Search results for: systems of interacting agents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10945

Search results for: systems of interacting agents

10555 Conceptual Design of an Automated Biomethane Test Using Interacting Criteria

Authors: Vassilis C. Moulianitis, Evgenios Scourboutis, Ilias Katsanis, Paraskevas Papanikos, Nikolas Zacharopoulos

Abstract:

This paper presents the conceptual design of an automated biomethane potential measurement system. First, the design specifications for the BMP system and the basic components of the system will be presented. Three concepts that meet the design specifications will be presented. The basic characteristics of each concept will be analyzed in detail. The concepts will be evaluated using a set of design criteria that includes flexibility, cost, size, complexity, aesthetics, and accessibility in order to determine the best solution. The evaluation will be based on the discrete Choquet integral.

Keywords: automated biomethane test, conceptual mechatronics design, concept evaluation, Choquet integral

Procedia PDF Downloads 94
10554 Substituted Thiazole Analogues as Anti-Tumor Agents

Authors: Menna Ewida, Dalal Abou El-Ella, Dina Lasheen, Huessin El-Subbagh

Abstract:

Introduction: Vascular Endothelial Growth Factor receptor (VEGF) is a signal protein produced by cells that stimulates vasculogenesis to create new blood vessels. VEGF family binds to three trans-membrane tyrosine kinase receptors,Dihydrofolate reductase (DHFR) is an enzyme of crucial importance in medicinal chemistry. DHFR catalyzes the reduction 7,8 dihydro-folate to tetrahydrofolate and intimately couples with thymidylate synthase which is a pivotal enzyme that catalysis the reductive methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) utilizing N5,N10-methylene tetrahydrofolate as a cofactor which functions as the source of the methyl group. Purpose: Novel substituted Thiazole agents were designed as DHFR and VEGF-TK inhibitors with increased synergistic activity and decreased side effects. Methods: Five series of compounds were designed with a rational that mimic the pharmacophoric features present in the reported active compounds that target DHFR & VEGFR. These molecules were docked against Methotrexate & Sorafenib as controls. An in silico ADMET study was also performed to validate the bioavailability of the newly designed compounds. The in silico molecular docking & ADMET study were also applied to the non-classical antifolates for comparison. The interaction energy comparable to that of MTX for DHFRI and Sorafenib for VEGF-TKI activity were recorded. Results: Compound 5 exhibited the highest interaction energy when docked against Sorafenib, While Compound 9 showed the highest interaction energy when docked against MTX with the perfect binding mode. Comparable results were also obtained for the ADMET study. Most of the compounds showed absorption within (95-99) zone which varies according to the type of substituents. Conclusions: The Substituted Thiazole Analogues could be a suitable template for antitumor drugs that possess enhanced bioavailability and act as DHFR and VEGF-TK inhibitors.

Keywords: anti-tumor agents, DHFR, drug design, molecular modeling, VEGFR-TKIs

Procedia PDF Downloads 235
10553 Decomposition of Third-Order Discrete-Time Linear Time-Varying Systems into Its Second- and First-Order Pairs

Authors: Mohamed Hassan Abdullahi

Abstract:

Decomposition is used as a synthesis tool in several physical systems. It can also be used for tearing and restructuring, which is large-scale system analysis. On the other hand, the commutativity of series-connected systems has fascinated the interest of researchers, and its advantages have been emphasized in the literature. The presentation looks into the necessary conditions for decomposing any third-order discrete-time linear time-varying system into a commutative pair of first- and second-order systems. Additional requirements are derived in the case of nonzero initial conditions. MATLAB simulations are used to verify the findings. The work is unique and is being published for the first time. It is critical from the standpoints of synthesis and/or design. Because many design techniques in engineering systems rely on tearing and reconstruction, this is the process of putting together simple components to create a finished product. Furthermore, it is demonstrated that regarding sensitivity to initial conditions, some combinations may be better than others. The results of this work can be extended for the decomposition of fourth-order discrete-time linear time-varying systems into lower-order commutative pairs, as two second-order commutative subsystems or one first-order and one third-order commutative subsystems.

Keywords: commutativity, decomposition, discrete time-varying systems, systems

Procedia PDF Downloads 110
10552 High Throughput Virtual Screening against ns3 Helicase of Japanese Encephalitis Virus (JEV)

Authors: Soma Banerjee, Aamen Talukdar, Argha Mandal, Dipankar Chaudhuri

Abstract:

Japanese Encephalitis is a major infectious disease with nearly half the world’s population living in areas where it is prevalent. Currently, treatment for it involves only supportive care and symptom management through vaccination. Due to the lack of antiviral drugs against Japanese Encephalitis Virus (JEV), the quest for such agents remains a priority. For these reasons, simulation studies of drug targets against JEV are important. Towards this purpose, docking experiments of the kinase inhibitors were done against the chosen target NS3 helicase as it is a nucleoside binding protein. Previous efforts regarding computational drug design against JEV revealed some lead molecules by virtual screening using public domain software. To be more specific and accurate regarding finding leads, in this study a proprietary software Schrödinger-GLIDE has been used. Druggability of the pockets in the NS3 helicase crystal structure was first calculated by SITEMAP. Then the sites were screened according to compatibility with ATP. The site which is most compatible with ATP was selected as target. Virtual screening was performed by acquiring ligands from databases: KinaseSARfari, KinaseKnowledgebase and Published inhibitor Set using GLIDE. The 25 ligands with best docking scores from each database were re-docked in XP mode. Protein structure alignment of NS3 was performed using VAST against MMDB, and similar human proteins were docked to all the best scoring ligands. The low scoring ligands were chosen for further studies and the high scoring ligands were screened. Seventy-three ligands were listed as the best scoring ones after performing HTVS. Protein structure alignment of NS3 revealed 3 human proteins with RMSD values lesser than 2Å. Docking results with these three proteins revealed the inhibitors that can interfere and inhibit human proteins. Those inhibitors were screened. Among the ones left, those with docking scores worse than a threshold value were also removed to get the final hits. Analysis of the docked complexes through 2D interaction diagrams revealed the amino acid residues that are essential for ligand binding within the active site. Interaction analysis will help to find a strongly interacting scaffold among the hits. This experiment yielded 21 hits with the best docking scores which could be investigated further for their drug like properties. Aside from getting suitable leads, specific NS3 helicase-inhibitor interactions were identified. Selection of Target modification strategies complementing docking methodologies which can result in choosing better lead compounds are in progress. Those enhanced leads can lead to better in vitro testing.

Keywords: antivirals, docking, glide, high-throughput virtual screening, Japanese encephalitis, ns3 helicase

Procedia PDF Downloads 230
10551 Effect of Injector Installation Angle on the Thermal Behaviors of UWS in a Diesel SCR Catalytic Muffler Systems

Authors: Man Young Kim

Abstract:

To reduce the NOx emission in a Diesel vehicle, such various after treatment systems as SCR, LNC, and LNT are frequently visited as promising systems. Among others, urea-based SCR systems are known to be stable, effective technologies that can reduce NOx emissions most efficiently from diesel exhaust systems. In this study, therefore, effect of urea injector installation angle on the evaporation and mixing characteristics is investigated to find optimum operation conditions. It can be found that the injection angle significantly affects the thermal behavior of the urea-water solution in the diesel exhaust gases.

Keywords: selective catalytic reduction (SCR), evaporation, thermolysis, urea-water solution (UWS), injector installation angle

Procedia PDF Downloads 361
10550 A Preliminary Study on the Effects of Lung Impact on Ballistic Thoracic Trauma

Authors: Amy Pullen, Samantha Rodrigues, David Kieser, Brian Shaw

Abstract:

The aim of the study was to determine if a projectile interacting with the lungs increases the severity of injury in comparison to a projectile interacting with the ribs or intercostal muscle. This comparative study employed a 10% gelatine based model with either porcine ribs or balloons embedded to represent a lung. Four sample groups containing five samples were evaluated; these were control (plain gel), intercostal impact, rib impact, and lung impact. Two ammunition natures were evaluated at a range of 10m; these were 5.56x45mm and 7.62x51mm. Aspects of projectile behavior were quantified including exiting projectile weight, location of yawing, projectile fragmentation and distribution, location and area of the temporary cavity, permanent cavity formation, and overall energy deposition. Major findings included the cavity showing a higher percentage of the projectile weight exit the block than the intercostal and ribs, but similar to the control for the 5.56mm ammunition. However, for the 7.62mm ammunition, the lung was shown to have a higher percentage of the projectile weight exit the block than the control, intercostal and ribs. The total weight of projectile fragments as a function of penetration depth revealed large fluctuations and significant intra-group variation for both ammunition natures. Despite the lack of a clear trend, both plots show that the lung leads to greater projectile fragments exiting the model. The lung was shown to have a later center of the temporary cavity than the control, intercostal and ribs for both ammunition types. It was also shown to have a similar temporary cavity volume to the control, intercostal and ribs for the 5.56mm ammunition and a similar temporary cavity to the intercostal for the 7.62mm ammunition The lung was shown to leave a similar projectile tract than the control, intercostal and ribs for both ammunition types. It was also shown to have larger shear planes than the control and the intercostal, but similar to the ribs for the 5.56mm ammunition, whereas it was shown to have smaller shear planes than the control but similar shear planes to the intercostal and ribs for the 7.62mm ammunition. The lung was shown to have less energy deposited than the control, intercostal and ribs for both ammunition types. This comparative study provides insights into the influence of the lungs on thoracic gunshot trauma. It indicates that the lungs limits projectile deformation and causes a later onset of yawing and subsequently limits the energy deposited along the wound tract creating a deeper and smaller cavity. This suggests that lung impact creates an altered pattern of local energy deposition within the target which will affect the severity of trauma.

Keywords: ballistics, lung, trauma, wounding

Procedia PDF Downloads 170
10549 Effects of Local Decongestive Agents at Trachea and Lungs

Authors: Sertac Arslan, Guven Guney, Ayse Ipek Akyuz Unsal, Emre Demir, Buket Demirci

Abstract:

Purpose: There is little histologic data concerning effects of nasal decongestants on the respiratory tract. We aimed to put forth the effects of nasal decongestants on the trachea and lower airways of rats. Materials and Methods: Four to six months old 60 male rats were randomly categorized into 6 groups. Experimental drugs were applied to the same nostril of rats twice daily for 8 weeks (Xylometazolin, Benzalkolyum, EDTA, Sorbitol and combined drug solutions). We applied normal saline solution (NaCl %0.9) for the control group. In the end, trachea and both lungs were dissected and kept in formaldehyde for histopathologic evaluation. Results: Inflammation and bronchial edema were most common findings. While all rats in sorbitol group had increased numbers of type 2 pneumocytes; 80% of BAC group had increased numbers of type 2 pneumocytes. Spillover of tracheal epithelium was seen mostly in sorbitol, EDTA and combined drug groups (60%, 87.5%, 50% respectively). Bronchial smooth muscle hypertrophy was seen mostly in BAC and EDTA group (70%, 62.5% respectively). The number of goblet cells showed the significant difference between control-combined drug (p=0.025) and control-BAC (p=0.001) groups. Conclusions: Nasal decongestants can cause permanent changes at lower respiratory tract in addition to changes in upper respiratory tract.

Keywords: decongestive agents, xylometazoline, lung, trachea

Procedia PDF Downloads 176
10548 Parental and Peer Influences on Juvenile Delinquency: Case Studies in Malaysia

Authors: Tan Bee Piang

Abstract:

The family is always seen as the most important agent of socialization, therefore, abusive parents and broken family have often been highlighted as two main factors contributing to juvenile delinquency. However, several studies have indicated that the peer group is one of the most powerful socialization agents in adolescent development, the influences of family are insignificant after peer influences are taken. This study aimed to investigate the relative influence of parents and peers on juvenile delinquency in Malaysia. Malaysia is a multicultural society, so different types of traditional values and religions permeate all aspects of Malaysian society, and the influences of family and parents are always seen as the most important agents of socialization. 80 juveniles from a reform school in Malaysia have been selected to participate in this study. Based on the experiences of juveniles in this study, it found that peer groups play an important role when the adolescents try to create their own identities. Adolescents merely make friends with those who have similar life experiences, so adolescents are easily influenced by their friends and the juvenile delinquency is mostly group behavior. This research found that there is no significant relationship between family factors and delinquency. The data shows that a significant percentage of juveniles come from middle-class family and most of them are not from broken family. However, most of them have strained family relationship. This research suggests that we should take a look into other causes, like peer influence, of juvenile delinquency in Malaysia.

Keywords: juvenile delinquency, peer influence, group behaviour, family relationship

Procedia PDF Downloads 510
10547 Method Optimisation for [¹⁸F]-FDG Rodent Imaging Studies

Authors: J. Visser, C. Driver, T. Ebenhan

Abstract:

[¹⁸F]-FDG (fluorodeoxyglucose) is a radiopharmaceutical compound that is used for non-invasive cancer tumor imaging through positron emission tomography (PET). This radiopharmaceutical is used to visualise the metabolic processes in tumour tissues, which can be applied for the diagnosis and prognosis of various types of cancer. [¹⁸F]-FDG has widespread use in both clinical and pre-clinical research settings. Imaging using [¹⁸F]-FDG results in representative normal tissue distribution as well as visualisation of hypermetabolic lesions ([¹⁸F]-FDG avid foci). The metabolic tissue concentration of these lesions following [¹⁸F]-FDG administration can be quantified using Standard Uptake Values (SUV). Standard uptake values of [¹⁸F]-FDG-based Positron Emission Tomography can be influenced by various biological and technical handling factors. Biological factors that affect [¹⁸F]-FDG uptake include the blood glucose levels of subjects, normal physiological variants between subjects and administration of certain pharmaceutical agents. Technical factors that can have an effect include the route of radiopharmaceutical or pharmaceutical agents administered and environmental conditions such as ambient temperature and lighting. These factors influencing tracer uptake need to be investigated to improve the robustness of the imaging protocol, which will achieve reproducible image acquisition across various research projects, optimised tumor visualisation and increased data validity and reliability.

Keywords: fluorodeoxyglucose, tumour imaging, Rodent, Blood Glucose, PET/CT Imaging

Procedia PDF Downloads 11
10546 A Performance Study of Fixed, Single-Axis and Dual-Axis Photovoltaic Systems in Kuwait

Authors: A. Al-Rashidi, A. El-Hamalawi

Abstract:

In this paper, a performance study was conducted to investigate single and dual-axis PV systems to generate electricity in five different sites in Kuwait. Relevant data were obtained by using two sources for validation purposes. A commercial software, PVsyst, was used to analyse the data, such as metrological data and other input parameters, and compute the performance parameters such as capacity factor (CF) and final yield (YF). The results indicated that single and dual-axis PV systems would be very beneficial to electricity generation in Kuwait as an alternative source to conventional power plants, especially with the increased demand over time. The ranges were also found to be competitive in comparison to leading countries using similar systems. A significant increase in CF and YF values around 24% and 28.8% was achieved related to the use of single and dual systems, respectively.

Keywords: single-axis and dual-axis photovoltaic systems, capacity factor, final yield, Kuwait

Procedia PDF Downloads 296
10545 Study on the Presence of Protozoal Coinfections among Patients with Pneumocystis jirovecii Pneumonia in Bulgaria

Authors: Nina Tsvetkova, Rumen Harizanov, Aleksandra Ivanova, Iskra Rainova, Nina Yancheva-Petrova, Dimitar Strashimirov, Raina Enikova, Mihaela Videnova, Eleonora Kaneva, Iskren Kaftandjiev, Viktoria Levterova, Ivan Simeonovski, Nikolay Yanev, Georgi Hinkov

Abstract:

The Pneumocystis jirovecii (P. jirovecii) and protozoan of the genera Acanthamoeba, Cryptosporidium, and Toxoplasma gondii are opportunistic pathogens that can cause life-threatening infections in immunocompromised patients. Aim of the study was to evaluate the coinfection rate with opportunistic protozoal agents among Bulgarian patients diagnosed with P. jirovecii pneumonia. Thirty-eight pulmonary samples were collected from 38 patients (28 HIV-infected) with P. jirovecii infection. P. jirovecii DNA was detected by real-time PCR targeting the large mitochondrial subunit ribosomal RNA gene. Acanthamoeba was determined by genus-specific conventional PCR assay. Real-time PCR for the detection of a Toxoplasma gondii and Cryptosporidium DNA fragment was used. Pneumocystis DNA was detected in all 38 specimens; 28 (73.7%) were from HIV-infected patients. Three (10,7%) of them were co-infected with T. gondii and 1 (3.6%) with Cryptosporidium. In the group of non-HIV-infected (n=10), Cryptosporidium DNA was detected in an infant (10%). Acanthamoeba DNA was not found in the tested samples. The current study showed a relatively low rate of coinfections of Cryptosporidium spp./T. gondii and P. jirovecii in the Bulgarian patients studied.

Keywords: coinfection, opportunistic protozoal agents, Pneumocystis jirovecii, pulmonary infections

Procedia PDF Downloads 154
10544 An Algorithm to Compute the State Estimation of a Bilinear Dynamical Systems

Authors: Abdullah Eqal Al Mazrooei

Abstract:

In this paper, we introduce a mathematical algorithm which is used for estimating the states in the bilinear systems. This algorithm uses a special linearization of the second-order term by using the best available information about the state of the system. This technique makes our algorithm generalizes the well-known Kalman estimators. The system which is used here is of the bilinear class, the evolution of this model is linear-bilinear in the state of the system. Our algorithm can be used with linear and bilinear systems. We also here introduced a real application for the new algorithm to prove the feasibility and the efficiency for it.

Keywords: estimation algorithm, bilinear systems, Kakman filter, second order linearization

Procedia PDF Downloads 486
10543 Voltage Profile Enhancement in the Unbalanced Distribution Systems during Fault Conditions

Authors: K. Jithendra Gowd, Ch. Sai Babu, S. Sivanagaraju

Abstract:

Electric power systems are daily exposed to service interruption mainly due to faults and human accidental interference. Short circuit currents are responsible for several types of disturbances in power systems. The fault currents are high and the voltages are reduced at the time of fault. This paper presents two suitable methods, consideration of fault resistance and Distributed Generator are implemented and analyzed for the enhancement of voltage profile during fault conditions. Fault resistance is a critical parameter of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies and protection scheme efficiency. The effect of Distributed Generator is also considered. The proposed methods are tested on the IEEE 37 bus test systems and the results are compared.

Keywords: distributed generation, electrical distribution systems, fault resistance

Procedia PDF Downloads 515
10542 Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems

Authors: B. H. Aitchanov, Sh. K. Aitchanova, O. A. Baimuratov

Abstract:

This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use.

Keywords: digital dynamic pulse-frequency control systems, dynamic pulse-frequency modulation, control object, discrete filter, impulse device, microcontroller

Procedia PDF Downloads 495
10541 Q-Learning of Bee-Like Robots Through Obstacle Avoidance

Authors: Jawairia Rasheed

Abstract:

Modern robots are often used for search and rescue purpose. One of the key areas of interest in such cases is learning complex environments. One of the key methodologies for robots in such cases is reinforcement learning. In reinforcement learning robots learn to move the path to reach the goal while avoiding obstacles. Q-learning, one of the most advancement of reinforcement learning is used for making the robots to learn the path. Robots learn by interacting with the environment to reach the goal. In this paper simulation model of bee-like robots is implemented in NETLOGO. In the start the learning rate was less and it increased with the passage of time. The bees successfully learned to reach the goal while avoiding obstacles through Q-learning technique.

Keywords: reinforlearning of bee like robots for reaching the goalcement learning for randomly placed obstacles, obstacle avoidance through q-learning, q-learning for obstacle avoidance,

Procedia PDF Downloads 101
10540 Efficient Sampling of Probabilistic Program for Biological Systems

Authors: Keerthi S. Shetty, Annappa Basava

Abstract:

In recent years, modelling of biological systems represented by biochemical reactions has become increasingly important in Systems Biology. Biological systems represented by biochemical reactions are highly stochastic in nature. Probabilistic model is often used to describe such systems. One of the main challenges in Systems biology is to combine absolute experimental data into probabilistic model. This challenge arises because (1) some molecules may be present in relatively small quantities, (2) there is a switching between individual elements present in the system, and (3) the process is inherently stochastic on the level at which observations are made. In this paper, we describe a novel idea of combining absolute experimental data into probabilistic model using tool R2. Through a case study of the Transcription Process in Prokaryotes we explain how biological systems can be written as probabilistic program to combine experimental data into the model. The model developed is then analysed in terms of intrinsic noise and exact sampling of switching times between individual elements in the system. We have mainly concentrated on inferring number of genes in ON and OFF states from experimental data.

Keywords: systems biology, probabilistic model, inference, biology, model

Procedia PDF Downloads 349
10539 A Holistic Study of the Beta Lyrae Systems V0487 Lac, V0566 Hya and V0666 Lac

Authors: Moqbil S. Alenazi, Magdy. M. Elkhateeb

Abstract:

A comprehensive photometric study and evolutionary state for the newly discovered Beta Lyr systems V0487 Lac, V0566 Hya, and V0666 Lac were carried out by means of their first photometric observations. New times of minima were estimated from the observed light curves, and first (O-C) curves were established for all systems. A windows interface version of the Wilson and Devinney code (W-D) based on model atmospheres and a pass band prescription have been used for the radiative treatment. The accepted models reveal some absolute parameters for the studied systems, which are used in adopting the spectral type of the system's components and their evolutionary status. Distances to each system were calculated, and physical properties were estimated. Locations of the systems on the theoreticalmass–luminosity and mass–radius relations revealed a good fit for all systems components except for the secondary component of the system V0487 Lac.

Keywords: eclipsing binaries, light curve modelling, evolutionary state

Procedia PDF Downloads 77
10538 Validating the Micro-Dynamic Rule in Opinion Dynamics Models

Authors: Dino Carpentras, Paul Maher, Caoimhe O'Reilly, Michael Quayle

Abstract:

Opinion dynamics is dedicated to modeling the dynamic evolution of people's opinions. Models in this field are based on a micro-dynamic rule, which determines how people update their opinion when interacting. Despite the high number of new models (many of them based on new rules), little research has been dedicated to experimentally validate the rule. A few studies started bridging this literature gap by experimentally testing the rule. However, in these studies, participants are forced to express their opinion as a number instead of using natural language. Furthermore, some of these studies average data from experimental questions, without testing if differences existed between them. Indeed, it is possible that different topics could show different dynamics. For example, people may be more prone to accepting someone's else opinion regarding less polarized topics. In this work, we collected data from 200 participants on 5 unpolarized topics. Participants expressed their opinions using natural language ('agree' or 'disagree') and the certainty of their answer, expressed as a number between 1 and 10. To keep the interaction based on natural language, certainty was not shown to other participants. We then showed to the participant someone else's opinion on the same topic and, after a distraction task, we repeated the measurement. To produce data compatible with standard opinion dynamics models, we multiplied the opinion (encoded as agree=1 and disagree=-1) with the certainty to obtain a single 'continuous opinion' ranging from -10 to 10. By analyzing the topics independently, we observed that each one shows a different initial distribution. However, the dynamics (i.e., the properties of the opinion change) appear to be similar between all topics. This suggested that the same micro-dynamic rule could be applied to unpolarized topics. Another important result is that participants that change opinion tend to maintain similar levels of certainty. This is in contrast with typical micro-dynamics rules, where agents move to an average point instead of directly jumping to the opposite continuous opinion. As expected, in the data, we also observed the effect of social influence. This means that exposing someone with 'agree' or 'disagree' influenced participants to respectively higher or lower values of the continuous opinion. However, we also observed random variations whose effect was stronger than the social influence’s one. We even observed cases of people that changed from 'agree' to 'disagree,' even if they were exposed to 'agree.' This phenomenon is surprising, as, in the standard literature, the strength of the noise is usually smaller than the strength of social influence. Finally, we also built an opinion dynamics model from the data. The model was able to explain more than 80% of the data variance. Furthermore, by iterating the model, we were able to produce polarized states even starting from an unpolarized population. This experimental approach offers a way to test the micro-dynamic rule. This also allows us to build models which are directly grounded on experimental results.

Keywords: experimental validation, micro-dynamic rule, opinion dynamics, update rule

Procedia PDF Downloads 161
10537 Tropical Squall Lines in Brazil: A Methodology for Identification and Analysis Based on ISCCP Tracking Database

Authors: W. A. Gonçalves, E. P. Souza, C. R. Alcântara

Abstract:

The ISCCP-Tracking database offers an opportunity to study physical and morphological characteristics of Convective Systems based on geostationary meteorological satellites. This database contains 26 years of tracking of Convective Systems for the entire globe. Then, Tropical Squall Lines which occur in Brazil are certainly within the database. In this study, we propose a methodology for identification of these systems based on the ISCCP-Tracking database. A physical and morphological characterization of these systems is also shown. The proposed methodology is firstly based on the year of 2007. The Squall Lines were subjectively identified by visually analyzing infrared images from GOES-12. Based on this identification, the same systems were identified within the ISCCP-Tracking database. It is known, and it was also observed that the Squall Lines which occur on the north coast of Brazil develop parallel to the coast, influenced by the sea breeze. In addition, it was also observed that the eccentricity of the identified systems was greater than 0.7. Then, a methodology based on the inclination (based on the coast) and eccentricity (greater than 0.7) of the Convective Systems was applied in order to identify and characterize Tropical Squall Lines in Brazil. These thresholds were applied back in the ISCCP-Tracking database for the year of 2007. It was observed that other systems, which were not Squall Lines, were also identified. Then, we decided to call all systems identified by the inclination and eccentricity thresholds as Linear Convective Systems, instead of Squall Lines. After this step, the Linear Convective Systems were identified and characterized for the entire database, from 1983 to 2008. The physical and morphological characteristics of these systems were compared to those systems which did not have the required inclination and eccentricity to be called Linear Convective Systems. The results showed that the convection associated with the Linear Convective Systems seems to be more intense and organized than in the other systems. This affirmation is based on all ISCCP-Tracking variables analyzed. This type of methodology, which explores 26 years of satellite data by an objective analysis, was not previously explored in the literature. The physical and morphological characterization of the Linear Convective Systems based on 26 years of data is of a great importance and should be used in many branches of atmospheric sciences.

Keywords: squall lines, convective systems, linear convective systems, ISCCP-Tracking

Procedia PDF Downloads 301
10536 Implementation in Python of a Method to Transform One-Dimensional Signals in Graphs

Authors: Luis Andrey Fajardo Fajardo

Abstract:

We are immersed in complex systems. The human brain, the galaxies, the snowflakes are examples of complex systems. An area of interest in Complex systems is the chaos theory. This revolutionary field of science presents different ways of study than determinism and reductionism. Here is where in junction with the Nonlinear DSP, chaos theory offer valuable techniques that establish a link between time series and complex theory in terms of complex networks, so that, the study of signals can be explored from the graph theory. Recently, some people had purposed a method to transform time series in graphs, but no one had developed a suitable implementation in Python with signals extracted from Chaotic Systems or Complex systems. That’s why the implementation in Python of an existing method to transform one dimensional chaotic signals from time domain to graph domain and some measures that may reveal information not extracted in the time domain is proposed.

Keywords: Python, complex systems, graph theory, dynamical systems

Procedia PDF Downloads 509
10535 Estimation of Particle Size Distribution Using Magnetization Data

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Magnetic nanoparticles possess fascinating properties which make their behavior unique in comparison to corresponding bulk materials. Superparamagnetism is one such interesting phenomenon exhibited only by small particles of magnetic materials. In this state, the thermal energy of particles become more than their magnetic anisotropy energy, and so particle magnetic moment vectors fluctuate between states of minimum energy. This situation is similar to paramagnetism of non-interacting ions and termed as superparamagnetism. The magnetization of such systems has been described by Langevin function. But, the estimated fit parameters, in this case, are found to be unphysical. It is due to non-consideration of particle size distribution. In this work, analysis of magnetization data on NiO nanoparticles is presented considering the effect of particle size distribution. Nanoparticles of NiO of two different sizes are prepared by heating freshly synthesized Ni(OH)₂ at different temperatures. Room temperature X-ray diffraction patterns confirm the formation of single phase of NiO. The diffraction lines are seen to be quite broad indicating the nanocrystalline nature of the samples. The average crystallite size are estimated to be about 6 and 8 nm. The samples are also characterized by transmission electron microscope. Magnetization of both sample is measured as function of temperature and applied magnetic field. Zero field cooled and field cooled magnetization are measured as a function of temperature to determine the bifurcation temperature. The magnetization is also measured at several temperatures in superparamagnetic region. The data are fitted to an appropriate expression considering a distribution in particle size following a least square fit procedure. The computer codes are written in PYTHON. The presented analysis is found to be very useful for estimating the particle size distribution present in the samples. The estimated distributions are compared with those determined from transmission electron micrographs.

Keywords: anisotropy, magnetization, nanoparticles, superparamagnetism

Procedia PDF Downloads 143
10534 Performance Analysis of Photovoltaic Solar Energy Systems

Authors: Zakariyya Hassan Abdullahi, Zainab Suleiman Abdullahi, Nuhu Alhaji Muhammad

Abstract:

In this paper, a thorough review of photovoltaic and photovoltaic thermal systems is done on the basis of its performance based on electrical as well as thermal output. Photovoltaic systems are classified according to their use, i.e., electricity production, and thermal, Photovoltaic systems behave in an extraordinary and useful way, they react to light by transforming part of it into electricity useful way and unique, since photovoltaic and thermal applications along with the electricity production. The application of various photovoltaic systems is also discussed in detail. The performance analysis including all aspects, e.g., electrical, thermal, energy, and energy efficiency are also discussed. A case study for PV and PV/T system based on energetic analysis is presented.

Keywords: photovoltaic, renewable, performance, efficiency, energy

Procedia PDF Downloads 516
10533 Harnessing the Power of Mixed Ligand Complexes: Enhancing Antimicrobial Activities with Thiosemicarbazones

Authors: Sakshi Gupta, Seema Joshi

Abstract:

Thiosemicarbazones (TSCs) have garnered significant attention in coordination chemistry due to their versatile coordination modes and pharmacological properties. Mixed ligand complexes of TSCs represent a promising area of research, offering enhanced antimicrobial activities compared to their parent compounds. This review provides an overview of the synthesis, characterization, and antimicrobial properties of mixed ligand complexes incorporating thiosemicarbazones. The synthesis of mixed ligand complexes typically involves the reaction of a metal salt with TSC ligands and additional ligands, such as nitrogen- or oxygen-based ligands. Various transition metals, including copper, nickel, and cobalt, have been employed to form mixed ligand complexes with TSCs. Characterization techniques such as spectroscopy, X-ray crystallography, and elemental analysis are commonly utilized to confirm the structures of these complexes. One of the key advantages of mixed ligand complexes is their enhanced antimicrobial activity compared to pure TSC compounds. The synergistic effect between the TSC ligands and additional ligands contributes to increased efficacy, possibly through improved metal-ligand interactions or enhanced membrane permeability. Furthermore, mixed ligand complexes offer the potential for selective targeting of microbial species while minimizing toxicity to mammalian cells. This selectivity arises from the specific interactions between the metal center, TSC ligands, and biological targets within microbial cells. Such targeted antimicrobial activity is crucial for developing effective treatments with minimal side effects. Moreover, the versatility of mixed ligand complexes allows for the design of tailored antimicrobial agents with optimized properties. By varying the metal ion, TSC ligands, and additional ligands, researchers can fine-tune the physicochemical properties and biological activities of these complexes. This tunability opens avenues for the development of novel antimicrobial agents with improved efficacy and reduced resistance. In conclusion, mixed ligand complexes of thiosemicarbazones represent a promising class of compounds with potent antimicrobial activities. Further research in this field holds great potential for the development of novel therapeutic agents to combat microbial infections effectively.

Keywords: metal complex, thiosemicarbazones, mixed ligand, selective targeting, antimicrobial activity

Procedia PDF Downloads 60
10532 Cosmic Dust as Dark Matter

Authors: Thomas Prevenslik

Abstract:

Weakly Interacting Massive Particle (WIMP) experiments suggesting dark matter does not exist are consistent with the argument that the long-standing galaxy rotation problem may be resolved without the need for dark matter if the redshift measurements giving the higher than expected galaxy velocities are corrected for the redshift in cosmic dust. Because of the ubiquity of cosmic dust, all velocity measurements in astronomy based on redshift are most likely overstated, e.g., an accelerating Universe expansion need not exist if data showing supernovae brighter than expected based on the redshift/distance relation is corrected for the redshift in dust. Extensions of redshift corrections for cosmic dust to other historical astronomical observations are briefly discussed.

Keywords: alternative theories, cosmic dust redshift, doppler effect, quantum mechanics, quantum electrodynamics

Procedia PDF Downloads 297
10531 Optical Breather in Phosphorene Monolayer

Authors: Guram Adamashvili

Abstract:

Surface plasmon polariton is a surface optical wave which undergoes a strong enhancement and spatial confinement of its wave amplitude near an interface of two-dimensional layered structures. Phosphorene (single-layer black phosphorus) and other two-dimensional anisotropic phosphorene-like materials are recognized as promising materials for potential future applications of surface plasmon polariton. A theory of an optical breather of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene is developed. A theory of an optical soliton of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene have been investigated earlier Starting from the optical nonlinear wave equation for surface TM-modes interacting with a two-dimensional layer of atomic systems or semiconductor quantum dots and a phosphorene monolayer (or other two-dimensional anisotropic material), we have obtained the evolution equations for the electric field of the breather. In this case, one finds that the evolution of these pulses become described by the damped Bloch-Maxwell equations. For surface plasmon polariton fields, breathers are found to occur. Explicit relations of the dependence of breathers on the local media, phosphorene anisotropic conductivity, transition layer properties and transverse structures of the SPP, are obtained and will be given. It is shown that the phosphorene conductivity reduces exponentially the amplitude of the surface breather of SIT in the process of propagation. The direction of propagation corresponding to the maximum and minimum damping of the amplitude are assigned along the armchair and zigzag directions of black phosphorus nano-film, respectively. The most rapid damping of the intensity occurs when the polarization of breather is along the armchair direction.

Keywords: breathers, nonlinear waves, solitons, surface plasmon polaritons

Procedia PDF Downloads 149
10530 Decentralized Control of Interconnected Systems with Non-Linear Unknown Interconnections

Authors: Haci Mehmet Guzey, Levent Acar

Abstract:

In this paper, a novel decentralized controller is developed for linear systems with nonlinear unknown interconnections. A model linear decoupled system is assigned for each system. By using the difference actual and model state dynamics, the problem is formulated as inverse problem. Then, the interconnected dynamics are approximated by using Galerkin’s expansion method for inverse problems. Two different sets of orthogonal basis functions are utilized to approximate the interconnected dynamics. Approximated interconnections are utilized in the controller to cancel the interconnections and decouple the systems. Subsequently, the interconnected systems behave as a collection of decoupled systems.

Keywords: decentralized control, inverse problems, large scale systems, nonlinear interconnections, basis functions, system identification

Procedia PDF Downloads 532
10529 On the Topological Entropy of Nonlinear Dynamical Systems

Authors: Graziano Chesi

Abstract:

The topological entropy plays a key role in linear dynamical systems, allowing one to establish the existence of stabilizing feedback controllers for linear systems in the presence of communications constraints. This paper addresses the determination of a robust value of the topological entropy in nonlinear dynamical systems, specifically the largest value of the topological entropy over all linearized models in a region of interest of the state space. It is shown that a sufficient condition for establishing upper bounds of the sought robust value of the topological entropy can be given in terms of a semidefinite program (SDP), which belongs to the class of convex optimization problems.

Keywords: non-linear system, communication constraint, topological entropy

Procedia PDF Downloads 321
10528 Review, Analysis and Simulation of Advanced Technology Solutions of Selected Components in Power Electronics Systems (PES) of More Electric Aircraft

Authors: Lucjan Setlak, Emil Ruda

Abstract:

The subject of this paper is to review, comparative analysis and simulation of selected components of power electronic systems (PES), consistent with the concept of a more electric aircraft (MEA). Comparative analysis and simulation in software environment MATLAB / Simulink were carried out based on a group of representatives of civil aircraft (B-787, A-380) and military (F-22 Raptor, F-35) in the context of multi-pulse converters used in them (6- and 12-pulse, and 18- and 24-pulse), which are key components of high-tech electronics on-board power systems of autonomous power systems (ASE) of modern aircraft (airplanes of the future).

Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems)

Procedia PDF Downloads 494
10527 Non Interferometric Quantitative Phase Imaging of Yeast Cells

Authors: P. Praveen Kumar, P. Vimal Prabhu, Renu John

Abstract:

In biology most microscopy specimens, in particular living cells are transparent. In cell imaging, it is hard to create an image of a cell which is transparent with a very small refractive index change with respect to the surrounding media. Various techniques like addition of staining and contrast agents, markers have been applied in the past for creating contrast. Many of the staining agents or markers are not applicable to live cell imaging as they are toxic. In this paper, we report theoretical and experimental results from quantitative phase imaging of yeast cells with a commercial bright field microscope. We reconstruct the phase of cells non-interferometrically based on the transport of intensity equations (TIE). This technique estimates the axial derivative from positive through-focus intensity measurements. This technique allows phase imaging using a regular microscope with white light illumination. We demonstrate nano-metric depth sensitivity in imaging live yeast cells using this technique. Experimental results will be shown in the paper demonstrating the capability of the technique in 3-D volume estimation of living cells. This real-time imaging technique would be highly promising in real-time digital pathology applications, screening of pathogens and staging of diseases like malaria as it does not need any pre-processing of samples.

Keywords: axial derivative, non-interferometric imaging, quantitative phase imaging, transport of intensity equation

Procedia PDF Downloads 384
10526 Fault Diagnosis of Manufacturing Systems Using AntTreeStoch with Parameter Optimization by ACO

Authors: Ouahab Kadri, Leila Hayet Mouss

Abstract:

In this paper, we present three diagnostic modules for complex and dynamic systems. These modules are based on three ant colony algorithms, which are AntTreeStoch, Lumer & Faieta and Binary ant colony. We chose these algorithms for their simplicity and their wide application range. However, we cannot use these algorithms in their basement forms as they have several limitations. To use these algorithms in a diagnostic system, we have proposed three variants. We have tested these algorithms on datasets issued from two industrial systems, which are clinkering system and pasteurization system.

Keywords: ant colony algorithms, complex and dynamic systems, diagnosis, classification, optimization

Procedia PDF Downloads 298