Search results for: artificial intelligence and genetic algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5680

Search results for: artificial intelligence and genetic algorithms

1480 Salicylic Acid Signalling in Relation to Root Colonization in Rice

Authors: Seema Garcha, Sheetal Chopra, Navraj Sarao

Abstract:

Plant hormones play a role in internal colonization by beneficial microbes and also systemic acquired resistance. They define qualitative and quantitative nature of root microbiome and also influence dynamics of root rhizospheric soil. The present study is an attempt to relate salicylic acid (signal molecule) content and qualitative nature of root endophytes at various stages in the growth of rice varieties of commercial value- Parmal 121 and Basmati 1121. Root seedlings of these varieties were raised using tissue culture techniques and then they were transplanted in the fields. Cultivation was done using conventional methods in agriculture. Field soil contained 0.39% N, 75.12 Kg/hectare of phosphorus and 163.0 Kg/hectare of potassium. Microfloral profiling of the root tissue was done using the selective microbiological medium. The salicylic acid content was estimated using HPLC-Agilent 1100 HPLC Series. Salicylic acid level of Basmati 1121 remained relatively low at the time of transplant and 90 days after transplant. It increased marginally at 60 days. A similar trend was observed with Parmal 121 as well. However, Parmal variety recorded 0.935 ug/g of salicylic acid at 60 days after transplant. Salicylic acid content decreased after 90 days as both the rice varieties remained disease free. The endophytic root microflora was established by 60 days after transplant in both the varieties after which their population became constant. Rhizobium spp dominated over Azotobacter spp. Genetic profiling of endophytes for nitrogen-fixing ability is underway.

Keywords: plant-microbe interaction, rice, root microbiome, salicylic acid

Procedia PDF Downloads 202
1479 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain

Procedia PDF Downloads 291
1478 Effect of Feed Additive on Cryopreservation of Barki Ram Semen

Authors: Abdurzag Kerban, Mostfa M. Abou-Ahmed, Abdelrof M. Ghallab, Mona H. Shaker

Abstract:

Preservation of semen had a major impact on sheep genetic breeding. The aim of this study was to evaluate the effect of protected fat, probiotic and zinc-enriched diets on semen freezability. Twenty two Barki rams were randomly assigned into four groups; Group I (n=5) was fed the basal diet enriched with 3.7% of dry fat/kg concentration/day, Group II (n=5) was fed a basal diet-enriched with 10gm of probiotic /head/day, Group III (n=6) was fed on the basal diet enriched with 100 ppm of 10% zinc chelated with methionine/kg dry matter/day and Group IV (n=6) was served as control. A pool of three to four ejaculates were pooled from rams within a period of ten weeks. Semen was diluted in egg yolk-Tris diluent and processed in 0.25 ml straw. Motility was evaluated after dilution, before freezing and post-thawing at 0, 1, 2 and 3 hour incubation. Viability index, acrosome integrity and leakage of intracellular enzymes (Aspartat aminotransferase and Alkline phosphatase) were also evaluated. Spermatozoa exhibited highly significant (P<0.01) percentages of motility at 0, 1, 2, and 3 hours incubation after thawing, viability index and acrosome integrity in rams fed a diet enriched with protected fat and zinc groups as compared with probiotic and control groups. Also, the mean value of extracellular leakage of AST was significantly lower in fat and zinc group as compared with probiotic and control groups. In conclusion, semen freezability was improved in animals fed a diet fortified with fat and zinc with no significant improvement in animals fed the probiotic-enriched diet.

Keywords: Barki ram semen, freezing, straw, feed additives

Procedia PDF Downloads 785
1477 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic

Authors: Budoor Al Abid

Abstract:

Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.

Keywords: machine learning, adaptive, fuzzy logic, data mining

Procedia PDF Downloads 196
1476 Proxisch: An Optimization Approach of Large-Scale Unstable Proxy Servers Scheduling

Authors: Xiaoming Jiang, Jinqiao Shi, Qingfeng Tan, Wentao Zhang, Xuebin Wang, Muqian Chen

Abstract:

Nowadays, big companies such as Google, Microsoft, which have adequate proxy servers, have perfectly implemented their web crawlers for a certain website in parallel. But due to lack of expensive proxy servers, it is still a puzzle for researchers to crawl large amounts of information from a single website in parallel. In this case, it is a good choice for researchers to use free public proxy servers which are crawled from the Internet. In order to improve efficiency of web crawler, the following two issues should be considered primarily: (1) Tasks may fail owing to the instability of free proxy servers; (2) A proxy server will be blocked if it visits a single website frequently. In this paper, we propose Proxisch, an optimization approach of large-scale unstable proxy servers scheduling, which allow anyone with extremely low cost to run a web crawler efficiently. Proxisch is designed to work efficiently by making maximum use of reliable proxy servers. To solve second problem, it establishes a frequency control mechanism which can ensure the visiting frequency of any chosen proxy server below the website’s limit. The results show that our approach performs better than the other scheduling algorithms.

Keywords: proxy server, priority queue, optimization algorithm, distributed web crawling

Procedia PDF Downloads 211
1475 Integration of Artificial Neural Network with Geoinformatics Technology to Predict Land Surface Temperature within Sun City Jodhpur, Rajasthan, India

Authors: Avinash Kumar Ranjan, Akash Anand

Abstract:

The Land Surface Temperature (LST) is an essential factor accompanying to rise urban heat and climate warming within a city in micro level. It is also playing crucial role in global change study as well as radiation budgets measuring in heat balance studies. The information of LST is very substantial to recognize the urban climatology, ecological changes, anthropological and environmental interactions etc. The Chief motivation of present study focus on time series of ANN model that taken a sequence of LST values of 2000, 2008 and 2016, realize the pattern of variation within the data set and predict the LST values for 2024 and 2032. The novelty of this study centers on evaluation of LST using series of multi-temporal MODIS (MOD 11A2) satellite data by Maximum Value Composite (MVC) techniques. The results derived from this study endorse the proficiency of Geoinformatics Technology with integration of ANN to gain knowledge, understanding and building of precise forecast from the complex physical world database. This study will also focus on influence of Land Use/ Land Cover (LU/LC) variation on Land Surface Temperature.

Keywords: LST, geoinformatics technology, ANN, MODIS satellite imagery, MVC

Procedia PDF Downloads 240
1474 An Enhanced Distributed Weighted Clustering Algorithm for Intra and Inter Cluster Routing in MANET

Authors: K. Gomathi

Abstract:

Mobile Ad hoc Networks (MANET) is defined as collection of routable wireless mobile nodes with no centralized administration and communicate each other using radio signals. Especially MANETs deployed in hostile environments where hackers will try to disturb the secure data transfer and drain the valuable network resources. Since MANET is battery operated network, preserving the network resource is essential one. For resource constrained computation, efficient routing and to increase the network stability, the network is divided into smaller groups called clusters. The clustering architecture consists of Cluster Head(CH), ordinary node and gateway. The CH is responsible for inter and intra cluster routing. CH election is a prominent research area and many more algorithms are developed using many different metrics. The CH with longer life sustains network lifetime, for this purpose Secondary Cluster Head(SCH) also elected and it is more economical. To nominate efficient CH, a Enhanced Distributed Weighted Clustering Algorithm (EDWCA) has been proposed. This approach considers metrics like battery power, degree difference and speed of the node for CH election. The proficiency of proposed one is evaluated and compared with existing algorithm using Network Simulator(NS-2).

Keywords: MANET, EDWCA, clustering, cluster head

Procedia PDF Downloads 398
1473 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments

Authors: Aileen F. Wang

Abstract:

Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.

Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square

Procedia PDF Downloads 453
1472 Susceptibility Assessment and Genetic Diversity of Iranian and CIMMYT Wheat Genotypes to Common Root Rot Disease Bipolaris sorokiniana

Authors: Mehdi Nasr Esfahani, Abdal-Rasool Gholamalian, Abdelfattah A. Dababat

Abstract:

Wheat, Triticum aestivum L. is one of the most important and strategic crops in the human diet. Several diseases threaten this particular crop. Common root rot disease of wheat by a fungal agent, Bipolaris sorokiniana is one of the important diseases, causing considerable losses worldwide. Resistant sources are the only feasible and effective method of control for managing diseases. In this study, the response of 33 domestic and exotic wheat genotypes, including cultivars and promising lines were screened to B. sorokiniana at greenhouse and field conditions, based on five scoring scale indexes of 0 to 100 severity percentage. The screening was continued on resistant wheat genotypes and repeated several times to confirm the greenhouse and field results. Statistical and cluster analysis of data was performed using SAS and SPSS software, respectively. The results showed that, the response of wheat genotypes to the disease in the greenhouse and field conditions was highly significant. The highest rate of common root rot disease infection, B. sorokiniana in the greenhouse and field, was of CVS. Karkheh and Beck Cross-Roshan with 60.83% and 59.16% disease severity respectively, and the lowest one were in cv. Alvand with 18.33%, followed by cv. Baharan with 19.16% disease severity, with a highly significant difference respectively. The remaining wheat genotypes were located in between these two highest and lowest infected groups to B. sorokiniana significantly. There was a high correlation coefficient between the related statistical groups and cluster analysis.

Keywords: wheat, rot, root, crown, fungus, genotype, resistance

Procedia PDF Downloads 134
1471 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 171
1470 Effect of Be, Zr, and Heat Treatment on Mechanical Behavior of Cast Al-Mg-Zn-Cu Alloys (7075)

Authors: Mahmoud M. Tash

Abstract:

The present study was undertaken to investigate the effect of aging parameters (time and temperature) on the mechanical properties of Be-and/or Zr- treated Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys containing Be and/or Zr. Different aging treatment were carried out for the as solution treated (SHT) specimens. The specimens were aged at different conditions; Natural and artificial aging was carried out at room temperature, 120C, 150C, 180C and 220C for different periods of time. Duplex aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation data results as a function of different aging parameters are analysed. A statistical design of experiments (DOE) approach using fractional factorial design is applied to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be- and/or Zr- treated 7075 alloys. Mathematical models are developed to relate the alloy mechanical properties with the different aging parameters.

Keywords: casting aging treatment, mechanical properties, Al-Mg-Zn alloys, Be- and/or Zr-treatment, experimental correlation

Procedia PDF Downloads 364
1469 Comparision of Neospora caninum Experimental Infection in Pigeons and Chickens Embryonated Eggs

Authors: S. Bahrami, A. Rezaie, Z. Boroumand, S. Ghavami

Abstract:

Neospora caninum is protozoan parasite which can cause a serious disease in dogs and cattle. It has been shown that birds may be a permissive intermediate host for N. caninum since parasite DNA has been detected in tissues from birds. It is showed that embryonated chicken egg can be used as an animal model for experimental infection. The aim of present study was to compare experimental infection of Neospora in chicken and pigeons embryonated eggs. An infection with N. caninum Nc1 isolate was conducted in chicken and pigeons embryonated eggs to evaluate LD50. After calculation of LD50, 2LD50 of tachyzoites were injected to eggs. Macroscopic changes of each embryo were noticed and to investigate the parasite distribution in tissues immunohistochemistry (IHC) and molecular methods were used. In the present study, histopathological changes were considered and sections to those used for histopathological examination including heart, liver, brain and chorioallantoic (CA) membrane were subjected to IHC, too. For PCR procedure, primer pair Np21/Np6 was used for amplification of the Nc5 gene. Pigeon's embryo showed more macroscopic changes than chicken embryo. A hemorrhage of the CA was the main grass lesion. All the infected tissues had histopathological changes. Microscopic examination of tissues revealed acute neosporosis due to hemorrhage, necrosis and infiltration of mononuclear inflammatory cells. Based on IHC and molecular results, the parasite aggregation in the heart was more predominant than in the other tissues. These results reinforce that there is genetic susceptibility to N. caninum in pigeons embryonated eggs like chickens embryonated eggs and provide new insights to research an inexpensive and available animal model for N. caninum.

Keywords: immunohistochemistry, Neospora caninum, PCR, pigeon embryonated egg

Procedia PDF Downloads 345
1468 Inverse Heat Conduction Analysis of Cooling on Run-Out Tables

Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi

Abstract:

In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.

Keywords: inverse analysis, function specification, neural net works, particle swarm, run-out table

Procedia PDF Downloads 240
1467 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images

Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei

Abstract:

Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.

Keywords: miner self-rescue, object detection, underground mine, YOLO

Procedia PDF Downloads 83
1466 Molecular Characterization and Phylogenetic Analysis of Capripoxviruses from Outbreak in Iran 2021

Authors: Maryam Torabi, Habibi, Abdolahi, Mohammadi, Hassanzadeh, Darban Maghami, Baghi

Abstract:

Sheeppox Virus (SPPV) and goatpox virus (GTPV) are considerable diseases of sheep, and goats, caused by viruses of the Capripoxvirus (CaPV) genus. They are responsible for economic losses. Animal mortality, morbidity, cost of vaccinations, and restrictions in animal products’ trade are the reasons of economic losses. Control and eradication of CaPV depend on early detection of outbreaks so that molecular detection and genetic analysis could be effective to this aim. This study was undertaken to molecularly characterize SPPV and GTPV strains that have been circulating in Iran. 120 skin papules and nodule biopsies were collected from different regions of Iran and were examined for SPPV, GTPV viruses using TaqMan Real -Time PCR. Some of these amplified genes were sequenced, and phylogenetic trees were constructed. Out of the 120 samples analysed, 98 were positive for CaPV by Real- Time PCR (81.6%), and most of them wereSPPV. then 10 positive samples were sequenced and characterized by amplifying the ORF 103CaPV gene. sequencing and phylogenetic analysis for these positive samples revealed a high percentage of identity with SPPV isolated from different countries in Middle East. In conclusions, molecular characterization revealed nearly complete identity with all recent SPPVs strains in local countries that requires further studies to monitor the virus evolution and transmission pathways to better understand the virus pathobiology that will help for SPPV control.

Keywords: molecular epidemiology, Real-Time PCR, phylogenetic analysis, capripoxviruses

Procedia PDF Downloads 149
1465 Thrombophilic Mutations in Tunisian Patients with Recurrent Pregnancy Loss

Authors: Frikha Rim, Abdelmoula Bouayed Nouha, Rebai Tarek

Abstract:

Pregnancy is a hypercoagulable state which causing a defective maternal haemostatic response and leading to thrombosis of the uteroplacental vasculature, that might cause pregnancy complications as recurrent pregnancy loss (RPL). Since heritable Thrombophilic defects are associated with increased thrombosis, their prevalence was evaluated in patients with special emphasis on combinations of the above pathologies. Especially, Factor V Leiden (FVL) G1691A, methylene tetra hydro folate reductase (MTHFR) C677T, and factor II (FII) G20210A mutations are three important causes of thrombophilia, which might be related to recurrent pregnancy loss (RPL). In this study we evaluated the presence of these three mutations [factor V Leiden (FVL), prothrombin G20210A (PTG) and methylenetetrahydrofolate reductase (MTHFR) C677T] amongst 35 Tunisian women with more than 2 miscarriages, referred to our genetic counseling. DNA was extracted from peripheral blood samples and PCR-RFLP was performed for the molecular diagnosis of each mutation. Factor V Leiden and Prothrombin mutation were detected respectively in 5.7% and 2.9% of women with particular history of early fetal loss and thrombotic events. Despites the luck of strength of this study, we insist that testing for the most inherited thrombophilia (FVL and FII mutation) should be performed in women with RPL in the context of thrombotic events. Multi-centre collaboration is necessary to clarify the real impact of thrombotic molecular defects on the pregnancy outcome, to ascertain the effect of thrombophilia on recurrent pregnancy loss and then to evaluate the appropriate therapeutic approach.

Keywords: thrombophilia, recurrent pregnancy loss, factor V Leiden, prothrombin G20210A, methylene tetra hydro folate reductase

Procedia PDF Downloads 458
1464 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images

Authors: Reem El Chakik

Abstract:

The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.

Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination

Procedia PDF Downloads 112
1463 FPGA Implementation of a Marginalized Particle Filter for Delineation of P and T Waves of ECG Signal

Authors: Jugal Bhandari, K. Hari Priya

Abstract:

The ECG signal provides important clinical information which could be used to pretend the diseases related to heart. Accordingly, delineation of ECG signal is an important task. Whereas delineation of P and T waves is a complex task. This paper deals with the Study of ECG signal and analysis of signal by means of Verilog Design of efficient filters and MATLAB tool effectively. It includes generation and simulation of ECG signal, by means of real time ECG data, ECG signal filtering and processing by analysis of different algorithms and techniques. In this paper, we design a basic particle filter which generates a dynamic model depending on the present and past input samples and then produces the desired output. Afterwards, the output will be processed by MATLAB to get the actual shape and accurate values of the ranges of P-wave and T-wave of ECG signal. In this paper, Questasim is a tool of mentor graphics which is being used for simulation and functional verification. The same design is again verified using Xilinx ISE which will be also used for synthesis, mapping and bit file generation. Xilinx FPGA board will be used for implementation of system. The final results of FPGA shall be verified with ChipScope Pro where the output data can be observed.

Keywords: ECG, MATLAB, Bayesian filtering, particle filter, Verilog hardware descriptive language

Procedia PDF Downloads 367
1462 Sequence Polymorphism and Haplogroup Distribution of Mitochondrial DNA Control Regions HVS1 and HVS2 in a Southwestern Nigerian Population

Authors: Ogbonnaya O. Iroanya, Samson T. Fakorede, Osamudiamen J. Edosa, Hadiat A. Azeez

Abstract:

The human mitochondrial DNA (mtDNA) is about 17 kbp circular DNA fragments found within the mitochondria together with smaller fragments of 1200 bp known as the control region. Knowledge of variation within populations has been employed in forensic and molecular anthropology studies. The study was aimed at investigating the polymorphic nature of the two hypervariable segments (HVS) of the mtDNA, i.e., HVS1 and HVS2, and to determine the haplogroup distribution among individuals resident in Lagos, Southwestern Nigeria. Peripheral blood samples were obtained from sixty individuals who are not related maternally, followed by DNA extraction and amplification of the extracted DNA using primers specific for the regions under investigation. DNA amplicons were sequenced, and sequenced data were aligned and compared to the revised Cambridge Reference Sequence (rCRS) GenBank Accession number: NC_012920.1) using BioEdit software. Results obtained showed 61 and 52 polymorphic nucleotide positions for HVS1 and HVS2, respectively. While a total of three indels mutation were recorded for HVS1, there were seven for HVS2. Also, transition mutations predominate nucleotide change observed in the study. Genetic diversity (GD) values for HVS1 and HVS2 were estimated to be 84.21 and 90.4%, respectively, while random match probability was 0.17% for HVS1 and 0.89% for HVS2. The study also revealed mixed haplogroups specific to the African (L1-L3) and the Eurasians (U and H) lineages. New polymorphic sites obtained from the study are promising for human identification purposes.

Keywords: hypervariable region, indels, mitochondrial DNA, polymorphism, random match probability

Procedia PDF Downloads 115
1461 Profiling on the Holistic Identity of Malaysian Gifted Learners

Authors: Rorlinda Yusof, Siti Aishah Hassan, Afifah Mohamad Radzi, Mohd Hakimie Zainal Abidin, Amran Rasli, Inderbir Sandhu

Abstract:

The purpose of this study is to examine the self-identities of gifted and talented students and the relationship between self-identity and academic accomplishment. A random sample of 300 students enrolled in a secondary education programme at the Pusat GENIUS@pintar Negara was chosen as respondents of a 151-item holistic-identity component development tool. The validity of the instrument was assessed using Principal Components Analysis and Factor Analysis via an inter-Item Correlation Matrix (Loading values 0.44 to 0.86), which resulted in the formation of eight dimensions. The Cronbach's Alpha was calculated to determine the instrument's reliability (the overall result was 0.98). The results showed that students' holistic-identity profiles were relatively high (mean=4.09, standard deviation=0.449). In addition, spiritual identity received the greatest mean score (4.34) out of the eight components of identity investigated, while leadership identity received the lowest mean score (3.88). A conceptual framework for Islamic school leadership is recommended to implement spiritual values without differentiation to harmonize spiritual and intellectual intelligence among all the students. Some benchmarking studies with other centres for gifted and talented students are recommended for further research.

Keywords: holistic self-identity, academic achievement, self-development programme, counselling services, gifted and talented students

Procedia PDF Downloads 112
1460 Chemical Composition and Biological Investigation of Halpophyllum tuberculatum A. Juss (Rutaceae) Essential Oils Growing in Libya

Authors: O. M. M. Sabry, Abeer M. El Sayed

Abstract:

The essential oils from the aerial parts and flowers of Haplophyllum tuberculatum (Forsskal) Adr. Juss (Rutaceae) growing in Libya were obtained separately by hydro-distillation using a Clevenger-type apparatus. The essential oils yield were (0.4, 1.5w/w%) respectively based on the dry weight of the plant. The oils were analyzed by GC-MS. Twenty four constituents, amounting to 96.6%, were identified in the oil of the aerial parts. The predominant compounds were among the non oxygenated terpenoids (82.4%) as monoterpene hydrocarbons, represented by sabinen (26.4 %), δ-terpinen (26 %), β-phellandrene (10.4%) and 3-carene (3.86%). Zingiberine (0.4%) and β-sesquiphellandrene (0.12%) were the major sesquiterpene hydrocarbons identified. Oxygenated monoterpenes were represented by eucalyptol (5.5%) and piperitone (5.55%). Twenty six constituents, equivalent to 99.5%, were identified in the oil of the flowers. The dominance of monoterpene hydrocarbons in the flowers oil can be attributed to the high percentage of γ-terpinen (38.44%), β-phellandrene (10.0%), α- phellandrene (2.33%), 3,4-dimethyl-1,5-cyclooctadiene (6.67%), β-myrecene (6.04%), 3-carene (5.43%) and α-pinene (1.3%).While the oxygenated monoterpenes can be contributed to the trans-piperitol (4.67%) and piperitone (2.07%). Sesquiterpene hydrocarbons were not identified in the oil of the flower of H. tuberculatum. Variation in constitution between oils of Libyan H. tuberculatum and that obtained from other countries can be due to both environmental and genetic factors. The essential oils have demonstrated variable antimicrobial activities against certain micro-organisms. Also have revealed marked in vitro cytotoxicity against lung (H1299), liver (HEPG2) carcinoma cell line and variably effective as anti-inflammatory and antioxidant.

Keywords: Halpophyllum tuberculatum, rutaceae, essential oil, antimicrobial, anti-inflammatory, antitumor, antioxidant, Libya

Procedia PDF Downloads 478
1459 Gas Lift Optimization Using Smart Gas Lift Valve

Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, M. Babaie

Abstract:

Gas lift is one of the most common forms of artificial lift, particularly for offshore wells because of its relative down hole simplicity, flexibility, reliability, and ability to operate over a large range of rates and occupy very little space at the well head. Presently, petroleum industry is investing in exploration and development fields in offshore locations where oil and gas wells are being drilled thousands of feet below the ocean in high pressure and temperature conditions. Therefore, gas-lifted oil wells are capable of failure through gas lift valves which are considered as the heart of the gas lift system for controlling the amount of the gas inside the tubing string. The gas injection rate through gas lift valve must be controlled to be sufficient to obtain and maintain critical flow, also, gas lift valves must be designed not only to allow gas passage through it and prevent oil passage, but also for gas injection into wells to be started and stopped when needed. In this paper, smart gas lift valve has been used to investigate the effect of the valve port size, depth of injection and vertical lift performance on well productivity; all these aspects have been investigated using PROSPER simulator program coupled with experimental data. The results show that by using smart gas lift valve, the gas injection rate can be controlled which leads to improved flow performance.

Keywords: Effect of gas lift valve port size, effect water cut, vertical flow performance

Procedia PDF Downloads 291
1458 Effects of Plumage Colour on Measurable Attributes of Indigenous Chickens in North Central Nigeria

Authors: Joseph J. Okoh, Samuel T. Mbap, Tahir Ibrahim, Yusuf P. Mancha

Abstract:

The influence of plumage colour on measurable attributes of 6176 adult indigenous chickens of mixed-sex from four states of the North Central Zone of Nigeria namely; Nasarawa, Niger, Benue, Kogi and the Federal Capital Territory (FCT) Abuja were assessed. The overall average body weight of the chickens was 1.95 ± 0.03kg. The body weights of black, white, black/white, brown, black/brown, grey and mottled chicken however were 1.87 ± 0.04, 1.94 ± 0.04, 1.95 ± 0.03, 1.93 ± 0.03, 2.01 ± 0.04, 1.96 ± 0.04 and 1.94±0.14kg respectively. Only body length did not vary by plumage colour. The others; body weight and width, shank, comb and breast length, breast height (p < 0.001), beak and wing lengths (p < 0.001) varied significantly. Generally, no colour was outrightly superior to others in all body measurements. However, body weight and breast height were both highest in black/brown chickens which also had the second highest breast length. Body width, shank, beak, comb and wing lengths were highest in grey chickens but lowest in those with white colour and combinations. Egg quality was on the other hand mostly lowest in grey chickens. In selection for genetic improvement in body measurements, black/brown and grey chickens should be favoured. However, in view of the known negative relationship between body weight and egg attributes, selection in favour of grey plumage may result in chickens of poor egg attributes. Therefore, grey chickens should be selected against egg quality.

Keywords: body weight, indigenous chicken, measurements, plumage colour

Procedia PDF Downloads 128
1457 Left to Right-Right Most Parsing Algorithm with Lookahead

Authors: Jamil Ahmed

Abstract:

Left to Right-Right Most (LR) parsing algorithm is a widely used algorithm of syntax analysis. It is contingent on a parsing table, whereas the parsing tables are extracted from the grammar. The parsing table specifies the actions to be taken during parsing. It requires that the parsing table should have no action conflicts for the same input symbol. This requirement imposes a condition on the class of grammars over which the LR algorithms work. However, there are grammars for which the parsing tables hold action conflicts. In such cases, the algorithm needs a capability of scanning (looking-ahead) next input symbols ahead of the current input symbol. In this paper, a ‘Left to Right’-‘Right Most’ parsing algorithm with lookahead capability is introduced. The 'look-ahead' capability in the LR parsing algorithm is the major contribution of this paper. The practicality of the proposed algorithm is substantiated by the parser implementation of the Context Free Grammar (CFG) of an already proposed programming language 'State Controlled Object Oriented Programming' (SCOOP). SCOOP’s Context Free Grammar has 125 productions and 192 item sets. This algorithm parses SCOOP while the grammar requires to ‘look ahead’ the input symbols due to action conflicts in its parsing table. Proposed LR parsing algorithm with lookahead capability can be viewed as an optimization of ‘Simple Left to Right’-‘Right Most’ (SLR) parsing algorithm.

Keywords: left to right-right most parsing, syntax analysis, bottom-up parsing algorithm

Procedia PDF Downloads 126
1456 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage

Authors: P. Jayashree, S. Rajkumar

Abstract:

With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.

Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding

Procedia PDF Downloads 294
1455 Challenges Facing Farmers in the Governorate of Al-Baha, Saudi Arabia

Authors: Mohammed Alghamdi, Ghanem Al-Ghamdi

Abstract:

The Governorate of Al-Baha is known for a history of farming that focused on plant products such as Date Palm, olives, figs, pomegranate and cereals as well as raising cattle, sheep, goats and to some extent camels for many decades. However, farmers have been facing with very significant natural and artificial challenges lately. The goal of this study was to determine the most significant challenges facing farmers in the Governorate of Al-Baha. Sixty farms were surveyed during the year of 2013. Farm survey focused on the farm management, farm financial status and governmental support. Our results showed that most farms were dedicated to farming with limited number of farms used parts of its premises for recreation. About 90% of farms were engaged in exclusively farming business. The financial status was good in most of the farms (80%), stable in 16% and hardly standing in less than 5%. Nearly 60% of the farms marketed 1-3 products and 23% marketed up to 6 products, 14% of the farms marketed up to 9 products and 4% marketed more than 9 products. Less than 14% had a chance to market their products over seven times per year while about 11% market their products and 32% of farms market 3-4 per year and 43% of farms market 1-2 per year. Our data showed that most farmers are in good financial status producing healthy food.

Keywords: farming system, Al-Baha, healthy food, Saudi Arabia

Procedia PDF Downloads 280
1454 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network

Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang

Abstract:

As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.

Keywords: GUI, deep learning, GAN, data augmentation

Procedia PDF Downloads 184
1453 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction

Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin

Abstract:

Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.

Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria

Procedia PDF Downloads 93
1452 Air Quality Analysis Using Machine Learning Models Under Python Environment

Authors: Salahaeddine Sbai

Abstract:

Air quality analysis using machine learning models is a method employed to assess and predict air pollution levels. This approach leverages the capabilities of machine learning algorithms to analyze vast amounts of air quality data and extract valuable insights. By training these models on historical air quality data, they can learn patterns and relationships between various factors such as weather conditions, pollutant emissions, and geographical features. The trained models can then be used to predict air quality levels in real-time or forecast future pollution levels. This application of machine learning in air quality analysis enables policymakers, environmental agencies, and the general public to make informed decisions regarding health, environmental impact, and mitigation strategies. By understanding the factors influencing air quality, interventions can be implemented to reduce pollution levels, mitigate health risks, and enhance overall air quality management. Climate change is having significant impacts on Morocco, affecting various aspects of the country's environment, economy, and society. In this study, we use some machine learning models under python environment to predict and analysis air quality change over North of Morocco to evaluate the climate change impact on agriculture.

Keywords: air quality, machine learning models, pollution, pollutant emissions

Procedia PDF Downloads 91
1451 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics

Authors: Mikheil Kalmakhelidze

Abstract:

Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.

Keywords: description logic, fuzzy logic, neural networks, record linkage

Procedia PDF Downloads 272