) with operating parameters: 14L capacity, working volume of 7.5L media, including 10% inoculum, at optical density of 3.144 @540nm and light intensity of 200 lux, for 23 and 16 days respectively. Various produced/accumulated biomasses were harvested by draining, flocculation, centrifugation, drying and then subjected to lipid extraction processes. The oils extracted from the algae and feedstocks were characterised and used to produce biodiesel fuels, by the transesterification method, using modified optimization protocol. Fuel properties of the final biodiesel products were evaluated for chemo-physical and fuel properties. Results revealed Chlorella vulgaris as the best strain for biomass cultivation, having the highest lipid productivity (5.2mgL-1h-1), the highest rate of CO2 absorption (17.85mgL-1min-1) and the average carbon sequestration in the form of CO2 was 76.6%. The highest biomass productivity was 35.1mgL-1h-1 (Chlorella), while Senedesmus had the least output (3.75mgL-1h-1, 11.73mgL-1min-1). All species had good pH value adaptation, ranging from 6.5 to 8.5. The fuel properties of the micro-algal biodiesel in comparison with Jatropha, rubber, Hura and Natal mahogany were within ASTM specification and AGO used as the control. Fuel cultivation from microalgae is feasible and will revolutionise the biodiesel industry.Keywords: biodiesel, fuel properties, microalgae, second generation, seed oils, feedstock, photo-bioreactor, open pond
Procedia PDF Downloads 363522 Generation of Ultra-Broadband Supercontinuum Ultrashort Laser Pulses with High Energy
Authors: Walid Tawfik
Abstract:
The interaction of intense short nano- and picosecond laser pulses with plasma leads to reach variety of important applications, including time-resolved laser induced breakdown spectroscopy (LIBS), soft x-ray lasers, and laser-driven accelerators. The progress in generating of femtosecond down to sub-10 fs optical pulses has opened a door for scientists with an essential tool in many ultrafast phenomena, such as femto-chemistry, high field physics, and high harmonic generation (HHG). The advent of high-energy laser pulses with durations of few optical cycles provided scientists with very high electric fields, and produce coherent intense UV to NIR radiation with high energy which allows for the investigation of ultrafast molecular dynamics with femtosecond resolution. In this work, we could experimentally achieve the generation of a two-octave-wide supercontinuum ultrafast pulses extending from ultraviolet at 3.5 eV to the near-infrared at 1.3 eV in neon-filled capillary fiber. These pulses are created due to nonlinear self-phase modulation (SPM) in neon as a nonlinear medium. The measurements of the generated pulses were performed using spectral phase interferometry for direct electric-field reconstruction. A full characterization of the output pulses was studied. The output pulse characterization includes the pulse width, the beam profile, and the spectral bandwidth. Under optimization conditions, the reconstructed pulse intensity autocorrelation function was exposed for the shorts possible pulse duration to achieve transform-limited pulses with energies up to 600µJ. Furthermore, the effect of variation of neon pressure on the pulse-width was studied. The nonlinear SPM found to be increased with the neon pressure. The obtained results may give an opportunity to monitor and control ultrafast transit interaction in femtosecond chemistry.Keywords: femtosecond laser, ultrafast, supercontinuum, ultra-broadband
Procedia PDF Downloads 207521 Healthy Feeding and Drinking Troughs for Profitable Intensive Deep-Litter Poultry Farming
Authors: Godwin Ojochogu Adejo, Evelyn UnekwuOjo Adejo, Sunday UnenwOjo Adejo
Abstract:
The mainstream contemporary approach to controlling the impact of diseases among poultry birds rely largely on curative measures through the administration of drugs to infected birds. Most times as observed in the deep liter poultry farming system, entire flocks including uninfected birds receive the treatment they do not need. As such, unguarded use of chemical drugs and antibiotics has led to wastage and accumulation of chemical residues in poultry products with associated health hazards to humans. However, wanton and frequent drug usage in poultry is avoidable if feeding and drinking equipment are designed to curb infection transmission among birds. Using toxicological assays as guide and with efficiency and simplicity in view, two newly field-tested and recently patented equipments called 'healthy liquid drinking trough (HDT)' and 'healthy feeding trough (HFT)' that systematically eliminate contamination of the feeding and drinking channels, thereby, curbing wide-spread infection and transmission of diseases in the (intensive) deep litter poultry farming system were designed. Upon combined usage, they automatically and drastically reduced both the amount and frequency of antibiotics use in poultry by over > 50%. Additionally, they conferred optimization of feed and water utilization/elimination of wastage by > 80%, reduced labour by > 70%, reduced production cost by about 15%, and reduced chemical residues in poultry meat or eggs by > 85%. These new and cheap technologies which require no energy input are likely to elevate safety of poultry products for consumers' health, increase marketability locally and for export, and increase output and profit especially among poultry farmers and poor people who keep poultry or inevitably utilize poultry products in developing countries.Keywords: healthy, trough, toxicological, assay-guided, poultry
Procedia PDF Downloads 157520 Aerosol Characterization in a Coastal Urban Area in Rimini, Italy
Authors: Dimitri Bacco, Arianna Trentini, Fabiana Scotto, Flavio Rovere, Daniele Foscoli, Cinzia Para, Paolo Veronesi, Silvia Sandrini, Claudia Zigola, Michela Comandini, Marilena Montalti, Marco Zamagni, Vanes Poluzzi
Abstract:
The Po Valley, in the north of Italy, is one of the most polluted areas in Europe. The air quality of the area is linked not only to anthropic activities but also to its geographical characteristics and stagnant weather conditions with frequent inversions, especially in the cold season. Even the coastal areas present high values of particulate matter (PM10 and PM2.5) because the area closed between the Adriatic Sea and the Apennines does not favor the dispersion of air pollutants. The aim of the present work was to identify the main sources of particulate matter in Rimini, a tourist city in northern Italy. Two sampling campaigns were carried out in 2018, one in winter (60 days) and one in summer (30 days), in 4 sites: an urban background, a city hotspot, a suburban background, and a rural background. The samples are characterized by the concentration of the ionic composition of the particulates and of the main a hydro-sugars, in particular levoglucosan, a marker of the biomass burning, because one of the most important anthropogenic sources in the area, both in the winter and surprisingly even in the summer, is the biomass burning. Furthermore, three sampling points were chosen in order to maximize the contribution of a specific biomass source: a point in a residential area (domestic cooking and domestic heating), a point in the agricultural area (weed fires), and a point in the tourist area (restaurant cooking). In these sites, the analyzes were enriched with the quantification of the carbonaceous component (organic and elemental carbon) and with measurement of the particle number concentration and aerosol size distribution (6 - 600 nm). The results showed a very significant impact of the combustion of biomass due to domestic heating in the winter period, even though many intense peaks were found attributable to episodic wood fires. In the summer season, however, an appreciable signal was measured linked to the combustion of biomass, although much less intense than in winter, attributable to domestic cooking activities. Further interesting results were the verification of the total absence of sea salt's contribution in the particulate with the lower diameter (PM2.5), and while in the PM10, the contribution becomes appreciable only in particular wind conditions (high wind from north, north-east). Finally, it is interesting to note that in a small town, like Rimini, in summer, the traffic source seems to be even more relevant than that measured in a much larger city (Bologna) due to tourism.Keywords: aerosol, biomass burning, seacoast, urban area
Procedia PDF Downloads 129519 Optimizing The Residential Design Process Using Automated Technologies
Authors: Martin Georgiev, Milena Nanova, Damyan Damov
Abstract:
Architects, engineers, and developers need to analyse and implement a wide spectrum of data in different formats, if they want to produce viable residential developments. Usually, this data comes from a number of different sources and is not well structured. The main objective of this research project is to provide parametric tools working with real geodesic data that can generate residential solutions. Various codes, regulations and design constraints are described by variables and prioritized. In this way, we establish a common workflow for architects, geodesists, and other professionals involved in the building and investment process. This collaborative medium ensures that the generated design variants conform to various requirements, contributing to a more streamlined and informed decision-making process. The quantification of distinctive characteristics inherent to typical residential structures allows a systematic evaluation of the generated variants, focusing on factors crucial to designers, such as daylight simulation, circulation analysis, space utilization, view orientation, etc. Integrating real geodesic data offers a holistic view of the built environment, enhancing the accuracy and relevance of the design solutions. The use of generative algorithms and parametric models offers high productivity and flexibility of the design variants. It can be implemented in more conventional CAD and BIM workflow. Experts from different specialties can join their efforts, sharing a common digital workspace. In conclusion, our research demonstrates that a generative parametric approach based on real geodesic data and collaborative decision-making could be introduced in the early phases of the design process. This gives the designers powerful tools to explore diverse design possibilities, significantly improving the qualities of the building investment during its entire lifecycle.Keywords: architectural design, residential buildings, urban development, geodesic data, generative design, parametric models, workflow optimization
Procedia PDF Downloads 55518 NiFe-Type Catalysts for Anion Exchange Membrane (AEM) Electrolyzers
Authors: Boldin Roman, Liliana Analía Diaz
Abstract:
As the hydrogen economy continues to expand, reducing energy consumption and emissions while stimulating economic growth, the development of efficient and cost-effective hydrogen production technologies is critical. Among various methods, anion exchange membrane (AEM) water electrolysis stands out due to its potential for using non-noble metal catalysts. The exploration and enhancement of non-noble metal catalysts, such as NiFe-type catalysts, are pivotal for the advancement of AEM technology, ensuring its commercial viability and environmental sustainability. NiFe-type catalysts were synthesized through electrodeposition and characterized both electrochemically and physico-chemically. Various supports, including Ni foam and Ni mesh, were used as porous transport layers (PTLs) to evaluate the effective catalyst thickness and the influence of the PTL in a 5 cm² AEM electrolyzer. This methodological approach allows for a detailed assessment of catalyst performance under operational conditions typical of industrial hydrogen production. The study revealed that electrodeposited non-noble multi-metallic catalysts maintain stable performance as anodes in AEM water electrolysis. NiFe-type catalysts demonstrated superior activity, with the NiFeCoP alloy outperforming others by delivering the lowest overpotential and the highest current density. Furthermore, the use of different PTLs showed significant effects on the electrochemical behavior of the catalysts, indicating that PTL selection is crucial for optimizing performance and efficiency in AEM electrolyzers. Conclusion: The research underscores the potential of non-noble metal catalysts in enhancing efficiency and reducing the costs of AEM electrolysers. The findings highlight the importance of catalyst and PTL optimization in developing scalable and economically viable hydrogen production technologies. Continued innovation in this area is essential for supporting the growth of the hydrogen economy and achieving sustainable energy solutions.Keywords: AEMWE, electrocatalyst, hydrogen production, water electrolysis.
Procedia PDF Downloads 31517 Bayesian Structural Identification with Systematic Uncertainty Using Multiple Responses
Authors: André Jesus, Yanjie Zhu, Irwanda Laory
Abstract:
Structural health monitoring is one of the most promising technologies concerning aversion of structural risk and economic savings. Analysts often have to deal with a considerable variety of uncertainties that arise during a monitoring process. Namely the widespread application of numerical models (model-based) is accompanied by a widespread concern about quantifying the uncertainties prevailing in their use. Some of these uncertainties are related with the deterministic nature of the model (code uncertainty) others with the variability of its inputs (parameter uncertainty) and the discrepancy between a model/experiment (systematic uncertainty). The actual process always exhibits a random behaviour (observation error) even when conditions are set identically (residual variation). Bayesian inference assumes that parameters of a model are random variables with an associated PDF, which can be inferred from experimental data. However in many Bayesian methods the determination of systematic uncertainty can be problematic. In this work systematic uncertainty is associated with a discrepancy function. The numerical model and discrepancy function are approximated by Gaussian processes (surrogate model). Finally, to avoid the computational burden of a fully Bayesian approach the parameters that characterise the Gaussian processes were estimated in a four stage process (modular Bayesian approach). The proposed methodology has been successfully applied on fields such as geoscience, biomedics, particle physics but never on the SHM context. This approach considerably reduces the computational burden; although the extent of the considered uncertainties is lower (second order effects are neglected). To successfully identify the considered uncertainties this formulation was extended to consider multiple responses. The efficiency of the algorithm has been tested on a small scale aluminium bridge structure, subjected to a thermal expansion due to infrared heaters. Comparison of its performance with responses measured at different points of the structure and associated degrees of identifiability is also carried out. A numerical FEM model of the structure was developed and the stiffness from its supports is considered as a parameter to calibrate. Results show that the modular Bayesian approach performed best when responses of the same type had the lowest spatial correlation. Based on previous literature, using different types of responses (strain, acceleration, and displacement) should also improve the identifiability problem. Uncertainties due to parametric variability, observation error, residual variability, code variability and systematic uncertainty were all recovered. For this example the algorithm performance was stable and considerably quicker than Bayesian methods that account for the full extent of uncertainties. Future research with real-life examples is required to fully access the advantages and limitations of the proposed methodology.Keywords: bayesian, calibration, numerical model, system identification, systematic uncertainty, Gaussian process
Procedia PDF Downloads 327516 Optimizing Detection Methods for THz Bio-imaging Applications
Authors: C. Bolakis, I. S. Karanasiou, D. Grbovic, G. Karunasiri, N. Uzunoglu
Abstract:
A new approach for efficient detection of THz radiation in biomedical imaging applications is proposed. A double-layered absorber consisting of a 32 nm thick aluminum (Al) metallic layer, located on a glass medium (SiO2) of 1 mm thickness, was fabricated and used to design a fine-tuned absorber through a theoretical and finite element modeling process. The results indicate that the proposed low-cost, double-layered absorber can be tuned based on the metal layer sheet resistance and the thickness of various glass media taking advantage of the diversity of the absorption of the metal films in the desired THz domain (6 to 10 THz). It was found that the composite absorber could absorb up to 86% (a percentage exceeding the 50%, previously shown to be the highest achievable when using single thin metal layer) and reflect less than 1% of the incident THz power. This approach will enable monitoring of the transmission coefficient (THz transmission ‘’fingerprint’’) of the biosample with high accuracy, while also making the proposed double-layered absorber a good candidate for a microbolometer pixel’s active element. Based on the aforementioned promising results, a more sophisticated and effective double-layered absorber is under development. The glass medium has been substituted by diluted poly-si and the results were twofold: An absorption factor of 96% was reached and high TCR properties acquired. In addition, a generalization of these results and properties over the active frequency spectrum was achieved. Specifically, through the development of a theoretical equation having as input any arbitrary frequency in the IR spectrum (0.3 to 405.4 THz) and as output the appropriate thickness of the poly-si medium, the double-layered absorber retains the ability to absorb the 96% and reflects less than 1% of the incident power. As a result, through that post-optimization process and the spread spectrum frequency adjustment, the microbolometer detector efficiency could be further improved.Keywords: bio-imaging, fine-tuned absorber, fingerprint, microbolometer
Procedia PDF Downloads 348515 Evaluation of the Impact of Reducing the Traffic Light Cycle for Cars to Improve Non-Vehicular Transportation: A Case of Study in Lima
Authors: Gheyder Concha Bendezu, Rodrigo Lescano Loli, Aldo Bravo Lizano
Abstract:
In big urbanized cities of Latin America, motor vehicles have priority over non-motor vehicles and pedestrians. There is an important problem that affects people's health and quality of life; lack of inclusion towards pedestrians makes it difficult for them to move smoothly and safely since the city has been planned for the transit of motor vehicles. Faced with the new trend for sustainable and economical transport, the city is forced to develop infrastructure in order to incorporate pedestrians and users with non-motorized vehicles in the transport system. The present research aims to study the influence of non-motorized vehicles on an avenue, the optimization of a cycle using traffic lights based on simulation in Synchro software, to improve the flow of non-motor vehicles. The evaluation is of the microscopic type; for this reason, field data was collected, such as vehicular, pedestrian, and non-motor vehicle user demand. With the values of speed and travel time, it is represented in the current scenario that contains the existing problem. These data allow to create a microsimulation model in Vissim software, later to be calibrated and validated so that it has a behavior similar to reality. The results of this model are compared with the efficiency parameters of the proposed model; these parameters are the queue length, the travel speed, and mainly the travel times of the users at this intersection. The results reflect a reduction of 27% in travel time, that is, an improvement between the proposed model and the current one for this great avenue. The tail length of motor vehicles is also reduced by 12.5%, a considerable improvement. All this represents an improvement in the level of service and in the quality of life of users.Keywords: bikeway, microsimulation, pedestrians, queue length, traffic light cycle, travel time
Procedia PDF Downloads 177514 Analysis of Cycling Accessibility on Chengdu Tianfu Greenway Based on Improved Two-Step Floating Catchment Area Method: A Case Study of Jincheng Greenway
Authors: Qin Zhu
Abstract:
Under the background of accelerating the construction of Beautiful and Livable Park City in Chengdu, the Tianfu greenway system, as an important support system for the construction of parks in the whole region, its accessibility is one of the key indicators to measure the effectiveness of the greenway construction. In recent years, cycling has become an important transportation mode for residents to go to the greenways because of its low-carbon, healthy and convenient characteristics, and the study of greenway accessibility under cycling mode can provide reference suggestions for the optimization and improvement of greenways. Taking Jincheng Greenway in Chengdu City as an example, the Baidu Map Application Programming Interface (API) and questionnaire survey was used to improve the two-step floating catchment area (2SFCA) method from the three dimensions of search threshold, supply side and demand side, to calculate the cycling accessibility of the greenway and to explore the spatial matching relationship with the population density, the number of entrances and the comprehensive attractiveness. The results show that: 1) the distribution of greenway accessibility in Jincheng shows a pattern of "high in the south and low in the north, high in the west and low in the east", 2) the spatial match between greenway accessibility and population density of the residential area is imbalanced, and there is a significant positive correlation between accessibility and the number of selectable greenway access points in residential areas, as well as the overall attractiveness of greenways, with a high degree of match. On this basis, it is proposed to give priority to the mismatch area to alleviate the contradiction between supply and demand, optimize the greenway access points to improve the traffic connection, enhance the comprehensive quality of the greenway and strengthen the service capacity, to further improve the cycling accessibility of the Jincheng Greenway and improve the spatial allocation of greenway resources.Keywords: accessibility, Baidu maps API, cycling, greenway, 2SFCA
Procedia PDF Downloads 86513 Applying Miniaturized near Infrared Technology for Commingled and Microplastic Waste Analysis
Authors: Monika Rani, Claudio Marchesi, Stefania Federici, Laura E. Depero
Abstract:
Degradation of the aquatic environment by plastic litter, especially microplastics (MPs), i.e., any water-insoluble solid plastic particle with the longest dimension in the range 1µm and 1000 µm (=1 mm) size, is an unfortunate indication of the advancement of the Anthropocene age on Earth. Microplastics formed due to natural weathering processes are termed as secondary microplastics, while when these are synthesized in industries, they are called primary microplastics. Their presence from the highest peaks to the deepest points in oceans explored and their resistance to biological and chemical decay has adversely affected the environment, especially marine life. Even though the presence of MPs in the marine environment is well-reported, a legitimate and authentic analytical technique to sample, analyze, and quantify the MPs is still under progress and testing stages. Among the characterization techniques, vibrational spectroscopic techniques are largely adopted in the field of polymers. And the ongoing miniaturization of these methods is on the way to revolutionize the plastic recycling industry. In this scenario, the capability and the feasibility of a miniaturized near-infrared (MicroNIR) spectroscopy combined with chemometrics tools for qualitative and quantitative analysis of urban plastic waste collected from a recycling plant and microplastic mixture fragmented in the lab were investigated. Based on the Resin Identification Code, 250 plastic samples were used for macroplastic analysis and to set up a library of polymers. Subsequently, MicroNIR spectra were analysed through the application of multivariate modelling. Principal Components Analysis (PCA) was used as an unsupervised tool to find trends within the data. After the exploratory PCA analysis, a supervised classification tool was applied in order to distinguish the different plastic classes, and a database containing the NIR spectra of polymers was made. For the microplastic analysis, the three most abundant polymers in the plastic litter, PE, PP, PS, were mechanically fragmented in the laboratory to micron size. The distinctive arrangement of blends of these three microplastics was prepared in line with a designed ternary composition plot. After the PCA exploratory analysis, a quantitative model Partial Least Squares Regression (PLSR) allowed to predict the percentage of microplastics in the mixtures. With a complete dataset of 63 compositions, PLS was calibrated with 42 data-points. The model was used to predict the composition of 21 unknown mixtures of the test set. The advantage of the consolidated NIR Chemometric approach lies in the quick evaluation of whether the sample is macro or micro, contaminated, coloured or not, and with no sample pre-treatment. The technique can be utilized with bigger example volumes and even considers an on-site evaluation and in this manner satisfies the need for a high-throughput strategy.Keywords: chemometrics, microNIR, microplastics, urban plastic waste
Procedia PDF Downloads 165512 Distribution and Ecological Risk Assessment of Trace Elements in Sediments along the Ganges River Estuary, India
Authors: Priyanka Mondal, Santosh K. Sarkar
Abstract:
The present study investigated the spatiotemporal distribution and ecological risk assessment of trace elements of surface sediments (top 0 - 5 cm; grain size ≤ 0.63 µm) in relevance to sediment quality characteristics along the Ganges River Estuary, India. Sediment samples were collected during ebb tide from intertidal regions covering seven sampling sites of diverse environmental stresses. The elements were analyzed with the help of ICPAES. This positive, mixohaline, macro-tidal estuary has global significance contributing ecological and economic services. Presence of fine-clayey particle (47.03%) enhances the adsorption as well as transportation of trace elements. There is a remarkable inter-metallic variation (mg kg-1 dry weight) in the distribution pattern in the following manner: Al (31801± 15943) > Fe (23337± 7584) > Mn (461±147) > S(381±235) > Zn(54 ±18) > V(43 ±14) > Cr(39 ±15) > As (34±15) > Cu(27 ±11) > Ni (24 ±9) > Se (17 ±8) > Co(11 ±3) > Mo(10 ± 2) > Hg(0.02 ±0.01). An overall trend of enrichment of majority of trace elements was very much pronounced at the site Lot 8, ~ 35km upstream of the estuarine mouth. In contrast, the minimum concentration was recorded at site Gangasagar, mouth of the estuary, with high energy profile. The prevalent variations in trace element distribution are being liable for a set of cumulative factors such as hydrodynamic conditions, sediment dispersion pattern and textural variations as well as non-homogenous input of contaminants from point and non-point sources. In order to gain insight into the trace elements distribution, accumulation, and their pollution status, geoaccumulation index (Igeo) and enrichment factor (EF) were used. The Igeo indicated that surface sediments were moderately polluted with As (0.60) and Mo (1.30) and strongly contaminated with Se (4.0). The EF indicated severe pollution of Se (53.82) and significant pollution of As (4.05) and Mo (6.0) and indicated the influx of As, Mo and Se in sediments from anthropogenic sources (such as industrial and municipal sewage, atmospheric deposition, agricultural run-off, etc.). The significant role of the megacity Calcutta in relevance to the untreated sewage discharge, atmospheric inputs and other anthropogenic activities is worthwhile to mention. The ecological risk for different trace elements was evaluated using sediment quality guidelines, effects range low (ERL), and effect range median (ERM). The concentration of As, Cu and Ni at 100%, 43% and 86% of the sampling sites has exceeded the ERL value while none of the element concentration exceeded ERM. The potential ecological risk index values revealed that As at 14.3% of the sampling sites would pose relatively moderate risk to benthic organisms. The effective role of finer clay particles for trace element distribution was revealed by multivariate analysis. The authors strongly recommend regular monitoring emphasizing on accurate appraisal of the potential risk of trace elements for effective and sustainable management of this estuarine environment.Keywords: pollution assessment, sediment contamination, sediment quality, trace elements
Procedia PDF Downloads 257511 La₀.₈Ba₀.₂FeO₃ Perovskite as an Additive in the Three-Way Catalyst (TWCs) for Reduction of PGMs Loading
Authors: Mahshid Davoodpoor, Zahra Shamohammadi Ghahsareh, Saeid Razfar, Alaleh Dabbaghi
Abstract:
Nowadays, air pollution has become a topic of great concern all over the world. One of the main sources of air pollution is automobile exhaust gas, which introduces a large number of toxic gases, including CO, unburned hydrocarbons (HCs), NOx, and non-methane hydrocarbons (NMHCs), into the air. The application of three-way catalysts (TWCs) is still the most effective strategy to mitigate the emission of these pollutants. Due to the stringent environmental regulations which continuously become stricter, studies on the TWCs are ongoing despite several years of research and development. This arises from the washcoat complexity and the several numbers of parameters involved in the redox reactions. The main objectives of these studies are the optimization of washcoat formulation and the investigation of different coating modes. Perovskite (ABO₃), as a promising class of materials, has unique features that make it versatile to use as an alternative to commonly mixed oxides in washcoats. High catalytic activity for oxidation reactions and its relatively high oxygen storage capacity are important properties of perovskites in catalytic applications. Herein, La₀.₈Ba₀.₂FeO₃ perovskite material was synthesized using the co-precipitation method and characterized by XRD, ICP, and BET analysis. The effect of synthesis conditions, including B site metal (Fe and Co), metal precursor concentration, and dopant (Ba), were examined on the phase purity of the products. The selected perovskite sample was used as one of the components in the TWC formulation to evaluate its catalytic performance through Light-off, oxygen storage capacity, and emission analysis. Results showed a remarkable increment in oxygen storage capacity and also revealed that T50 and emission of CO, HC, and NOx reduced in the presence of perovskite structure which approves the enhancement of catalytic performance for the new washcoat formulation. This study shows the brilliant future of advanced oxide structures in the TWCs.Keywords: Perovskite, three-way catalyst, PGMs, PGMs reduction
Procedia PDF Downloads 67510 Optimization of Marine Waste Collection Considering Dynamic Transport and Ship’s Wake Impact
Authors: Guillaume Richard, Sarra Zaied
Abstract:
Marine waste quantities increase more and more, 5 million tons of plastic waste enter the ocean every year. Their spatiotemporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment, as well as the size and location of the waste. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. In this context, diverse studies have been dedicated to describing waste behavior in order to identify its accumulation in ocean areas. None of the existing tools which track objects at sea had the objective of tracking down a slick of waste. Moreover, the applications related to marine waste are in the minority compared to rescue applications or oil slicks tracking applications. These approaches are able to accurately simulate an object's behavior over time but not during the collection mission of a waste sheet. This paper presents numerical modeling of a boat’s wake impact on the floating marine waste behavior during a collection mission. The aim is to predict the trajectory of a marine waste slick to optimize its collection using meteorological data of ocean currents, wind, and possibly waves. We have made the choice to use Ocean Parcels which is a Python library suitable for trajectoring particles in the ocean. The modeling results showed the important role of advection and diffusion processes in the spatiotemporal distribution of floating plastic litter. The performance of the proposed method was evaluated on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). The results of the evaluation in Cape of Good Hope (South Africa) prove that the proposed approach can effectively predict the position and velocity of marine litter during collection, which allowed for optimizing time and more than $90\%$ of the amount of collected waste.Keywords: marine litter, advection-diffusion equation, sea current, numerical model
Procedia PDF Downloads 88509 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: machine-learning, habitability, exoplanets, supercomputing
Procedia PDF Downloads 90508 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far, has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: exoplanets, habitability, machine-learning, supercomputing
Procedia PDF Downloads 118507 Evaluation of Bucket Utility Truck In-Use Driving Performance and Electrified Power Take-Off Operation
Authors: Robert Prohaska, Arnaud Konan, Kenneth Kelly, Adam Ragatz, Adam Duran
Abstract:
In an effort to evaluate the in-use performance of electrified Power Take-off (PTO) usage on bucket utility trucks operating under real-world conditions, data from 20 medium- and heavy-duty vehicles operating in California, USA were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team. In this paper, duty-cycle statistical analyses of class 5, medium-duty quick response trucks and class 8, heavy-duty material handler trucks are performed to examine and characterize vehicle dynamics trends and relationships based on collected in-use field data. With more than 100,000 kilometers of driving data collected over 880+ operating days, researchers have developed a robust methodology for identifying PTO operation from in-field vehicle data. Researchers apply this unique methodology to evaluate the performance and utilization of the conventional and electric PTO systems. Researchers also created custom representative drive-cycles for each vehicle configuration and performed modeling and simulation activities to evaluate the potential fuel and emissions savings for hybridization of the tractive driveline on these vehicles. The results of these analyses statistically and objectively define the vehicle dynamic and kinematic requirements for each vehicle configuration as well as show the potential for further system optimization through driveline hybridization. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relates specifically to medium- and heavy-duty utility vehicles operating under real-world conditions.Keywords: drive cycle, heavy-duty (HD), hybrid, medium-duty (MD), PTO, utility
Procedia PDF Downloads 399506 Efficient Energy Extraction Circuit for Impact Harvesting from High Impedance Sources
Authors: Sherif Keddis, Mohamed Azzam, Norbert Schwesinger
Abstract:
Harvesting mechanical energy from footsteps or other impacts is a possibility to enable wireless autonomous sensor nodes. These can be used for a highly efficient control of connected devices such as lights, security systems, air conditioning systems or other smart home applications. They can also be used for accurate location or occupancy monitoring. Converting the mechanical energy into useful electrical energy can be achieved using the piezoelectric effect offering simple harvesting setups and low deflections. The challenge facing piezoelectric transducers is the achievable amount of energy per impact in the lower mJ range and the management of such low energies. Simple setups for energy extraction such as a full wave bridge connected directly to a capacitor are problematic due to the mismatch between high impedance sources and low impedance storage elements. Efficient energy circuits for piezoelectric harvesters are commonly designed for vibration harvesters and require periodic input energies with predictable frequencies. Due to the sporadic nature of impact harvesters, such circuits are not well suited. This paper presents a self-powered circuit that avoids the impedance mismatch during energy extraction by disconnecting the load until the source reaches its charge peak. The switch is implemented with passive components and works independent from the input frequency. Therefore, this circuit is suited for impact harvesting and sporadic inputs. For the same input energy, this circuit stores 150% of the energy in comparison to a directly connected capacitor to a bridge rectifier. The total efficiency, defined as the ratio of stored energy on a capacitor to available energy measured across a matched resistive load, is 63%. Although the resulting energy is already sufficient to power certain autonomous applications, further optimization of the circuit are still under investigation in order to improve the overall efficiency.Keywords: autonomous sensors, circuit design, energy harvesting, energy management, impact harvester, piezoelectricity
Procedia PDF Downloads 155505 Mannose-Functionalized Lipopolysaccharide Nanoparticles for Macrophage-Targeted Dual Delivery of Rifampicin and Isoniazid
Authors: Mumuni Sumaila, Viness Pillay, Yahya E. Choonara, Pradeep Kumar, Pierre P. Kondiah
Abstract:
Tuberculosis (TB) remains a serious challenge to public health globally, despite every effort put together to curb the disease. Current TB therapeutics available have proven to be inefficient due to a multitude of drawbacks that range from serious adverse effects/drug toxicity to inconsistent bioavailability, which ultimately contributes to the emergence of drug-resistant TB. An effective ‘cargo’ system designed to cleverly deliver therapeutic doses of anti-TB drugs to infection sites and in a sustained-release manner may provide a better therapeutic choice towards winning the war against TB. In the current study, we investigated mannose-functionalized lipopolysaccharide hybrid nanoparticles for safety and efficacy towards macrophage-targeted simultaneous delivery of the two first-line anti-TB drugs, rifampicin (RF) and isoniazid (IS). RF-IS-loaded lipopolysaccharide hybrid nanoparticles were fabricated using the solvent injection technique (SIT), incorporating soy lecithin (SL) and low molecular weight chitosan (CS) as the lipid and polysaccharide components, respectively. Surface-functionalized nanoparticles were obtained through the reaction of the aldehyde group of mannose with free amine functionality present at the surface of the nanoparticles. The functionalized nanocarriers were spherical with average particle size and surface charge of 107.83 nm and +21.77 mV, respectively, and entrapment efficiencies (EE) were 53.52% and 69.80% for RF and IS, respectively. FTIR spectrum revealed high-intensity bands between 1663 cm⁻¹ and 1408 cm⁻¹ wavenumbers (absent in non-functionalized nanoparticles), which could be attributed to the C=N stretching vibration produced by the formation of Schiff’s base (–N=CH–) during the mannosylation reaction. In vitro release studies showed a sustained-release profile for RF and IS, with less than half of the total payload released over a 48-hour period. The nanocarriers were biocompatible and safe, with more than 80% cell viability achieved when incubated with RAW 264.7 cells at concentrations 30 to 500 μg/mL over a 24-hour period. Cellular uptake studies (after a 24-hour incubation period with the murine macrophage cells, RAW 264.7) revealed a 13- and a 9-fold increase in intracellular accumulation of RF and IS, respectively, when compared with the unformulated RF+IS solution. A 6- and a 3-fold increase in intracellular accumulation of RF and IS, respectively, were observed when compared with the non-functionalized nanoparticles. Furthermore, fluorescent microscopy images showed nanoparticle internalization and accumulation within the RAW 264.7 cells, which was more significant in the mannose-functionalized system compared to the non-functionalized nanoparticles. The overall results suggested that the fabricated mannose-functionalized lipopolysaccharide nanoparticles are a safe and promising platform for macrophage-targeted delivery of anti-TB therapeutics. However, in vivo pharmacokinetic/pharmacodynamics studies are required to further substantiate the therapeutic efficacy of the nanosystem.Keywords: anti-tuberculosis therapeutics, hybrid nanosystem, lipopolysaccharide nanoparticles, macrophage-targeted delivery
Procedia PDF Downloads 173504 Study of University Course Scheduling for Crowd Gathering Risk Prevention and Control in the Context of Routine Epidemic Prevention
Authors: Yuzhen Hu, Sirui Wang
Abstract:
As a training base for intellectual talents, universities have a large number of students. Teaching is a primary activity in universities, and during the teaching process, a large number of people gather both inside and outside the teaching buildings, posing a strong risk of close contact. The class schedule is the fundamental basis for teaching activities in universities and plays a crucial role in the management of teaching order. Different class schedules can lead to varying degrees of indoor gatherings and trajectories of class attendees. In recent years, highly contagious diseases have frequently occurred worldwide, and how to reduce the risk of infection has always been a hot issue related to public safety. "Reducing gatherings" is one of the core measures in epidemic prevention and control, and it can be controlled through scientific scheduling in specific environments. Therefore, the scientific prevention and control goal can be achieved by considering the reduction of the risk of excessive gathering of people during the course schedule arrangement. Firstly, we address the issue of personnel gathering in various pathways on campus, with the goal of minimizing congestion and maximizing teaching effectiveness, establishing a nonlinear mathematical model. Next, we design an improved genetic algorithm, incorporating real-time evacuation operations based on tracking search and multidimensional positive gradient cross-mutation operations, considering the characteristics of outdoor crowd evacuation. Finally, we apply undergraduate course data from a university in Harbin to conduct a case study. It compares and analyzes the effects of algorithm improvement and optimization of gathering situations and explores the impact of path blocking on the degree of gathering of individuals on other pathways.Keywords: the university timetabling problem, risk prevention, genetic algorithm, risk control
Procedia PDF Downloads 93503 Screening and Optimization of Conditions for Pectinase Production by Aspergillus Flavus
Authors: Rumaisa Shahid, Saad Aziz Durrani, Shameel Pervez, Ibatsam Khokhar
Abstract:
Food waste is a prevalent issue in Pakistan, with over 40 percent of food discarded annually. Despite their decay, rotting fruits retain residual nutritional value consumed by microorganisms, notably fungi and bacteria. Fungi, preferred for their extracellular enzyme release, are gaining prominence, particularly for pectinase production. This enzyme offers several advantages, including clarifying juices by breaking down pectic compounds. In this study, three Aspergillus flavus isolates derived from decomposed fruits and manure were selected for pectinase production. The primary aim was to isolate fungi from diverse waste sources, identify the isolates and assess their capacity for pectinase production. The identification was done through morphological characteristics with the help of Light microscopy and Scanning Electron Microscopy (SEM). Pectinolytic potential was screened using pectin minimal salt agar (PMSA) medium, comparing clear zone diameters among isolates. Identification relied on morphological characteristics. Optimizing substrate (lemon and orange peel powder) concentrations, pH, temperature, and incubation period aimed to enhance pectinase yield. Spectrophotometry enabled quantitative analysis. The temperature was set at room temperature (28 ºC). The optimal conditions for Aspergillus flavus strain AF1(isolated from mango) included a pH of 5, an incubation period of 120 hours, and substrate concentrations of 3.3% for orange peels and 6.6% for lemon peels. For AF2 and AF3 (both isolated from soil), the ideal pH and incubation period were the same as AF1 i.e. pH 5 and 120 hours. However, their optimized substrate concentrations varied, with AF2 showing maximum activity at 3.3% for orange peels and 6.6% for lemon peels, while AF3 exhibited its peak activity at 6.6% for orange peels and 8.3% for lemon peels. Among the isolates, AF1 demonstrated superior performance under these conditions, comparatively.Keywords: pectinase, lemon peel, orange peel, aspergillus flavus
Procedia PDF Downloads 72502 Improved Food Security and Alleviation of Cyanide Intoxication through Commercialization and Utilization of Cassava Starch by Tanzania Industries
Authors: Mariam Mtunguja, Henry Laswai, Yasinta Muzanilla, Joseph Ndunguru
Abstract:
Starchy tuberous roots of cassava provide food for people but also find application in various industries. Recently there has been the focus of concentrated research efforts to fully exploit its potential as a sustainable multipurpose crop. High starch yield is the important trait for commercial cassava production for the starch industries. Furthermore, cyanide present in cassava root poses a health challenge in the use of cassava for food. Farming communities where cassava is a staple food, prefer bitter (high cyanogenic) varieties as protection from predators and thieves. As a result, food insecure farmers prefer growing bitter cassava. This has led to cyanide intoxication to this farming communities. Cassava farmers can benefit from marketing cassava to starch producers thereby improving their income and food security. This will decrease dependency on cassava as staple food as a result of increased income and be able to afford other food sources. To achieve this, adequate information is required on the right cassava cultivars and appropriate harvesting period so as to maximize cassava production and profitability. This study aimed at identifying suitable cassava cultivars and optimum time of harvest to maximize starch production. Six commonly grown cultivars were identified and planted in a complete random block design and further analysis was done to assess variation in physicochemical characteristics, starch yield and cyanogenic potentials across three environments. The analysis showed that there is a difference in physicochemical characteristics between landraces (p ≤ 0.05), and can be targeted to different industrial applications. Among landraces, dry matter (30-39%), amylose (11-19%), starch (74-80%) and reducing sugars content (1-3%) varied when expressed on a dry weight basis (p ≤ 0.05); however, only one of the six genotypes differed in crystallinity and mean starch granule particle size, while glucan chain distribution and granule morphology were the same. In contrast, the starch functionality features measured: swelling power, solubility, syneresis, and digestibility differed (p ≤ 0.05). This was supported by Partial least square discriminant analysis (PLS-DA), which highlighted the divergence among the cassavas based on starch functionality, permitting suggestions for the targeted uses of these starches in diverse industries. The study also illustrated genotypic difference in starch yield and cyanogenic potential. Among landraces, Kiroba showed potential for maximum starch yield (12.8 t ha-1) followed by Msenene (12.3 t ha-1) and third was Kilusungu (10.2 t ha-1). The cyanide content of cassava landraces was between 15 and 800 ppm across all trial sites. GGE biplot analysis further confirmed that Kiroba was a superior cultivar in terms of starch yield. Kilusungu had the highest cyanide content and average starch yield, therefore it can also be suitable for use in starch production.Keywords: cyanogen, cassava starch, food security, starch yield
Procedia PDF Downloads 221501 Continuous and Discontinuos Modeling of Wellbore Instability in Anisotropic Rocks
Authors: C. Deangeli, P. Obentaku Obenebot, O. Omwanghe
Abstract:
The study focuses on the analysis of wellbore instability in rock masses affected by weakness planes. The occurrence of failure in such a type of rocks can occur in the rock matrix and/ or along the weakness planes, in relation to the mud weight gradient. In this case the simple Kirsch solution coupled with a failure criterion cannot supply a suitable scenario for borehole instabilities. Two different numerical approaches have been used in order to investigate the onset of local failure at the wall of a borehole. For each type of approach the influence of the inclination of weakness planes has been investigates, by considering joint sets at 0°, 35° and 90° to the horizontal. The first set of models have been carried out with FLAC 2D (Fast Lagrangian Analysis of Continua) by considering the rock material as a continuous medium, with a Mohr Coulomb criterion for the rock matrix and using the ubiquitous joint model for accounting for the presence of the weakness planes. In this model yield may occur in either the solid or along the weak plane, or both, depending on the stress state, the orientation of the weak plane and the material properties of the solid and weak plane. The second set of models have been performed with PFC2D (Particle Flow code). This code is based on the Discrete Element Method and considers the rock material as an assembly of grains bonded by cement-like materials, and pore spaces. The presence of weakness planes is simulated by the degradation of the bonds between grains along given directions. In general the results of the two approaches are in agreement. However the discrete approach seems to capture more complex phenomena related to local failure in the form of grain detachment at wall of the borehole. In fact the presence of weakness planes in the discontinuous medium leads to local instability along the weak planes also in conditions not predicted from the continuous solution. In general slip failure locations and directions do not follow the conventional wellbore breakout direction but depend upon the internal friction angle and the orientation of the bedding planes. When weakness plane is at 0° and 90° the behaviour are similar to that of a continuous rock material, but borehole instability is more severe when weakness planes are inclined at an angle between 0° and 90° to the horizontal. In conclusion, the results of the numerical simulations show that the prediction of local failure at the wall of the wellbore cannot disregard the presence of weakness planes and consequently the higher mud weight required for stability for any specific inclination of the joints. Despite the discrete approach can simulate smaller areas because of the large number of particles required for the generation of the rock material, however it seems to investigate more correctly the occurrence of failure at the miscroscale and eventually the propagation of the failed zone to a large portion of rock around the wellbore.Keywords: continuous- discontinuous, numerical modelling, weakness planes wellbore, FLAC 2D
Procedia PDF Downloads 501500 Production, Characterization and In vitro Evaluation of [223Ra]RaCl2 Nanomicelles for Targeted Alpha Therapy of Osteosarcoma
Authors: Yang Yang, Luciana Magalhães Rebelo Alencar, Martha Sahylí Ortega Pijeira, Beatriz da Silva Batista, Alefe Roger Silva França, Erick Rafael Dias Rates, Ruana Cardoso Lima, Sara Gemini-Piperni, Ralph Santos-Oliveira
Abstract:
Radium-²²³ dichloride ([²²³Rₐ]RₐCl₂) is an alpha particle-emitting radiopharmaceutical currently approved for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases, and no known visceral metastatic disease. [²²³Rₐ]RₐCl₂ is bone-seeking calcium mimetic that bonds into the newly formed bone stroma, especially osteoblastic or sclerotic metastases, killing the tumor cells by inducing DNA breaks in a potent and localized manner. Nonetheless, the successful therapy of osteosarcoma as primary bone tumors is still a challenge. Nanomicelles are colloidal nanosystems widely used in drug development to improve blood circulation time, bioavailability, and specificity of therapeutic agents, among other applications. In addition, the enhanced permeability and retention effect of the nanosystems, and the renal excretion of the nanomicelles reported in most cases so far, are very attractive to achieve selective and increased accumulation in tumor site as well as to increase the safety of [²²³Rₐ]RₐCl₂ in the clinical routine. In the present work, [²²³Rₐ]RₐCl₂ nanomicelles were produced, characterized, in vitro evaluated, and compared with pure [²²³Rₐ]RₐCl2 solution using SAOS2 osteosarcoma cells. The [²²³Rₐ]RₐCl₂ nanomicelles were prepared using the amphiphilic copolymer Pluronic F127. The dynamic light scattering analysis of freshly produced [²²³Rₐ]RₐCl₂ nanomicelles demonstrated a mean size of 129.4 nm with a polydispersity index (PDI) of 0.303. After one week stored in the refrigerator, the mean size of the [²²³Rₐ]RₐCl₂ nanomicelles increased to 169.4 with a PDI of 0.381. Atomic force microscopy analysis of [223Rₐ]RₐCl₂ nanomicelles exhibited spherical structures whose heights reach 1 µm, suggesting the filling of 127-Pluronic nanomicelles with [²²³Rₐ]RₐCl₂. The viability assay with [²²³Rₐ]RₐCl₂ nanomicelles displayed a dose-dependent response as it was observed using pure [²²³Rₐ]RₐCl2. However, at the same dose, [²²³Rₐ]RₐCl₂ nanomicelles were 20% higher efficient in killing SAOS2 cells when compared with pure [²²³Rₐ]RₐCl₂. These findings demonstrated the effectiveness of the nanosystem validating the application of nanotechnology in targeted alpha therapy with [²²³Ra]RₐCl₂. In addition, the [²²³Rₐ]RaCl₂nanomicelles may be decorated and incorporated with a great variety of agents and compounds (e.g., monoclonal antibodies, aptamers, peptides) to overcome the limited use of [²²³Ra]RₐCl₂.Keywords: nanomicelles, osteosarcoma, radium dichloride, targeted alpha therapy
Procedia PDF Downloads 118499 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 109498 Achieving Process Stability through Automation and Process Optimization at H Blast Furnace Tata Steel, Jamshedpur
Authors: Krishnendu Mukhopadhyay, Subhashis Kundu, Mayank Tiwari, Sameeran Pani, Padmapal, Uttam Singh
Abstract:
Blast Furnace is a counter current process where burden descends from top and hot gases ascend from bottom and chemically reduce iron oxides into liquid hot metal. One of the major problems of blast furnace operation is the erratic burden descent inside furnace. Sometimes this problem is so acute that burden descent stops resulting in Hanging and instability of the furnace. This problem is very frequent in blast furnaces worldwide and results in huge production losses. This situation becomes more adverse when blast furnaces are operated at low coke rate and high coal injection rate with adverse raw materials like high alumina ore and high coke ash. For last three years, H-Blast Furnace Tata Steel was able to reduce coke rate from 450 kg/thm to 350 kg/thm with an increase in coal injection to 200 kg/thm which are close to world benchmarks and expand profitability. To sustain this regime, elimination of irregularities of blast furnace like hanging, channeling, and scaffolding is very essential. In this paper, sustaining of zero hanging spell for consecutive three years with low coke rate operation by improvement in burden characteristics, burden distribution, changes in slag regime, casting practices and adequate automation of the furnace operation has been illustrated. Models have been created to comprehend and upgrade the blast furnace process understanding. A model has been developed to predict the process of maintaining slag viscosity in desired range to attain proper burden permeability. A channeling prediction model has also been developed to understand channeling symptoms so that early actions can be initiated. The models have helped to a great extent in standardizing the control decisions of operators at H-Blast Furnace of Tata Steel, Jamshedpur and thus achieving process stability for last three years.Keywords: hanging, channelling, blast furnace, coke
Procedia PDF Downloads 197497 Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator
Authors: Di Yao, Gunther Prokop, Kay Buttner
Abstract:
Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development.Keywords: parameter identification, parallel manipulator, singularity architecture, dynamic modelling, exciting trajectory
Procedia PDF Downloads 267496 Research on Evaluation of Renewable Energy Technology Innovation Strategy Based on PMC Index Model
Abstract:
Renewable energy technology innovation is an important way to realize the energy transformation. Our government has issued a series of policies to guide and support the development of renewable energy. The implementation of these policies will affect the further development, utilization and technological innovation of renewable energy. In this context, it is of great significance to systematically sort out and evaluate the renewable energy technology innovation policy for improving the existing policy system. Taking the 190 renewable energy technology innovation policies issued during 2005-2021 as a sample, from the perspectives of policy issuing departments and policy keywords, it uses text mining and content analysis methods to analyze the current situation of the policies and conduct a semantic network analysis to identify the core issuing departments and core policy topic words; A PMC (Policy Modeling Consistency) index model is built to quantitatively evaluate the selected policies, analyze the overall pros and cons of the policy through its PMC index, and reflect the PMC value of the model's secondary index The core departments publish policies and the performance of each dimension of the policies related to the core topic headings. The research results show that Renewable energy technology innovation policies focus on synergy between multiple departments, while the distribution of the issuers is uneven in terms of promulgation time; policies related to different topics have their own emphasis in terms of policy types, fields, functions, and support measures, but It still needs to be improved, such as the lack of policy forecasting and supervision functions, the lack of attention to product promotion, and the relatively single support measures. Finally, this research puts forward policy optimization suggestions in terms of promoting joint policy release, strengthening policy coherence and timeliness, enhancing the comprehensiveness of policy functions, and enriching incentive measures for renewable energy technology innovation.Keywords: renewable energy technology innovation, content analysis, policy evaluation, PMC index model
Procedia PDF Downloads 67495 Bioflavonoids Derived from Mandarin Processing Wastes: Functional Hydrogels as a Sustainable Food Systems
Authors: Niharika Kaushal, Minni Singh
Abstract:
Fruit crops are widely cultivated throughout the World, with citrus being one of the most common. Mandarins, oranges, grapefruits, lemons, and limes are among the most frequently grown varieties. Citrus cultivars are industrially processed into juice, resulting in approx. 25-40% by wt. of biomass in the form of peels and seeds, generally considered as waste. In consequence, a significant amount of this nutraceutical-enriched biomass goes to waste, which, if utilized wisely, could revolutionize the functional food industry, as this biomass possesses a wide range of bioactive compounds, mainly within the class of polyphenols and terpenoids, making them an abundant source of functional bioactive. Mandarin is a potential source of bioflavonoids with putative antioxidative properties, and its potential application for developing value-added products is obvious. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was studied for its flavonoid profile. For this, dried and pulverized peels were subjected to green and sustainable extraction techniques, namely, supercritical fluid extraction carried out under conditions pressure: 330 bar, temperature: 40 ̊ C and co-solvent: 10% ethanol. The obtained extract was observed to contain 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the prevalence of polymethoxyflavones (PMFs), chiefly tangeretin and nobiletin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which was estimated to be at an IC₅₀ of 0.55μg/ml. The pre-systemic metabolism of flavonoids limits their functionality, as was observed in this study through in vitro gastrointestinal studies where nearly 50.0% of the flavonoids were degraded within 2 hours of gastric exposure. We proposed nanoencapsulation as a means to overcome this problem, and flavonoids-laden polylactic-co-glycolic acid (PLGA) nano encapsulates were bioengineered using solvent evaporation method, and these were furnished to a particle size between 200-250nm, which exhibited protection of flavonoids in the gastric environment, allowing only 20% to be released in 2h. A further step involved impregnating the nano encapsulates within alginate hydrogels which were fabricated by ionic cross-linking, which would act as delivery vehicles within the gastrointestinal (GI) tract. As a result, 100% protection was achieved from the pre-systemic release of bioflavonoids. These alginate hydrogels had key significant features, i.e., less porosity of nearly 20.0%, and Cryo-SEM (Cryo-scanning electron microscopy) images of the composite corroborate the packing ability of the alginate hydrogel. As a result of this work, it is concluded that the waste can be used to develop functional biomaterials while retaining the functionality of the bioactive itself.Keywords: bioflavonoids, gastrointestinal, hydrogels, mandarins
Procedia PDF Downloads 82494 Synthesis and Characterization of Anti-Psychotic Drugs Based DNA Aptamers
Authors: Shringika Soni, Utkarsh Jain, Nidhi Chauhan
Abstract:
Aptamers are recently discovered ~80-100 bp long artificial oligonucleotides that not only demonstrated their applications in therapeutics; it is tremendously used in diagnostic and sensing application to detect different biomarkers and drugs. Synthesizing aptamers for proteins or genomic template is comparatively feasible in laboratory, but drugs or other chemical target based aptamers require major specification and proper optimization and validation. One has to optimize all selection, amplification, and characterization steps of the end product, which is extremely time-consuming. Therefore, we performed asymmetric PCR (polymerase chain reaction) for random oligonucleotides pool synthesis, and further use them in Systematic evolution of ligands by exponential enrichment (SELEX) for anti-psychotic drugs based aptamers synthesis. Anti-psychotic drugs are major tranquilizers to control psychosis for proper cognitive functions. Though their low medical use, their misuse may lead to severe medical condition as addiction and can promote crime in social and economical impact. In this work, we have approached the in-vitro SELEX method for ssDNA synthesis for anti-psychotic drugs (in this case ‘target’) based aptamer synthesis. The study was performed in three stages, where first stage included synthesis of random oligonucleotides pool via asymmetric PCR where end product was analyzed with electrophoresis and purified for further stages. The purified oligonucleotide pool was incubated in SELEX buffer, and further partition was performed in the next stage to obtain target specific aptamers. The isolated oligonucleotides are characterized and quantified after each round of partition, and significant results were obtained. After the repetitive partition and amplification steps of target-specific oligonucleotides, final stage included sequencing of end product. We can confirm the specific sequence for anti-psychoactive drugs, which will be further used in diagnostic application in clinical and forensic set-up.Keywords: anti-psychotic drugs, aptamer, biosensor, ssDNA, SELEX
Procedia PDF Downloads 135