Search results for: robust M-estimator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1475

Search results for: robust M-estimator

1085 Generation of Symmetric Key Using Randomness of Hash Function

Authors: Sai Charan Kamana, Harsha Vardhan Nakkina, B.R. Chandavarkar

Abstract:

In a highly secure and robust key generation process, a key role is played by randomness and random numbers when current real-world cryptosystems are observed. Most of the present-day cryptographic protocols depend upon the Random Number Generators (RNG), Pseudo-Random Number Generator (PRNG). These protocols often use noisy channels such as Disk seek time, CPU temperature, Mouse pointer movement, Fan noise to obtain true random values. Despite being cost-effective, these noisy channels may need additional hardware devices to continuously communicate with them. On the other hand, Hash functions are Pseudo-Random (because of their requirements). So, they are a good replacement for these noisy channels and have low hardware requirements. This paper discusses, some of the key generation methodologies, and their drawbacks. This paper explains how hash functions can be used in key generation, how to combine Key Derivation Functions with hash functions.

Keywords: key derivation, hash based key derivation, password based key derivation, symmetric key derivation

Procedia PDF Downloads 162
1084 Neural Nets Based Approach for 2-Cells Power Converter Control

Authors: Kamel Laidi, Khelifa Benmansour, Ouahid Bouchhida

Abstract:

Neural networks-based approach for 2-cells serial converter has been developed and implemented. The approach is based on a behavioural description of the different operating modes of the converter. Each operating mode represents a well-defined configuration, and for which is matched an operating zone satisfying given invariance conditions, depending on the capacitors' voltages and the load current of the converter. For each mode, a control vector whose components are the control signals to be applied to the converter switches has been associated. Therefore, the problem is reduced to a classification task of the different operating modes of the converter. The artificial neural nets-based approach, which constitutes a powerful tool for this kind of task, has been adopted and implemented. The application to a 2-cells chopper has allowed ensuring efficient and robust control of the load current and a high capacitors voltages balancing.

Keywords: neural nets, control, multicellular converters, 2-cells chopper

Procedia PDF Downloads 836
1083 Intelligent Electric Vehicle Charging System (IEVCS)

Authors: Prateek Saxena, Sanjeev Singh, Julius Roy

Abstract:

The security of the power distribution grid remains a paramount to the utility professionals while enhancing and making it more efficient. The most serious threat to the system can be maintaining the transformers, as the load is ever increasing with the addition of elements like electric vehicles. In this paper, intelligent transformer monitoring and grid management has been proposed. The engineering is done to use the evolving data from the smart meter for grid analytics and diagnostics for preventive maintenance. The two-tier architecture for hardware and software integration is coupled to form a robust system for the smart grid. The proposal also presents interoperable meter standards for easy integration. Distribution transformer analytics based on real-time data benefits utilities preventing outages, protects the revenue loss, improves the return on asset and reduces overall maintenance cost by predictive monitoring.

Keywords: electric vehicle charging, transformer monitoring, data analytics, intelligent grid

Procedia PDF Downloads 791
1082 Crafting Robust Business Model Innovation Path with Generative Artificial Intelligence in Start-up SMEs

Authors: Ignitia Motjolopane

Abstract:

Small and medium enterprises (SMEs) play an important role in economies by contributing to economic growth and employment. In the fourth industrial revolution, the convergence of technologies and the changing nature of work created pressures on economies globally. Generative artificial intelligence (AI) may support SMEs in exploring, exploiting, and transforming business models to align with their growth aspirations. SMEs' growth aspirations fall into four categories: subsistence, income, growth, and speculative. Subsistence-oriented firms focus on meeting basic financial obligations and show less motivation for business model innovation. SMEs focused on income, growth, and speculation are more likely to pursue business model innovation to support growth strategies. SMEs' strategic goals link to distinct business model innovation paths depending on whether SMEs are starting a new business, pursuing growth, or seeking profitability. Integrating generative artificial intelligence in start-up SME business model innovation enhances value creation, user-oriented innovation, and SMEs' ability to adapt to dynamic changes in the business environment. The existing literature may lack comprehensive frameworks and guidelines for effectively integrating generative AI in start-up reiterative business model innovation paths. This paper examines start-up business model innovation path with generative artificial intelligence. A theoretical approach is used to examine start-up-focused SME reiterative business model innovation path with generative AI. Articulating how generative AI may be used to support SMEs to systematically and cyclically build the business model covering most or all business model components and analyse and test the BM's viability throughout the process. As such, the paper explores generative AI usage in market exploration. Moreover, market exploration poses unique challenges for start-ups compared to established companies due to a lack of extensive customer data, sales history, and market knowledge. Furthermore, the paper examines the use of generative AI in developing and testing viable value propositions and business models. In addition, the paper looks into identifying and selecting partners with generative AI support. Selecting the right partners is crucial for start-ups and may significantly impact success. The paper will examine generative AI usage in choosing the right information technology, funding process, revenue model determination, and stress testing business models. Stress testing business models validate strong and weak points by applying scenarios and evaluating the robustness of individual business model components and the interrelation between components. Thus, the stress testing business model may address these uncertainties, as misalignment between an organisation and its environment has been recognised as the leading cause of company failure. Generative AI may be used to generate business model stress-testing scenarios. The paper is expected to make a theoretical and practical contribution to theory and approaches in crafting a robust business model innovation path with generative artificial intelligence in start-up SMEs.

Keywords: business models, innovation, generative AI, small medium enterprises

Procedia PDF Downloads 72
1081 A Review Paper on Data Security in Precision Agriculture Using Internet of Things

Authors: Tonderai Muchenje, Xolani Mkhwanazi

Abstract:

Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.

Keywords: precision agriculture, security, IoT, EIDE

Procedia PDF Downloads 90
1080 Women's Pathways to Prison in Thailand

Authors: Samantha Jeffries, Chontit Chuenurah

Abstract:

Thailand incarcerates the largest number of women and has the highest female incarceration rate in South East Asia. Since the 1990s, there has been a substantial increase in the number, rate and proportion of women imprisoned. Thailand places a high priority on the gender specific contexts out of which offending arises and the different needs of women in the criminal justice system. This is manifested in work undertaken to guide the development of the United Nations Rules for the Treatment of Women Prisoners and Non-Custodial Measures for Women Offenders (the Bangkok Rules); adopted by the United Nations General Assembly in 2010. The Bangkok Rules make a strong statement about Thailand’s recognition of and commitment to the fair and equitable treatment of women throughout their contact with the criminal justice system including at sentencing and in prison. This makes the comparatively high use of imprisonment for women in Thailand particularly concerning and raises questions about the relationship between gender, crime and criminal justice. While there is an extensive body of research in Western jurisdictions exploring women’s pathways to prison, there is a relative dearth of methodologically robust research examining the possible gendered circumstances leading to imprisonment in Thailand. In this presentation, we will report preliminary findings from a qualitative study of women’s pathways to prison in Thailand. Our research aims were to ascertain: 1) the type, frequency, and context of criminal behavior that led to women’s incarceration, 2) women’s experiences of the criminal justice system, 3) the broader life experiences and circumstances that led women to prison in Thailand. In-depth life history interviews (n=77) were utilized to gain a comprehensive understanding of women’s journeys into prison. The interview schedule was open-ended consisting of prisoner responses to broad discussion topics. This approach provided women with the opportunity to describe significant experiences in their lives, to bring together distinct chronologies of events, and to analyze links between their varied life experiences, offending, and incarceration. Analyses showed that women’s journey’s to prison take one of eight pathways which tentatively labelled as follows, the: 1) harmed and harming pathway, 2) domestic/family violence victimization pathway, 3) drug connected pathway, 4) street woman pathway, 5) economically motivated pathway, 6) jealousy anger and/or revenge pathway, 7) naivety pathway, 8) unjust and/or corrupted criminal justice pathway. Each will be fully discussed during the presentation. This research is significant because it is the first in-depth methodologically robust exploration of women’s journeys to prison in Thailand and one of a few studies to explore gendered pathways outside of western contexts. Understanding women’s pathways into Thailand’s prisons is crucial to the development of effective planning, policy and program responses not only while women are in prison but also post-release. To best meet women’s needs in prison and effectively support their reintegration, we must have a comprehensive understanding of who these women are, what offenses they commit, the reasons that trigger their confrontations with the criminal justice system and the impact of the criminal justice system on them.

Keywords: pathways, prison, women, Thailand

Procedia PDF Downloads 247
1079 Implementing Universal Design for Learning in Social Work Education

Authors: Kaycee Bills

Abstract:

Action research is a method of inquiry useful in solving social problems in social work. This study seeks to address a significant problem: higher education’s use of traditional instructional methods in social work education. Ineffective techniques, such as lecturing, fail to account for students’ variable learning needs. In contrast to traditional pedagogy, universal design for learning (UDL) is a robust framework that '[improves] and [optimizes] teaching and learning for all people' (CAST, 2018), including students with disabilities. For this project, the research team interviewed the UDL and Accessibility Specialist at their institution for two reasons: (1) to learn how to implement UDL practices in their classrooms, and in turn, (2) to motivate other faculty members at their institution to consider enacting UDL principles. A thematic analysis of the interview’s transcript reveals themes relevant to practicing UDL. Implications for future practice, as well as the researcher’s reflections on the research process, are shared in the discussion section.

Keywords: disabilities, higher education, inclusive education, universal design for learning

Procedia PDF Downloads 128
1078 Violence-Health Nexus: Examining the Impact of Ethnic Violence on Mental Health Disorders, A Global Perspective

Authors: Saqib Amina, Waqas Mehmoodb, Iftikhar Yasinc

Abstract:

This study analyzes the robust association between ethnic violence and mental health from a global perspective (201-countries across the world) by using the panel data for the period 1970 to 2020. Mental health has been determined through various dimensions such as mental disorders, anxiety disorder, depressive disorder, schizophrenia, and bipolar disorder. The empirical findings show that ethnic violence has a significant positive association with all types of mental health indicators, including mental disorders, anxiety disorder, depressive disorder, schizophrenia, and bipolar disorder. The study also reveals that institutional quality may reduce the effect of mental health disorders in a better way than promoting democracy. This study suggests the non-stigmatizing social form of community-based support services instead of a stigmatizing the concept of mental illnesses that promotes hospitalization and drug treatment.

Keywords: ethnic violence, unemployment, mental health, violence

Procedia PDF Downloads 172
1077 Economical Dependency Evolution and Complexity

Authors: Allé Dieng, Mamadou Bousso, Latif Dramani

Abstract:

The purpose of this work is to show the complexity behind economical interrelations in a country and provide a linear dynamic model of economical dependency evolution in a country. The model is based on National Transfer Account which is one of the most robust methodology developed in order to measure a level of demographic dividend captured in a country. It is built upon three major factors: demography, economical dependency and migration. The established mathematical model has been simulated using Netlogo software. The innovation of this study is in describing economical dependency as a complex system and simulating using mathematical equation the evolution of the two populations: the economical dependent and the non-economical dependent as defined in the National Transfer Account methodology. It also allows us to see the interactions and behaviors of both populations. The model can track individual characteristics and look at the effect of birth and death rates on the evolution of these two populations. The developed model is useful to understand how demographic and economic phenomenon are related

Keywords: ABM, demographic dividend, National Transfer Accounts (NTA), ODE

Procedia PDF Downloads 205
1076 Implementation and Design of Fuzzy Controller for High Performance Dc-Dc Boost Converters

Authors: A. Mansouri, F. Krim

Abstract:

This paper discusses the implementation and design of both linear PI and fuzzy controllers for DC-DC boost converters. Design of PI controllers is based on temporal response of closed-loop converters, while fuzzy controllers design is based on heuristic knowledge of boost converters. Linear controller implementation is quite straightforward relying on mathematical models, while fuzzy controller implementation employs one or more artificial intelligences techniques. Comparison between these boost controllers is made in design aspect. Experimental results show that the proposed fuzzy controller system is robust against input voltage and load resistance changing and in respect of start-up transient. Results indicate that fuzzy controller can achieve best control performance concerning faster transient response, steady-state response good stability and accuracy under different operating conditions. Fuzzy controller is more suitable to control boost converters.

Keywords: boost DC-DC converter, fuzzy, PI controllers, power electronics and control system

Procedia PDF Downloads 477
1075 Critical Success Factors (CSFS) in ERP Implementation at the PP Company: Management and Technology Perspectives

Authors: Eko Ganis Sukoharsono, Meivida Medyastanti

Abstract:

This study explores the Critical Success Factors (CSFs) for successful ERP implementation at the PP Company, a leading state-owned construction company in Indonesia. The study uses a qualitative - Postmodernist approach through an imaginary dialogue between a CEO and a Technologist to analyze ERP implementation from both managerial and technological perspectives. Key CSFs identified include strong support from top management, clear project scope and objectives, effective change management, employee engagement, data accuracy, and robust IT infrastructure. The study’s findings are synthesized into a CSF model that highlights the importance of aligning ERP systems with business objectives and emphasizes the need for continuous post-implementation support. This model provides a strategic framework that can guide other companies, particularly state-owned enterprises, in navigating ERP implementation, ensuring optimal return on investment, and enhancing organizational efficiency.

Keywords: ERP, critical success factors, PT. PP, postmodernist paradigm, management, technology

Procedia PDF Downloads 5
1074 Finite Element Modeling of Stockbridge Damper and Vibration Analysis: Equivalent Cable Stiffness

Authors: Nitish Kumar Vaja, Oumar Barry, Brian DeJong

Abstract:

Aeolian vibrations are the major cause for the failure of conductor cables. Using a Stockbridge damper reduces these vibrations and increases the life span of the conductor cable. Designing an efficient Stockbridge damper that suits the conductor cable requires a robust mathematical model with minimum assumptions. However it is not easy to analytically model the complex geometry of the messenger. Therefore an equivalent stiffness must be determined so that it can be used in the analytical model. This paper examines the bending stiffness of the cable and discusses the effect of this stiffness on the natural frequencies. The obtained equivalent stiffness compensates for the assumption of modeling the messenger as a rod. The results from the free vibration analysis of the analytical model with the equivalent stiffness is validated using the full scale finite element model of the Stockbridge damper.

Keywords: equivalent stiffness, finite element model, free vibration response, Stockbridge damper

Procedia PDF Downloads 286
1073 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images

Authors: Gherbi Nabil

Abstract:

Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.

Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM

Procedia PDF Downloads 22
1072 Dielectric Behavior of 2D Layered Insulator Hexagonal Boron Nitride

Authors: Nikhil Jain, Yang Xu, Bin Yu

Abstract:

Hexagonal boron nitride (h-BN) has been used as a substrate and gate dielectric for graphene field effect transistors (GFETs). Using a graphene/h-BN/TiN (channel/dielectric/gate) stack, key material properties of h-BN were investigated i.e. dielectric strength and tunneling behavior. Work function difference between graphene and TiN results in spontaneous p-doping of graphene through a multi-layer h-BN flake. However, at high levels of current stress, n-doping of graphene is observed, possibly due to the charge transfer across the thin h-BN multi layer. Neither Direct Tunneling (DT) nor Fowler-Nordheim Tunneling (FNT) was observed in TiN/h-BN/Au hetero structures with h-BN showing two distinct volatile conduction states before breakdown. Hexagonal boron nitride emerges as a material of choice for gate dielectrics in GFETs because of robust dielectric properties and high tunneling barrier.

Keywords: graphene, transistors, conduction, hexagonal boron nitride, dielectric strength, tunneling

Procedia PDF Downloads 367
1071 Seismic Response Control of Multi-Span Bridge Using Magnetorheological Dampers

Authors: B. Neethu, Diptesh Das

Abstract:

The present study investigates the performance of a semi-active controller using magneto-rheological dampers (MR) for seismic response reduction of a multi-span bridge. The application of structural control to the structures during earthquake excitation involves numerous challenges such as proper formulation and selection of the control strategy, mathematical modeling of the system, uncertainty in system parameters and noisy measurements. These problems, however, need to be tackled in order to design and develop controllers which will efficiently perform in such complex systems. A control algorithm, which can accommodate un-certainty and imprecision compared to all the other algorithms mentioned so far, due to its inherent robustness and ability to cope with the parameter uncertainties and imprecisions, is the sliding mode algorithm. A sliding mode control algorithm is adopted in the present study due to its inherent stability and distinguished robustness to system parameter variation and external disturbances. In general a semi-active control scheme using an MR damper requires two nested controllers: (i) an overall system controller, which derives the control force required to be applied to the structure and (ii) an MR damper voltage controller which determines the voltage required to be supplied to the damper in order to generate the desired control force. In the present study a sliding mode algorithm is used to determine the desired optimal force. The function of the voltage controller is to command the damper to produce the desired force. The clipped optimal algorithm is used to find the command voltage supplied to the MR damper which is regulated by a semi active control law based on sliding mode algorithm. The main objective of the study is to propose a robust semi active control which can effectively control the responses of the bridge under real earthquake ground motions. Lumped mass model of the bridge is developed and time history analysis is carried out by solving the governing equations of motion in the state space form. The effectiveness of MR dampers is studied by analytical simulations by subjecting the bridge to real earthquake records. In this regard, it may also be noted that the performance of controllers depends, to a great extent, on the characteristics of the input ground motions. Therefore, in order to study the robustness of the controller in the present study, the performance of the controllers have been investigated for fourteen different earthquake ground motion records. The earthquakes are chosen in such a way that all possible characteristic variations can be accommodated. Out of these fourteen earthquakes, seven are near-field and seven are far-field. Also, these earthquakes are divided into different frequency contents, viz, low-frequency, medium-frequency, and high-frequency earthquakes. The responses of the controlled bridge are compared with the responses of the corresponding uncontrolled bridge (i.e., the bridge without any control devices). The results of the numerical study show that the sliding mode based semi-active control strategy can substantially reduce the seismic responses of the bridge showing a stable and robust performance for all the earthquakes.

Keywords: bridge, semi active control, sliding mode control, MR damper

Procedia PDF Downloads 125
1070 Unsupervised Domain Adaptive Text Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, unsupervised training, text retrieval

Procedia PDF Downloads 73
1069 Retrofitted Semi-Active Suspension System for a Eelectric Model Vehicle

Authors: Shiuh-Jer Huang, Yun-Han Yeh

Abstract:

A 40 steps manual adjusting shock absorber was refitted with DC motor driving mechanism to construct as a semi-active suspension system for a four-wheel drive electric vehicle. Accelerometer and potentiometer sensors are installed to measure the sprung mass acceleration and suspension system compression or rebound states for control purpose. A fuzzy logic controller was designed to derive appropriate damping target based on vehicle running condition for semi-active suspension system to follow. The damping ratio control of each wheel axis suspension system is executed with a robust fuzzy sliding mode controller (FSMC). Different road surface conditions are chosen to evaluate the control performance of this semi-active suspension system based on wheel axis acceleration signal.

Keywords: semi-active suspension, electric vehicle, fuzzy sliding mode control, accelerometer

Procedia PDF Downloads 481
1068 Community Music in Puerto Rico

Authors: Francisco Luis Reyes

Abstract:

The multiple-case study explores the intricacies of three Puerto Rican Community Music (CM) initiatives. This research concentrates on the teaching and learning dynamics of three of the nation’s traditional musical genres, Plena, Bomba, and Música Jíbara, which have survived for centuries through oral transmission and enculturation in community settings. Accordingly, this research focuses on how music education is carried out in Puerto Rican CM initiatives that foster and preserve the country’s traditional music. This study examines the CM initiatives of La Junta, in Santurce (Plena), Taller Tambuyé in Rio Piedras (Bomba), and Decimanía (Música Jíbara), an initiative that stems from the municipality of Hatillo. In terms of procedure, 45–60-minute semi-structured interviews were conducted with organizers and administrators of the CM initiatives to gain insight into the educational philosophy of each project. Following this, a second series of 45–60-minute semi-structured interviews were undertaken with CM educators to collect data on their musical development, teaching practices, and relationship with learners. Subsequently, four weeks were spent observing/participating in each of the three CM initiatives. In addition to participant observations in these projects, five CM learners from each locale were recruited for two one-on-one semi-structured interviews at the beginning and end of the data collection period. The initial interview centered on the participants’ rationale for joining the CM initiative whereas the exit interview focused on participants’ experience within it. Alumni from each of the CM initiatives partook in 45–60-minute semi-structured interviews to investigate their understanding of what it means to be a member of each musical community. Finally, observations and documentation of additional activities hosted/promoted by each initiative, such as festivals, concerts, social gatherings, and workshops, were undertaken. These three initiatives were chosen because of their robust and dynamic practices in fostering the musical expressions of Puerto Rico. Data collection consisted of participant observation, narrative inquiry, historical research, philosophical inquiry, and semi-structured interviews. Data analysis for this research involved relying on theoretical propositions, which entails comparing the results—from each case and as a collective— to the arguments that led to the basis of the research (e.g., literature review, research questions, hypothesis). Comparisons to the theoretical propositions were made through pattern matching, which requires comparing predicted patterns from the literature review to findings from each case. Said process led to the development of an analytic outlook of each CM case and a cross-case synthesis. The purpose of employing said data analysis methodology is to present robust findings about CM practices in Puerto Rico and elucidate similarities and differences between the cases that comprise this research and the relevant literature. Furthermore, through the use of Sound Links’ Nine Domains of Community Music, comparisons to other community projects are made in order to point out parallels and highlight particularities in Puerto Rico.

Keywords: community music, Puerto Rico, music learning, traditional music

Procedia PDF Downloads 29
1067 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques

Authors: Om Viroje

Abstract:

Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.

Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience

Procedia PDF Downloads 25
1066 Innovation Ecosystems in Construction Industry

Authors: Cansu Gülser, Tuğce Ercan

Abstract:

The construction sector is a key driver of the global economy, contributing significantly to growth and employment through a diverse array of sub-sectors. However, it faces challenges due to its project-based nature, which often hampers long-term collaboration and broader incentives beyond individual projects. These limitations are frequently discussed in scientific literature as obstacles to innovation and industry-wide change. Traditional practices and unwritten rules further hinder the adoption of new processes within the construction industry. The disadvantages of the construction industry’s project-based structure in fostering innovation and long-term relationships include limited continuity, fragmented collaborations, and a focus on short-term goals, which collectively hinder the development of sustained partnerships, inhibit the sharing of knowledge and best practices, and reduce incentives for investing in innovative processes and technologies. This structure typically emphasizes specific projects, which restricts broader collaborations and incentives that extend beyond individual projects, thus impeding innovation and change. The temporal complexities inherent in project-based sectors like construction make it difficult to address societal challenges through collaborative efforts. Traditional management approaches are inadequate for scaling up innovations and adapting to significant changes. For systemic transformation in the construction sector, there is a need for more collaborative relationships and activities beyond traditional supply chains. This study delves into the concept of an innovation ecosystem within the construction sector, highlighting various research findings. It aims to explore key questions about the components that enhance innovation capacity, the relationship between a robust innovation ecosystem and this capacity, and the reasons why innovation is less prevalent and implemented in this sector compared to others. Additionally, it examines the main factors hindering innovation within companies and identifies strategies to improve these efforts, particularly in developing countries. The innovation ecosystem in the construction sector generates various outputs through interactions between business resources and external components. These outputs include innovative value creation, sustainable practices, robust collaborations, knowledge sharing, competitiveness, and advanced project management, all of which contribute significantly to company market performance and competitive advantage. This article offers insights and strategic recommendations for industry professionals, policymakers, and researchers interested in developing and sustaining innovation ecosystems in the construction sector. Future research should focus on broader samples for generalization, comparative sector analysis, and application-focused studies addressing real industry challenges. Additionally, studying the long-term impacts of innovation ecosystems, integrating advanced technologies like AI and machine learning into project management, and developing future application strategies and policies are also important.

Keywords: construction industry, innovation ecosystem, innovation ecosystem components, project management

Procedia PDF Downloads 37
1065 Analysis of High-Velocity Impacts on Concrete

Authors: Conceição, J. F. M., Rebelo H., Corneliu C., Pereira L.

Abstract:

This research analyses the response of two distinct types of concrete blocks, each possessing an approximate unconfined compressive strength of 30MPa, when exposed to high-velocity impacts produced by an Explosively Formed Penetrator (EFP) traveling at an initial velocity of 1200 m/s. Given the scarcity of studies exploring high-velocity impacts on concrete, the primary aim of this research is to scrutinize how concrete behaves under high-speed impacts, ultimately contributing valuable insights to the development of protective structures. To achieve this objective, a comprehensive numerical analysis was carried out in LS-DYNA to delve into the fracture mechanisms inherent in concrete under such extreme conditions. Subsequently, the obtained numerical outcomes were compared and validated through eight experimental field tests. The methodology employed involved a robust combination of numerical simulations and real-world experiments, ensuring a comprehensive understanding of concrete behavior in scenarios involving rapid, high-energy impacts.

Keywords: high-velocity, impact, numerical analysis, experimental tests, concrete

Procedia PDF Downloads 89
1064 Identification of the Alkaloids of the Belladone (Atropa belladonna L.) and Evaluation of Their Inhibitory Effects Against Some Microbial Strains

Authors: Ait Slimane-Ait Kaki Sabrina, Foudi Lamia

Abstract:

The present work consists of the study of the bio-ecology and the therapeutic effects of the belladone (Atropa belladonna L.). It is a medicinal plant of the Solanacées family, herbaceous, robust 0.5 up to 1.50 m high. The phytochemical analysis of leaves revealed alkaloids, tannins, catechin, coumarins, mucilages, saponins, starch, and reducing compounds. The experimental study concerns the extraction and characterization of belladonna alkaloids. Analysis of the purified extract by staining tests confirmed the presence of tropane alkaloids. The dosage chromatography revealed the presence of components that have been identified atropine, scopolamine and hyoscyamine. Evaluation of antimicrobial and antifungal alkaloids from the methanol extract and aqueous extract of belladonna on pathogenic germs showed a positive bactericidal against strains of Escherichia coli and Staphylococcus aureus. Our preliminary results allow us an overall assessment of the medicinal value of Atropa belladonna.

Keywords: belladone, alkaloid, antibacterial activity, antifungal activity

Procedia PDF Downloads 497
1063 Evaluation of the MCFLIRT Correction Algorithm in Head Motion from Resting State fMRI Data

Authors: V. Sacca, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

In the last few years, resting-state functional MRI (rs-fMRI) was widely used to investigate the architecture of brain networks by investigating the Blood Oxygenation Level Dependent response. This technique represented an interesting, robust and reliable approach to compare pathologic and healthy subjects in order to investigate neurodegenerative diseases evolution. On the other hand, the elaboration of rs-fMRI data resulted to be very prone to noise due to confounding factors especially the head motion. Head motion has long been known to be a source of artefacts in task-based functional MRI studies, but it has become a particularly challenging problem in recent studies using rs-fMRI. The aim of this work was to evaluate in MS patients a well-known motion correction algorithm from the FMRIB's Software Library - MCFLIRT - that could be applied to minimize the head motion distortions, allowing to correctly interpret rs-fMRI results.

Keywords: head motion correction, MCFLIRT algorithm, multiple sclerosis, resting state fMRI

Procedia PDF Downloads 214
1062 Corporate Social Responsibility and Dividend Policy

Authors: Mohammed Benlemlih

Abstract:

Using a sample of 22,839 US firm-year observations over the 1991-2012 period, we find that high CSR firms pay more dividends than low CSR firms. The analysis of individual components of CSR provides strong support for this main finding: five of the six individual dimensions are also associated with high dividend payout. When analyzing the stability of dividend payout, our results show that socially irresponsible firms adjust dividends more rapidly than socially responsible firms do: dividend payout is more stable in high CSR firms. Additional results suggest that firms involved in two controversial activities -the military and alcohol - are associated with low dividend payouts. These findings are robust to alternative assumptions and model specifications, alternative measures of dividend, additional control, and several approaches to address endogeneity. Overall, our results are consistent with the expectation that high CSR firms may use dividend policy to manage the agency problems related to overinvestment in CSR.

Keywords: corporate social responsibility, dividend policy, Lintner model, agency theory, signaling theory, dividend stability

Procedia PDF Downloads 267
1061 The Nature and Impact of Trojan Horses in Cybersecurity

Authors: Mehrab Faraghti

Abstract:

Trojan horses, a form of malware masquerading as legitimate software, pose significant cybersecurity threats. These malicious programs exploit user trust, infiltrate systems, and can lead to data breaches, financial loss, and compromised privacy. This paper explores the mechanisms through which Trojan horses operate, including delivery methods such as phishing and software vulnerabilities. It categorizes various types of Trojan horses and their specific impacts on individuals and organizations. Additionally, the research highlights the evolution of Trojan threats and the importance of user awareness and proactive security measures. By analyzing case studies of notable Trojan attacks, this study identifies common vulnerabilities that can be exploited and offers insights into effective countermeasures, including behavioral analysis, anomaly detection, and robust incident response strategies. The findings emphasize the need for comprehensive cybersecurity education and the implementation of advanced security protocols to mitigate the risks associated with Trojan horses.

Keywords: Trojan horses, cybersecurity, malware, data breach

Procedia PDF Downloads 15
1060 An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper introduces an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors.

Keywords: energy-efficient, fog computing, IoT, telehealth

Procedia PDF Downloads 88
1059 Stock Price Informativeness and Profit Warnings: Empirical Analysis

Authors: Adel Almasarwah

Abstract:

This study investigates the nature of association between profit warnings and stock price informativeness in the context of Jordan as an emerging country. The analysis is based on the response of stock price synchronicity to profit warnings percentages that have been published in Jordanian firms throughout the period spanning 2005–2016 in the Amman Stock Exchange. The standard of profit warnings indicators have related negatively to stock price synchronicity in Jordanian firms, meaning that firms with a high portion of profit warnings integrate with more firm-specific information into stock price. Robust regression was used rather than OLS as a parametric test to overcome the variances inflation factor (VIF) and heteroscedasticity issues recognised as having occurred during running the OLS regression; this enabled us to obtained stronger results that fall in line with our prediction that higher profit warning encourages firm investors to collect and process more firm-specific information than common market information.

Keywords: Profit Warnings, Jordanian Firms, Stock Price Informativeness, Synchronicity

Procedia PDF Downloads 142
1058 Adaptive Multipath Mitigation Acquisition Approach for Global Positioning System Software Receivers

Authors: Animut Meseret Simachew

Abstract:

Parallel Code Phase Search Acquisition (PCSA) Algorithm has been considered as a promising method in GPS software receivers for detection and estimation of the accurate correlation peak between the received Global Positioning System (GPS) signal and locally generated replicas. GPS signal acquisition in highly dense multipath environments is the main research challenge. In this work, we proposed a robust variable step-size (RVSS) PCSA algorithm based on fast frequency transform (FFT) filtering technique to mitigate short time delay multipath signals. Simulation results reveal the effectiveness of the proposed algorithm over the conventional PCSA algorithm. The proposed RVSS-PCSA algorithm equalizes the received carrier wiped-off signal with locally generated C/A code.

Keywords: adaptive PCSA, detection and estimation, GPS signal acquisition, GPS software receiver

Procedia PDF Downloads 117
1057 Improving the LDMOS Temperature Compensation Bias Circuit to Optimize Back-Off

Authors: Antonis Constantinides, Christos Yiallouras, Christakis Damianou

Abstract:

The application of today's semiconductor transistors in high power UHF DVB-T linear amplifiers has evolved significantly by utilizing LDMOS technology. This fact provides engineers with the option to design a single transistor signal amplifier which enables output power and linearity that was unobtainable previously using bipolar junction transistors or later type first generation MOSFETS. The quiescent current stability in terms of thermal variations of the LDMOS guarantees a robust operation in any topology of DVB-T signal amplifiers. Otherwise, progressively uncontrolled heat dissipation enhancement on the LDMOS case can degrade the amplifier’s crucial parameters in regards to the gain, linearity, and RF stability, resulting in dysfunctional operation or a total destruction of the unit. This paper presents one more sophisticated approach from the traditional biasing circuits used so far in LDMOS DVB-T amplifiers. It utilizes a microprocessor control technology, providing stability in topologies where IDQ must be perfectly accurate.

Keywords: LDMOS, amplifier, back-off, bias circuit

Procedia PDF Downloads 340
1056 Video Shot Detection and Key Frame Extraction Using Faber-Shauder DWT and SVD

Authors: Assma Azeroual, Karim Afdel, Mohamed El Hajji, Hassan Douzi

Abstract:

Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.

Keywords: FSDWT, key frame extraction, shot detection, singular value decomposition

Procedia PDF Downloads 399