Search results for: statistical data analysis
42729 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data
Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa
Abstract:
A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation
Procedia PDF Downloads 20542728 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform
Authors: Reza Mohammadzadeh
Abstract:
The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.Keywords: data model, geotechnical risks, machine learning, underground coal mining
Procedia PDF Downloads 28042727 Governance vs Diaspora Remittances for Sustainable Development: A Case of Rwanda and Kenya
Authors: Albert Maake, Ifunanya Isama
Abstract:
International remittances to developing countries reached US$ 485 billion in 2018. By 2015, the East African region had surpassed US$3.5 mark. Considering this, there is no argument as to the contribution of Diaspora remittances as an alternative source of funds in the development process of the developing countries. Nevertheless, this paper seeks to argue that good governance in areas such as policy design, implementation and monitoring play a critical role in the sustainable development process of a nation as opposed to Diaspora remittances in general. Therefore this study intends at analyzing the contribution of Governance as opposed to that of Diaspora remittances for nation development. Employing documentary analysis technique, the secondary data with respect to the countries under study on Diaspora remittances will be collected. Selected indicators for Governance-HDI, Debt-to-GDP Ratio and Corruption Index, will be sourced from the World Bank Data for the purpose of consistency and where applicable the Central Statistical Agencies of the Nations under study. By means of descriptive statistics and content analysis the data will be comparatively analyzed to highlight the unique experiences in Rwanda and Kenya. The findings and interpretations from the study will affirm and promote capacity building for best practices in good governance for the countries under study.Keywords: diaspora remittance, governance, Kenya, Rwanda, sustainable development
Procedia PDF Downloads 13642726 Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process
Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek
Abstract:
Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.Keywords: die-map clustering, feature extraction, pattern recognition, semiconductor manufacturing process
Procedia PDF Downloads 41242725 Customer Relationship Management on Social Media Affecting Brand Loyalty of Siam Commercial Bank in Bangkok
Authors: Charawee Butbumrung
Abstract:
The purpose of this research was to study customer relationship management on social media affecting brand loyalty of Siam Commercial Bank in Bangkok. The statistics used in data analysis were frequency, mean, standard deviation, and Pearson’s correlation coefficient based on social science statistic program. The result of the study found that the majority of the respondents were female, 37–47 years old of age, bachelor degree of education and monthly income between 10,001 and 15,000 Baht. In addition, customer relationship management in the overall and by each aspect of formulating, maintaining, and extending the customer relationship had a high score. Furthermore, the result of hypothesis testing showed that the difference of the customer’s age, education, occupation, average monthly income had the difference in brand loyalty with the statistical significance level of 0.05 and customer relationship management had related with brand loyalty in the same direction with the low level of statistical significance 0.05.Keywords: brand loyalty, customer relationship management, Siam Commercial bank, social media
Procedia PDF Downloads 25142724 Comparative Analysis of Motor Insurance Claims using Machine Learning
Authors: Francis Kwame Bukari, Maclean Acheampong Yeboah
Abstract:
From collective hunting to contemporary financial markets, the concept of risk sharing in insurance has evolved significantly. In today's insurance landscape, statistical analysis plays a pivotal role in determining premiums and assessing the likelihood of insurance claims. Accurately estimating motor insurance claims remains a challenge, allowing insurance companies to pull much of their money to cover claims, which in the long run will affect their reserves and impact their profitability. Advanced machine learning algorithms can enhance accuracy and profitability. The primary objectives of this study encompassed the prediction of motor insurance claims through the utilization of Artificial Neural Networks (ANN) and Random Forest (RF). Additionally, a comparative analysis was conducted to assess the performance of these two models in the domain of claim prediction. The study drew upon secondary data derived from motor insurance claims, employing a range of techniques, including data preprocessing, model training, and model evaluation. To mitigate potential biases, a random over-sampler was used to balance the target variable within the preprocessed dataset. The Random Forest model outperformed the ANN model, achieving an accuracy rate of 90.33% compared to the ANN model's accuracy of 86.33%. This study highlights the importance of modern data-driven approaches in enhancing accuracy and profitability in the insurance industry.Keywords: risk, insurance claims, artificial neural network, random forest, over-sampler, profitability
Procedia PDF Downloads 1242723 Behavioral Response of Bee Farmers to Climate Change in South East, Nigeria
Authors: Jude A. Mbanasor, Chigozirim N. Onwusiribe
Abstract:
The enigma climate change is no longer an illusion but a reality. In the recent years, the Nigeria climate has changed and the changes are shown by the changing patterns of rainfall, the sunshine, increasing level carbon and nitrous emission as well as deforestation. This study analyzed the behavioural response of bee keepers to variations in the climate and the adaptation techniques developed in response to the climate variation. Beekeeping is a viable economic activity for the alleviation of poverty as the products include honey, wax, pollen, propolis, royal jelly, venom, queens, bees and their larvae and are all marketable. The study adopted the multistage sampling technique to select 120 beekeepers from the five states of Southeast Nigeria. Well-structured questionnaires and focus group discussions were adopted to collect the required data. Statistical tools like the Principal component analysis, data envelopment models, graphs, and charts were used for the data analysis. Changing patterns of rainfall and sunshine with the increasing rate of deforestation had a negative effect on the habitat of the bees. The bee keepers have adopted the Kenya Top bar and Langstroth hives and they establish the bee hives on fallow farmland close to the cultivated communal farms with more flowering crops.Keywords: climate, farmer, response, smart
Procedia PDF Downloads 13942722 Image Encryption Using Eureqa to Generate an Automated Mathematical Key
Authors: Halima Adel Halim Shnishah, David Mulvaney
Abstract:
Applying traditional symmetric cryptography algorithms while computing encryption and decryption provides immunity to secret keys against different attacks. One of the popular techniques generating automated secret keys is evolutionary computing by using Eureqa API tool, which got attention in 2013. In this paper, we are generating automated secret keys for image encryption and decryption using Eureqa API (tool which is used in evolutionary computing technique). Eureqa API models pseudo-random input data obtained from a suitable source to generate secret keys. The validation of generated secret keys is investigated by performing various statistical tests (histogram, chi-square, correlation of two adjacent pixels, correlation between original and encrypted images, entropy and key sensitivity). Experimental results obtained from methods including histogram analysis, correlation coefficient, entropy and key sensitivity, show that the proposed image encryption algorithms are secure and reliable, with the potential to be adapted for secure image communication applications.Keywords: image encryption algorithms, Eureqa, statistical measurements, automated key generation
Procedia PDF Downloads 48842721 Soil Salinity from Wastewater Irrigation in Urban Greenery
Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton
Abstract:
The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities
Procedia PDF Downloads 16542720 Effect of Hydroxy Propyl Methyl Cellulose (HPMC) Coating in Combination with MGSO4 on Some Guava Cultivars
Authors: Muhammad Randhawa, Muhammad Nadeem
Abstract:
Guava (Psidium guajava L.) is a vital source of minerals, vitamins, dietary fiber and antioxidants. Owing to highly perishable nature and proning towards chilling injury, diseases, insect-pests and physical damage the main drawbacks of guava after harvesting, present study was designed. Due to its delicacy in physiology, economic importance, effects of pre and postharvest factors and maturity indices, guava fruits should be given prime importance for good quality attributes. In this study guava fruits were stored at 10°C with 80% relative humidity after treating with different levels of sulphate salt of magnesium followed by dipping in cellulose based edible coating hydroxy propyl methyl cellulose (HPMC). The main objective of this coating was to enhance the shelf life of guava by inhibiting the respiration and also by binding the dissolved solids with salt application. Characterization for quality attributes including physical, physiological and bio chemical analysis was performed after every 7 days interval till the fruit remains edible during the storage period of 4 weeks. Finally, data obtained was subjected to statistical analysis. It was concluded on statistical basis that Surahi variety (treated with 5% MgSO4) showed best storage stability and kept its original quality up to almost 23 days during storage.Keywords: edible coating, guava cultivars, physicochemical attributes, storage
Procedia PDF Downloads 33042719 The Economic Limitations of Defining Data Ownership Rights
Authors: Kacper Tomasz Kröber-Mulawa
Abstract:
This paper will address the topic of data ownership from an economic perspective, and examples of economic limitations of data property rights will be provided, which have been identified using methods and approaches of economic analysis of law. To properly build a background for the economic focus, in the beginning a short perspective of data and data ownership in the EU’s legal system will be provided. It will include a short introduction to its political and social importance and highlight relevant viewpoints. This will stress the importance of a Single Market for data but also far-reaching regulations of data governance and privacy (including the distinction of personal and non-personal data, data held by public bodies and private businesses). The main discussion of this paper will build upon the briefly referred to legal basis as well as methods and approaches of economic analysis of law.Keywords: antitrust, data, data ownership, digital economy, property rights
Procedia PDF Downloads 8942718 Statistical Physics Model of Seismic Activation Preceding a Major Earthquake
Authors: Daniel S. Brox
Abstract:
Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally.Keywords: seismic activation, statistical physics, geodynamics, signal processing
Procedia PDF Downloads 2642717 Simulation of Wind Generator with Fixed Wind Turbine under Matlab-Simulink
Authors: Mahdi Motahari, Mojtaba Farzaneh, Armin Parsian Nejad
Abstract:
The rapidly growing wind industry is highly expressing the need for education and training worldwide, particularly on the system level. Modelling and simulating wind generator system using Matlab-Simulink provides expert help in understanding wind systems engineering and system design. Working under Matlab-Simulink we present the integration of the developed WECS model with public electrical grid. A test of the calculated power and Cp related to the experimental equivalent data, using statistical analysis is performed. The statistical indicators of accuracy show better results of the presented method with RMSE: 21%, 22%, MBE : 0.77%, 0.12 % and MAE :3%, 4%.On the other hand we study its behavior when integrated in whole power system. Three level of wind speeds have been chosen: low with 5m/s as the mean value, medium with 8m/s as the mean value and high speed with 12m/s as the mean value. These allowed predicting and supervising the active power produced by the system, characterized respectively by the middle powers of -150 kW, -250kW and -480 kW which will be injected directly into the public electrical grid and the reactive power, characterized respectively by the middle powers of 60 kW, 180 kW and 320 kW and will be consumed by the wind generator.Keywords: modelling, simulation, wind generator, fixed speed wind turbine, Matlab-Simulink
Procedia PDF Downloads 63542716 Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework
Authors: Femi Elegbeleye, Omobayo Esan, Muienge Mbodila, Patrick Bowe
Abstract:
This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships.Keywords: IoT, fog, cloud, data analysis, data privacy
Procedia PDF Downloads 10542715 Speed Characteristics of Mixed Traffic Flow on Urban Arterials
Authors: Ashish Dhamaniya, Satish Chandra
Abstract:
Speed and traffic volume data are collected on different sections of four lane and six lane roads in three metropolitan cities in India. Speed data are analyzed to fit the statistical distribution to individual vehicle speed data and all vehicles speed data. It is noted that speed data of individual vehicle generally follows a normal distribution but speed data of all vehicle combined at a section of urban road may or may not follow the normal distribution depending upon the composition of traffic stream. A new term Speed Spread Ratio (SSR) is introduced in this paper which is the ratio of difference in 85th and 50th percentile speed to the difference in 50th and 15th percentile speed. If SSR is unity then speed data are truly normally distributed. It is noted that on six lane urban roads, speed data follow a normal distribution only when SSR is in the range of 0.86 – 1.11. The range of SSR is validated on four lane roads also.Keywords: normal distribution, percentile speed, speed spread ratio, traffic volume
Procedia PDF Downloads 42642714 Cloud Design for Storing Large Amount of Data
Authors: M. Strémy, P. Závacký, P. Cuninka, M. Juhás
Abstract:
Main goal of this paper is to introduce our design of private cloud for storing large amount of data, especially pictures, and to provide good technological backend for data analysis based on parallel processing and business intelligence. We have tested hypervisors, cloud management tools, storage for storing all data and Hadoop to provide data analysis on unstructured data. Providing high availability, virtual network management, logical separation of projects and also rapid deployment of physical servers to our environment was also needed.Keywords: cloud, glusterfs, hadoop, juju, kvm, maas, openstack, virtualization
Procedia PDF Downloads 35542713 Study of Components and Effective Factors on Organizational Commitment of Khoramabad Branchs Islamic Azad University’s Faculty Members
Authors: Mehry Daraei
Abstract:
The goal of this study was to survey the components and affective factors on organizational commitment of Islamic Azad university Khoramabad Baranch’s faculty members. The research method was correlation by causal modeling and data were gathered by questionnaire. Statistical society consisted of 147 faculty members in Islamic Azad University Khoramabad Branch and sample size was determined as 106 persons by Morgan’s sample table that were selected by class sampling. Correlation test, T-single group test and path analysis test were used for analysis of data. Data were analyzed by Lisrel software. The results showed that organizational corporate was the most effective element on organizational commitment and organizational corporate, experience work and organizational justice were only in direct relation with organizational commitment. Also, job security had direct and indirect effect on OC. Job security had effect on OC by gender. Gender variable had direct and indirect effect on OC. Gender had effect on OC by organizational corporate. Job opportunities out of university also had direct and indirect effect on OC, which means job opportunities had indirect effect on OC by organizational corporate.Keywords: organization, commitment, job security, Islamic Azad University
Procedia PDF Downloads 32642712 The Effect of Non-Surgical Periodontal Therapy on Metabolic Control in Children
Authors: Areej Al-Khabbaz, Swapna Goerge, Majedah Abdul-Rasoul
Abstract:
Introduction: The most prevalent periodontal disease among children is gingivitis, and it usually becomes more severe in adolescence. A number of intervention studies suggested that resolution of periodontal inflammation can improve metabolic control in patients diagnosed with diabetes mellitus. Aim: to assess the effect of non-surgical periodontal therapy on glycemic control of children diagnosed with diabetes mellitus. Method: Twenty-eight children diagnosed with diabetes mellitus were recruited with established diagnosis diabetes for at least 1 year. Informed consent and child assent form were obtained from children and parents prior to enrolment. The dental examination for the participants was performed on the same week directly following their annual medical assessment. All patients had their glycosylated hemoglobin (HbA1c%) test one week prior to their annual medical and dental visit and 3 months following non-surgical periodontal therapy. All patients received a comprehensive periodontal examination The periodontal assessment included clinical attachment loss, bleeding on probing, plaque score, plaque index and gingival index. All patients were referred for non-surgical periodontal therapy, which included oral hygiene instruction and motivation followed by supra-gingival and subg-ingival scaling using ultrasonic and hand instruments. Statistical Analysis: Data were entered and analyzed using the Statistical Package for Social Science software (SPSS, Chicago, USA), version 18. Statistical analysis of clinical findings was performed to detect differences between the two groups in term of periodontal findings and HbA1c%. Binary logistic regression analysis was performed in order to examine which factors were significant in multivariate analysis after adjusting for confounding between effects. The regression model used the dependent variable ‘Improved glycemic control’, and the independent variables entered in the model were plaque index, gingival index, bleeding %, plaque Statistical significance was set at p < 0.05. Result: A total of 28 children. The mean age of the participants was 13.3±1.92 years. The study participants were divided into two groups; Compliant group (received dental scaling) and non-complaints group (received oral hygiene instructions only). No statistical difference was found between compliant and non-compliant group in age, gender distribution, oral hygiene practice and the level of diabetes control. There was a significant difference between compliant and non-compliant group in term of improvement of HBa1c before and after periodontal therapy. Mean gingival index was the only significant variable associated with improved glycemic control level. In conclusion, this study has demonstrated that non-surgical mechanical periodontal therapy can improve HbA1c% control. The result of this study confirmed that children with diabetes mellitus who are compliant to dental care and have routine professional scaling may have better metabolic control compared to diabetic children who are erratic with dental care.Keywords: children, diabetes, metabolic control, periodontal therapy
Procedia PDF Downloads 16642711 Investigation of Various Variabilities of Social Anxiety Levels of Physical Education and Sports School Students
Authors: Turan Cetinkaya
Abstract:
The aim of this study is to determine the relation of the level of social anxiety to various variables of the students in physical education and sports departments. 229 students who are studying at the departments of physical education and sports teaching, sports management and coaching in Ahi Evran University, College of Physical Education and Sports participate in the research. Personal information tool and social anxiety scale consisting 30 items were used as data collection tool in the research. Distribution, frequency, t-test and ANOVA test were used in the comparison of the related data. As a result of statistical analysis, social anxiety levels do not differ according to gender, income level, sports type and national player status.Keywords: social anxiety, undergraduates, sport, unıversty
Procedia PDF Downloads 43742710 Moved by Music: The Impact of Music on Fatigue, Arousal and Motivation During Conditioning for High to Elite Level Female Artistic Gymnasts
Authors: Chante J. De Klerk
Abstract:
The potential of music to facilitate superior performance during high to elite level gymnastics conditioning instigated this research. A team of seven gymnasts completed a fixed conditioning programme eight times, alternating the two variable conditions. Four sessions of each condition were conducted: without music (session 1), with music (session 2), without music (3), with music (4), without music (5), and so forth. Quantitative data were collected in both conditions through physiological monitoring of the gymnasts, and administration of the Situational Motivation Scale (SIMS). Statistical analysis of the physiological data made it possible to quantify the presence as well as the magnitude of the musical intervention’s impact on various aspects of the gymnasts' physiological functioning during conditioning. The SIMS questionnaire results were used to evaluate if their motivation towards conditioning was altered by the intervention. Thematic analysis of qualitative data collected through semi-structured interviews revealed themes reflecting the gymnasts’ sentiments towards the data collection process. Gymnast-specific descriptions and experiences of the team as a whole were integrated with the quantitative data to facilitate greater dimension in establishing the impact of the intervention. The results showed positive physiological, motivational, and emotional effects. In the presence of music, superior sympathetic nervous activation, and energy efficiency, with more economic breathing, dominated the physiological data. Fatigue and arousal levels (emotional and physiological) were also conducive to improved conditioning outcomes compared to conventional conditioning (without music). Greater levels of positive affect and motivation emerged in analysis of both the SIMS and interview data sets. Overall, the intervention was found to promote psychophysiological coherence during the physical activity. In conclusion, a strategically constructed musical intervention, designed to accompany a gymnastics conditioning session for high to elite level gymnasts, has ergogenic potential.Keywords: arousal, fatigue, gymnastics conditioning, motivation, musical intervention, psychophysiological coherence
Procedia PDF Downloads 9742709 Data Integration with Geographic Information System Tools for Rural Environmental Monitoring
Authors: Tamas Jancso, Andrea Podor, Eva Nagyne Hajnal, Peter Udvardy, Gabor Nagy, Attila Varga, Meng Qingyan
Abstract:
The paper deals with the conditions and circumstances of integration of remotely sensed data for rural environmental monitoring purposes. The main task is to make decisions during the integration process when we have data sources with different resolution, location, spectral channels, and dimension. In order to have exact knowledge about the integration and data fusion possibilities, it is necessary to know the properties (metadata) that characterize the data. The paper explains the joining of these data sources using their attribute data through a sample project. The resulted product will be used for rural environmental analysis.Keywords: remote sensing, GIS, metadata, integration, environmental analysis
Procedia PDF Downloads 12642708 Exploring the Physical Environment and Building Features in Earthquake Disaster Areas
Authors: Chang Hsueh-Sheng, Chen Tzu-Ling
Abstract:
Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience. Conventional ways to mitigate earthquake disaster are to enhance building codes and advance structural engineering measures. However, earthquake-induced ground damage such as liquefaction, land subsidence, landslide happen on places nearby earthquake prone or poor soil condition areas. Therefore, this study uses spatial statistical analysis to explore the spatial pattern of damaged buildings. Afterwards, principle components analysis (PCA) is applied to categorize the similar features in different kinds of clustered patterns. The results show that serious landslide prone area, close to fault, vegetated ground surface and mudslide prone area are common in those highly damaged buildings. In addition, the oldest building might not be directly referred to the most vulnerable one. In fact, it seems that buildings built between 1974 and 1989 become more fragile during the earthquake. The incorporation of both spatial statistical analyses and PCA can provide more accurate information to subsidize retrofit programs to enhance earthquake resistance in particular areas.Keywords: earthquake disaster, spatial statistic analysis, principle components analysis (pca), clustered patterns
Procedia PDF Downloads 32142707 The Gender Perspective Applied to the Analysis of Occupational Accidents
Authors: María Del Carmen Pardo Ferreira, Fernando Rodriguez Cortes, Juan Carlos Rubio Romero
Abstract:
According to the International Labor Organization, every day there is more presence of women in the labor market although inequality between women and men persists in world labor markets. In order to try to reduce this gender inequality in the work environment, the present study is proposed, which aims to analyze the occupational accidents suffered by women and occurred in Spain between 2015 and 2018. For this, the methodology used was based on a statistical analysis of the data provided by the Government of Spain. The results will allow to know in which jobs women suffer accidents, in what type of companies and the severity of the accident. Based on these results, specific intervention policies may be defined according to the needs detected in each sector.Keywords: Injured women, Gender perspective, Occupational accidents, Occupational health and safety
Procedia PDF Downloads 18642706 Insulin Resistance in Early Postmenopausal Women Can Be Attenuated by Regular Practice of 12 Weeks of Yoga Therapy
Authors: Praveena Sinha
Abstract:
Context: Diabetes is a global public health burden, particularly affecting postmenopausal women. Insulin resistance (IR) is prevalent in this population, and it is associated with an increased risk of developing type 2 diabetes. Yoga therapy is gaining attention as a complementary intervention for diabetes due to its potential to address stress psychophysiology. This study focuses on the efficacy of a 12-week yoga practice in attenuating insulin resistance in early postmenopausal women. Research Aim: The aim of this research is to investigate the effect of a 3-month long yoga practice on insulin resistance in early postmenopausal women. Methodology: The study conducted a prospective longitudinal design with 67 women within five years of menopause. Participants were divided into two groups based on their willingness to join yoga. The Yoga group (n = 37) received routine gynecological management along with an integrated yoga module, while the Non-Yoga group (n = 30) received only routine management. Insulin resistance was measured using the homeostasis model assessment of insulin resistance (HOMA-IR) method before and after the intervention. Statistical analysis was performed using GraphPad Prism Version 5 software, with statistical significance set at P < 0.05. Findings: The results indicate a significant decrease in serum fasting insulin levels and HOMA-IR measurements in the Yoga group, although the decrease did not reach statistical significance. In contrast, the Non-Yoga group showed a significant rise in serum fasting insulin levels and HOMA-IR measurements after 3 months, suggesting a detrimental effect on insulin resistance in these postmenopausal women. Theoretical Importance: This study provides evidence that a 12-week yoga practice can attenuate the increase in insulin resistance in early postmenopausal women. It highlights the potential of yoga as a preventive measure against the early onset of insulin resistance and the development of type 2 diabetes mellitus. Regular yoga practice can be a valuable tool in addressing hormonal imbalances associated with early postmenopause, leading to a decrease in morbidity and mortality related to insulin resistance and type 2 diabetes mellitus in this population. Data Collection and Analysis Procedures: Data collection involved measuring serum fasting insulin levels and calculating HOMA-IR. Statistical analysis was performed using GraphPad Prism Version 5 software, and mean values with standard error of the mean were reported. The significance level was set at P < 0.05. Question Addressed: The study aimed to address whether a 3-month long yoga practice could attenuate insulin resistance in early postmenopausal women. Conclusion: The research findings support the efficacy of a 12-week yoga practice in attenuating insulin resistance in early postmenopausal women. Regular yoga practice has the potential to prevent the early onset of insulin resistance and the development of type 2 diabetes mellitus in this population. By addressing the hormonal imbalances associated with early post menopause, yoga could significantly decrease morbidity and mortality related to insulin resistance and type 2 diabetes mellitus in these subjects.Keywords: post menopause, insulin resistance, HOMA-IR, yoga, type 2 diabetes mellitus
Procedia PDF Downloads 7542705 Development of Time Series Forecasting Model for Dengue Cases in Nakhon Si Thammarat, Southern Thailand
Authors: Manit Pollar
Abstract:
Identifying the dengue epidemic periods early would be helpful to take necessary actions to prevent the dengue outbreaks. Providing an accurate prediction on dengue epidemic seasons will allow sufficient time to take the necessary decisions and actions to safeguard the situation for local authorities. This study aimed to develop a forecasting model on number of dengue incidences in Nakhon Si Thammarat Province, Southern Thailand using time series analysis. We develop Seasonal Autoregressive Moving Average (SARIMA) models on the monthly data collected between 2003-2011 and validated the models using data collected between January-September 2012. The result of this study revealed that the SARIMA(1,1,0)(1,2,1)12 model closely described the trends and seasons of dengue incidence and confirmed the existence of dengue fever cases in Nakhon Si Thammarat for the years between 2003-2011. The study showed that the one-step approach for predicting dengue incidences provided significantly more accurate predictions than the twelve-step approach. The model, even if based purely on statistical data analysis, can provide a useful basis for allocation of resources for disease prevention.Keywords: SARIMA, time series model, dengue cases, Thailand
Procedia PDF Downloads 36142704 The Use of Respiratory Index of Severity in Children (RISC) for Predicting Clinical Outcomes for 3 Months-59 Months Old Patients Hospitalized with Community-Acquired Pneumonia in Visayas Community Medical Center, Cebu City from January 2013 - June 2
Authors: Karl Owen L. Suan, Juliet Marie S. Lambayan, Floramay P. Salo-Curato
Abstract:
Objective: To predict the outcome among patients admitted with community-acquired pneumonia (ages 3 months to 59 months old) admitted in Visayas Community Medical Center using the Respiratory Index of Severity in Children (RISC). Design: A cross-sectional study design was used. Setting: The study was done in Visayas Community Medical Center, which is a private tertiary level in Cebu City from January-June 2013. Patients/Participants: A total of 72 patients were initially enrolled in the study. However, 1 patient transferred to another institution, thus 71 patients were included in this study. Within 24 hours from admission, patients were assigned a RISC score. Statistical Analysis: Cohen’s kappa coefficient was used for inter-rater agreement for categorical data. This study used frequency and percentage distribution for qualitative data. Mean, standard deviation and range were used for quantitative data. To determine the relationship of each RISC score parameter and the total RISC score with the outcome, a Mann Whitney U Test and 2x2 Fischer Exact test for testing associations were used. A p value less of than 0.05 alpha was considered significant. Results: There was a statistical significance between RISC score and clinical outcome. RISC score of greater than 4 was correlated with intubation and/or mortality. Conclusion: The RISC scoring system is a simple combination of clinical parameters and a reliable tool that will help stratify patients aged 3 months to 59 months in predicting clinical outcome.Keywords: RISC, clinical outcome, community-acquired pneumonia, patients
Procedia PDF Downloads 30542703 Reliability Analysis of Geometric Performance of Onboard Satellite Sensors: A Study on Location Accuracy
Authors: Ch. Sridevi, A. Chalapathi Rao, P. Srinivasulu
Abstract:
The location accuracy of data products is a critical parameter in assessing the geometric performance of satellite sensors. This study focuses on reliability analysis of onboard sensors to evaluate their performance in terms of location accuracy performance over time. The analysis utilizes field failure data and employs the weibull distribution to determine the reliability and in turn to understand the improvements or degradations over a period of time. The analysis begins by scrutinizing the location accuracy error which is the root mean square (RMS) error of differences between ground control point coordinates observed on the product and the map and identifying the failure data with reference to time. A significant challenge in this study is to thoroughly analyze the possibility of an infant mortality phase in the data. To address this, the Weibull distribution is utilized to determine if the data exhibits an infant stage or if it has transitioned into the operational phase. The shape parameter beta plays a crucial role in identifying this stage. Additionally, determining the exact start of the operational phase and the end of the infant stage poses another challenge as it is crucial to eliminate residual infant mortality or wear-out from the model, as it can significantly increase the total failure rate. To address this, an approach utilizing the well-established statistical Laplace test is applied to infer the behavior of sensors and to accurately ascertain the duration of different phases in the lifetime and the time required for stabilization. This approach also helps in understanding if the bathtub curve model, which accounts for the different phases in the lifetime of a product, is appropriate for the data and whether the thresholds for the infant period and wear-out phase are accurately estimated by validating the data in individual phases with Weibull distribution curve fitting analysis. Once the operational phase is determined, reliability is assessed using Weibull analysis. This analysis not only provides insights into the reliability of individual sensors with regards to location accuracy over the required period of time, but also establishes a model that can be applied to automate similar analyses for various sensors and parameters using field failure data. Furthermore, the identification of the best-performing sensor through this analysis serves as a benchmark for future missions and designs, ensuring continuous improvement in sensor performance and reliability. Overall, this study provides a methodology to accurately determine the duration of different phases in the life data of individual sensors. It enables an assessment of the time required for stabilization and provides insights into the reliability during the operational phase and the commencement of the wear-out phase. By employing this methodology, designers can make informed decisions regarding sensor performance with regards to location accuracy, contributing to enhanced accuracy in satellite-based applications.Keywords: bathtub curve, geometric performance, Laplace test, location accuracy, reliability analysis, Weibull analysis
Procedia PDF Downloads 6942702 The Study of Factors Affecting Social Responsibility among Undergraduate Students of the Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Somtop Keawchuer
Abstract:
The purpose of the research is to study the level of social responsibility among the undergraduate students of the faculty of Management Science, Suan Sunandha Rajabhat University. The research also studies the factors affecting social responsibility of the undergraduate students. The research methodology applied a self-administered questionnaire as a quantitative method. A convenience sampling was used to distribute the questionnaire. Finally, 350 questionnaires were received for data analysis. Data were analyzed by using descriptive statistics including percentage, mean, standard deviation, and inferential statistics including regression analysis for hypothesis testing. The results indicated that the level of social responsibility of the students was at a good level. In addition, internal and external factors were related to social responsibility of the undergraduate students with the statistical significance level of 0.05.Keywords: internal and external factors, social responsibility, Suan Sunandha Rajabhat University, undergraduate students
Procedia PDF Downloads 27742701 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic
Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi
Abstract:
In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing
Procedia PDF Downloads 30442700 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer
Procedia PDF Downloads 187