Search results for: revenue optimization
3242 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning
Authors: Ahcene Habbi, Yassine Boudouaoui
Abstract:
This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.Keywords: automatic design, learning, fuzzy rules, hybrid, swarm optimization
Procedia PDF Downloads 4373241 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm
Authors: Roya Ahmadi Ahangar, Hamid Madadyari
Abstract:
The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.Keywords: load-frequency control, multi zone, robust PID controller, wind generation
Procedia PDF Downloads 3033240 Topology Optimization of the Interior Structures of Beams under Various Load and Support Conditions with Solid Isotropic Material with Penalization Method
Authors: Omer Oral, Y. Emre Yilmaz
Abstract:
Topology optimization is an approach that optimizes material distribution within a given design space for a certain load and boundary conditions by providing performance goals. It uses various restrictions such as boundary conditions, set of loads, and constraints to maximize the performance of the system. It is different than size and shape optimization methods, but it reserves some features of both methods. In this study, interior structures of the parts were optimized by using SIMP (Solid Isotropic Material with Penalization) method. The volume of the part was preassigned parameter and minimum deflection was the objective function. The basic idea behind the theory was considered, and different methods were discussed. Rhinoceros 3D design tool was used with Grasshopper and TopOpt plugins to create and optimize parts. A Grasshopper algorithm was designed and tested for different beams, set of arbitrary located forces and support types such as pinned, fixed, etc. Finally, 2.5D shapes were obtained and verified by observing the changes in density function.Keywords: Grasshopper, lattice structure, microstructures, Rhinoceros, solid isotropic material with penalization method, TopOpt, topology optimization
Procedia PDF Downloads 1363239 A Robust Optimization for Multi-Period Lost-Sales Inventory Control Problem
Authors: Shunichi Ohmori, Sirawadee Arunyanart, Kazuho Yoshimoto
Abstract:
We consider a periodic review inventory control problem of minimizing production cost, inventory cost, and lost-sales under demand uncertainty, in which product demands are not specified exactly and it is only known to belong to a given uncertainty set, yet the constraints must hold for possible values of the data from the uncertainty set. We propose a robust optimization formulation for obtaining lowest cost possible and guaranteeing the feasibility with respect to range of order quantity and inventory level under demand uncertainty. Our formulation is based on the adaptive robust counterpart, which suppose order quantity is affine function of past demands. We derive certainty equivalent problem via second-order cone programming, which gives 'not too pessimistic' worst-case.Keywords: robust optimization, inventory control, supply chain managment, second-order programming
Procedia PDF Downloads 4093238 Stemming the Decline of Cultural Festivals as a Way of Preserving the Nigerian Cultural Heritage: A Case Study of Kuteb and Idoma Cultural Festivals
Authors: Inalegwu Stephany Akipu
Abstract:
A cultural festival is characterized by feasting and celebration, with a day or period that has been set aside solely for this reason. Often expressed by an organized series of acts and performances, it forms a very important part of man’s cultural heritage. Nigeria is a country with many ethnic groups and diverse languages. Each of these ethnic groups has a plethora of festivals that depict their culture which is exhibited in many forms ranging from dancing to feasting and celebration. Being a very important aspect of man’s life, it is pertinent to document and optimally harness it. However, there is a significant decline of these practices in some areas in Nigeria while some areas have registered a total loss of same. It is the aim of this paper therefore, to appraise the factors responsible for this and also, to project ways of resuscitating these festivals which by the way are viable tools for revenue generation through tourism. Not only do festivals serve as a source of revenue, they also aid in national integration which in turn further enhances sustainable development. The interest of this paper will focus on the Kuteb people of Taraba State and the Idoma people of Benue State. The methodologies applied include primary (oral interviews) and secondary (consultation of written records on the subject matter) sources of data. It finally concludes by comparing the approaches that are in use by the ethnic groups in Nigeria who have successfully preserved this aspect their culture and suggestions are made as to how to apply same approaches to these two communities that form the subject of this paper.Keywords: festival, cultural heritage, Nigeria, national integration, sustainable development
Procedia PDF Downloads 2913237 Developing Pandi-Tekki to Tourism Destination in Tanglang, Billiri Local Government Area, Gombe State, Nigeria
Authors: Sanusi Abubakar Sadiq
Abstract:
Despite the significance of tourism as a key revenue earner and employment generator, it is still being disregarded in many areas. The prospects of existing resources could boost development in communities; region, etc. are less used. This study is carried out with the view of developing Pandi-Tekki in Tanglang in Billiri Local Government Area as a Tourism Destination. It was primarily aimed at identifying features of Pandi-Tekki that could be developed into tourism attraction and suggest ways of developing the prospective site into a tourism destination, as well as exploring its possible contribution to tourism sector in Gombe State. Literature was reviewed based on relevant published materials. Data was collected through the use of qualitative and quantitative methods which include personal observation and structured questionnaire. Data was analyzed using the statistical package for the social sciences (SPSS) software. Result based on the data collected shows that Pandi-Tekki has potentials that can be developed as an attraction. The result also shows that the local community perceives tourism as a good development that will open them up to the entire world and also generate revenue to stimulate their economy. Conclusions were drawn based on the findings with regard to the analysis carried out in this research. It was discovered that Pandi-Tekki can be developed as a tourism destination, and there will be a great success towards achieving the aim and objectives of the development. Therefore, recommendations were made on creating awareness on the need to develop Pandi-Tekki as a Tourism Destination and the need for government to provide tourism facilities at the destination since it is a public outfit.Keywords: attraction, destination, developing, features
Procedia PDF Downloads 2873236 Optimization of the Jatropha curcas Supply Chain as a Criteria for the Implementation of Future Collection Points in Rural Areas of Manabi-Ecuador
Authors: Boris G. German, Edward Jiménez, Sebastián Espinoza, Andrés G. Chico, Ricardo A. Narváez
Abstract:
The unique flora and fauna of The Galapagos Islands has leveraged a tourism-driven growth in the islands. Nonetheless, such development is energy-intensive and requires thousands of gallons of diesel each year for thermoelectric electricity generation. The needed transport of fossil fuels from the continent has generated oil spillages and affectations to the fragile ecosystem of the islands. The Zero Fossil Fuels initiative for The Galapagos proposed by the Ecuadorian government as an alternative to reduce the use of fossil fuels in the islands, considers the replacement of diesel in thermoelectric generators, by Jatropha curcas vegetable oil. However, the Jatropha oil supply cannot entirely cover yet the demand for electricity generation in Galapagos. Within this context, the present work aims to provide an optimization model that can be used as a selection criterion for approving new Jatropha Curcas collection points in rural areas of Manabi-Ecuador. For this purpose, existing Jatropha collection points in Manabi were grouped under three regions: north (7 collection points), center (4 collection points) and south (9 collection points). Field work was carried out in every region in order to characterize the collection points, to establish local Jatropha supply and to determine transportation costs. Data collection was complemented using GIS software and an objective function was defined in order to determine the profit associated to Jatropha oil production. The market price of both Jatropha oil and residual cake, were considered for the total revenue; whereas Jatropha price, transportation and oil extraction costs were considered for the total cost. The tonnes of Jatropha fruit and seed, transported from collection points to the extraction plant, were considered as variables. The maximum and minimum amount of the collected Jatropha from each region constrained the optimization problem. The supply chain was optimized using linear programming in order to maximize the profits. Finally, a sensitivity analysis was performed in order to find a profit-based criterion for the acceptance of future collection points in Manabi. The maximum profit reached a value of $ 4,616.93 per year, which represented a total Jatropha collection of 62.3 tonnes Jatropha per year. The northern region of Manabi had the biggest collection share (69%), followed by the southern region (17%). The criteria for accepting new Jatropha collection points in the rural areas of Manabi can be defined by the current maximum profit of the zone and by the variation in the profit when collection points are removed one at a time. The definition of new feasible collection points plays a key role in the supply chain associated to Jatropha oil production. Therefore, a mathematical model that assists decision makers in establishing new collection points while assuring profitability, contributes to guarantee a continued Jatropha oil supply for Galapagos and a sustained economic growth in the rural areas of Ecuador.Keywords: collection points, Jatropha curcas, linear programming, supply chain
Procedia PDF Downloads 4333235 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd
Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic
Abstract:
Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization
Procedia PDF Downloads 1083234 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization
Authors: Himanshu Shekhar Maharana, S. K .Dash
Abstract:
Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution.Keywords: economic load dispatch (ELD), constriction factor based particle swarm optimization (CPSO), dispersed particle swarm optimization (DPSO), weight improved particle swarm optimization (WIPSO), ramp rate and constriction factor based particle swarm optimization (RRCPSO)
Procedia PDF Downloads 3823233 Solving Flowshop Scheduling Problems with Ant Colony Optimization Heuristic
Authors: Arshad Mehmood Ch, Riaz Ahmad, Imran Ali Ch, Waqas Durrani
Abstract:
This study deals with the application of Ant Colony Optimization (ACO) approach to solve no-wait flowshop scheduling problem (NW-FSSP). ACO algorithm so developed has been coded on Matlab computer application. The paper covers detailed steps to apply ACO and focuses on judging the strength of ACO in relation to other solution techniques previously applied to solve no-wait flowshop problem. The general purpose approach was able to find reasonably accurate solutions for almost all the problems under consideration and was able to handle a fairly large spectrum of problems with far reduced CPU effort. Careful scrutiny of the results reveals that the algorithm presented results better than other approaches like Genetic algorithm and Tabu Search heuristics etc; earlier applied to solve NW-FSSP data sets.Keywords: no-wait, flowshop, scheduling, ant colony optimization (ACO), makespan
Procedia PDF Downloads 4343232 Multi-Response Optimization of CNC Milling Parameters Using Taguchi Based Grey Relational Analysis for AA6061 T6 Aluminium Alloy
Authors: Varsha Singh, Kishan Fuse
Abstract:
This paper presents a study of the grey-Taguchi method to optimize CNC milling parameters of AA6061 T6 aluminium alloy. Grey-Taguchi method combines Taguchi method based design of experiments (DOE) with grey relational analysis (GRA). Multi-response optimization of different quality characteristics as surface roughness, material removal rate, cutting forces is done using grey relational analysis (GRA). The milling parameters considered for experiments include cutting speed, feed per tooth, and depth of cut. Each parameter with three levels is selected. A grey relational grade is used to estimate overall quality characteristics performance. The Taguchi’s L9 orthogonal array is used for design of experiments. MINITAB 17 software is used for optimization. Analysis of variance (ANOVA) is used to identify most influencing parameter. The experimental results show that grey relational analysis is effective method for optimizing multi-response characteristics. Optimum results are finally validated by performing confirmation test.Keywords: ANOVA, CNC milling, grey relational analysis, multi-response optimization
Procedia PDF Downloads 3073231 Optimal Power Distribution and Power Trading Control among Loads in a Smart Grid Operated Industry
Authors: Vivek Upadhayay, Siddharth Deshmukh
Abstract:
In recent years utilization of renewable energy sources has increased majorly because of the increase in global warming concerns. Organization these days are generally operated by Micro grid or smart grid on a small level. Power optimization and optimal load tripping is possible in a smart grid based industry. In any plant or industry loads can be divided into different categories based on their importance to the plant and power requirement pattern in the working days. Coming up with an idea to divide loads in different such categories and providing different power management algorithm to each category of load can reduce the power cost and can come handy in balancing stability and reliability of power. An objective function is defined which is subjected to a variable that we are supposed to minimize. Constraint equations are formed taking difference between the power usages pattern of present day and same day of previous week. By considering the objectives of minimal load tripping and optimal power distribution the proposed problem formulation is a multi-object optimization problem. Through normalization of each objective function, the multi-objective optimization is transformed to single-objective optimization. As a result we are getting the optimized values of power required to each load for present day by use of the past values of the required power for the same day of last week. It is quite a demand response scheduling of power. These minimized values then will be distributed to each load through an algorithm used to optimize the power distribution at a greater depth. In case of power storage exceeding the power requirement, profit can be made by selling exceeding power to the main grid.Keywords: power flow optimization, power trading enhancement, smart grid, multi-object optimization
Procedia PDF Downloads 5253230 Optimal Driving Strategies for a Hybrid Street Type Motorcycle: Modelling and Control
Authors: Jhon Vargas, Gilberto Osorio-Gomez, Tatiana Manrique
Abstract:
This work presents an optimal driving strategy proposal for a 125 c.c. street-type hybrid electric motorcycle with a parallel configuration. The results presented in this article are complementary regarding the control proposal of a hybrid motorcycle. In order to carry out such developments, a representative dynamic model of the motorcycle is used, in which also are described different optimization functionalities for predetermined driving modes. The purpose is to implement an off-line optimal driving strategy which distributes energy to both engines by minimizing an objective torque requirement function. An optimal dynamic contribution is found from the optimization routine, and the optimal percentage contribution for vehicle cruise speed is implemented in the proposed online PID controller.Keywords: dynamic model, driving strategies, parallel hybrid motorcycle, PID controller, optimization
Procedia PDF Downloads 1883229 Acceptability Process of a Congestion Charge
Authors: Amira Mabrouk
Abstract:
This paper deals with the acceptability of urban toll in Tunisia. The price-based regulation, i.e. urban toll, is the outcome of a political process hampered by three-fold objectives: effectiveness, equity and social acceptability. This produces both economic interest groups and functions that are of incongruent preferences. The plausibility of this speculation goes hand in hand with the fact that these economic interest groups are also taxpayers who undeniably perceive urban toll as an additional charge. This wariness is coupled with an inquiry about the conditions of usage, the redistribution of the collected tax revenue and the idea of the leviathan state completes the picture. In a nutshell, if researches related to road congestion proliferate, no de facto legitimacy can be pleaded. Nonetheless, the theory on urban tolls engenders economists’ questioning of ways to reduce negative external effects linked to it. Only then does the urban toll appear to bear an answer to these issues. Undeniably, the urban toll suggests inherent conflicts due to the apparent no-payment principal of a public asset as well as to the social perception of the new measure as a mere additional charge. However, when the main concern is effectiveness is its broad sense and the social well-being, the main factors that determine the acceptability of such a tariff measure along with the type of incentives should be the object of a thorough, in-depth analysis. Before adopting this economic role, one has to recognize the factors that intervene in the acceptability of a congestion toll which brought about a copious number of articles and reports that lacked mostly solid theoretical content. It is noticeable that nowadays uncertainties float over the exact nature of the acceptability process. Accepting a congestion tariff could differ from one era to another, from one region to another and from one population to another, etc. Notably, this article, within a convenient time frame, attempts at bringing into focus a link between the social acceptability of the urban congestion toll and the value of time through a survey method barely employed in Tunisia, that of stated preference method. How can the urban toll, as a tax, be defined, justified and made acceptable? How can an equitable and effective tariff of congestion toll be reached? How can the costs of this urban toll be covered? In what way can we make the redistribution of the urban toll revenue visible and economically equitable? How can the redistribution of the revenue of urban toll compensate the disadvantaged while introducing such a tariff measure? This paper will offer answers to these research questions and it follows the line of contribution of JULES DUPUIT in 1844.Keywords: congestion charge, social perception, acceptability, stated preferences
Procedia PDF Downloads 2853228 A Novel Algorithm for Production Scheduling
Authors: Ali Mohammadi Bolban Abad, Fariborz Ahmadi
Abstract:
Optimization in manufacture is a method to use limited resources to obtain the best performance and reduce waste. In this paper a new algorithm based on eurygaster life is introduced to obtain a plane in which task order and completion time of resources are defined. Evaluation results show our approach has less make span when the resources are allocated with some products in comparison to genetic algorithm.Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, NP-Hard problems, production scheduling
Procedia PDF Downloads 3783227 Simulation and Optimization of an Annular Methanol Reformer
Authors: Shu-Bo Yang, Wei Wu, Yuan-Heng Liu
Abstract:
This research aims to design a heat-exchanger type of methanol reformer coupled with a preheating design in gPROMS® environment. The endothermic methanol steam reforming reaction (MSR) and the exothermic preferential oxidation reaction (PROX) occur in the inner tube and the outer tube of the reformer, respectively. The effective heat transfer manner between the inner and outer tubes is investigated. It is verified that the countercurrent-flow type reformer provides the higher hydrogen yield than the cocurrent-flow type. Since the hot spot temperature appears in the outer tube, an improved scheme is proposed to suppress the hot spot temperature by splitting the excess air flowing into two sites. Finally, an optimization algorithm for maximizing the hydrogen yield is employed to determine optimal operating conditions.Keywords: methanol reformer, methanol steam reforming, optimization, simulation
Procedia PDF Downloads 3323226 Study of the Effect of Inclusion of TiO2 in Active Flux on Submerged Arc Welding of Low Carbon Mild Steel Plate and Parametric Optimization of the Process by Using DEA Based Bat Algorithm
Authors: Sheetal Kumar Parwar, J. Deb Barma, A. Majumder
Abstract:
Submerged arc welding is a very complex process. It is a very efficient and high performance welding process. In this present study an attempt have been done to reduce the welding distortion by increased amount of oxide flux through TiO2 in submerged arc welding process. Care has been taken to avoid the excessiveness of the adding agent for attainment of significant results. Data Envelopment Analysis (DEA) based BAT algorithm is used for the parametric optimization purpose in which DEA Data Envelopment Analysis is used to convert multi response parameters into a single response parameter. The present study also helps to know the effectiveness of the addition of TiO2 in active flux during submerged arc welding process.Keywords: BAT algorithm, design of experiment, optimization, submerged arc welding
Procedia PDF Downloads 6393225 Fructooligosaccharide Prebiotics: Optimization of Different Cultivation Parameters on Their Microbial Production
Authors: Elsayed Ahmed Elsayed, Azza Noor El-Deen, Mohamed A. Farid, Mohamed A. Wadaan
Abstract:
Recently, a great attention has been paid to the use of dietary carbohydrates as prebiotic functional foods. Among the new commercially available products, fructooligosaccharides (FOS), which are microbial produced from sucrose, have attracted special interest due to their valuable properties and, thus, have a great economic potential for the sugar industrial branch. They are non-cariogenic sweeteners of low caloric value, as they are not hydrolyzed by the gastro-intestinal enzymes, promoting selectively the growth of the bifidobacteria in the colon, helping to eliminate the harmful microbial species to human and animal health and preventing colon cancer. FOS has been also found to reduce cholesterol, phospholipids and triglyceride levels in blood. FOS has been mainly produced by microbial fructosyltransferase (FTase) enzymes. The present work outlines bioprocess optimization for different cultivation parameters affecting the production of FTase by Penicillium aurantiogriseum AUMC 5605. The optimization involves both traditional as well as fractional factorial design approaches. Additionally, the production process will be compared under batch and fed-batch conditions. Finally, the optimized process conditions will be applied to 5-L stirred tank bioreactor cultivations.Keywords: prebiotics, fructooligosaccharides, optimization, cultivation
Procedia PDF Downloads 3873224 Association Rules Mining Task Using Metaheuristics: Review
Authors: Abir Derouiche, Abdesslem Layeb
Abstract:
Association Rule Mining (ARM) is one of the most popular data mining tasks and it is widely used in various areas. The search for association rules is an NP-complete problem that is why metaheuristics have been widely used to solve it. The present paper presents the ARM as an optimization problem and surveys the proposed approaches in the literature based on metaheuristics.Keywords: Optimization, Metaheuristics, Data Mining, Association rules Mining
Procedia PDF Downloads 1593223 Dynamic Analysis of Commodity Price Fluctuation and Fiscal Management in Sub-Saharan Africa
Authors: Abidemi C. Adegboye, Nosakhare Ikponmwosa, Rogers A. Akinsokeji
Abstract:
For many resource-rich developing countries, fiscal policy has become a key tool used for short-run fiscal management since it is considered as playing a critical role in injecting part of resource rents into the economies. However, given its instability, reliance on revenue from commodity exports renders fiscal management, budgetary planning and the efficient use of public resources difficult. In this study, the linkage between commodity prices and fiscal operations among a sample of commodity-exporting countries in sub-Saharan Africa (SSA) is investigated. The main question is whether commodity price fluctuations affects the effectiveness of fiscal policy as a macroeconomic stabilization tool in these countries. Fiscal management effectiveness is considered as the ability of fiscal policy to react countercyclically to output gaps in the economy. Fiscal policy is measured as the ratio of fiscal deficit to GDP and the ratio of government spending to GDP, output gap is measured as a Hodrick-Prescott filter of output growth for each country, while commodity prices are associated with each country based on its main export commodity. Given the dynamic nature of fiscal policy effects on the economy overtime, a dynamic framework is devised for the empirical analysis. The panel cointegration and error correction methodology is used to explain the relationships. In particular, the study employs the panel ECM technique to trace short-term effects of commodity prices on fiscal management and also uses the fully modified OLS (FMOLS) technique to determine the long run relationships. These procedures provide sufficient estimation of the dynamic effects of commodity prices on fiscal policy. Data used cover the period 1992 to 2016 for 11 SSA countries. The study finds that the elasticity of the fiscal policy measures with respect to the output gap is significant and positive, suggesting that fiscal policy is actually procyclical among the countries in the sample. This implies that fiscal management for these countries follows the trend of economic performance. Moreover, it is found that fiscal policy has not performed well in delivering macroeconomic stabilization for these countries. The difficulty in applying fiscal stabilization measures is attributable to the unstable revenue inflows due to the highly volatile nature of commodity prices in the international market. For commodity-exporting countries in SSA to improve fiscal management, therefore, fiscal planning should be largely decoupled from commodity revenues, domestic revenue bases must be improved, and longer period perspectives in fiscal policy management are the critical suggestions in this study.Keywords: commodity prices, ECM, fiscal policy, fiscal procyclicality, fully modified OLS, sub-saharan africa
Procedia PDF Downloads 1633222 ACO-TS: an ACO-based Algorithm for Optimizing Cloud Task Scheduling
Authors: Fahad Y. Al-dawish
Abstract:
The current trend by a large number of organizations and individuals to use cloud computing. Many consider it a significant shift in the field of computing. Cloud computing are distributed and parallel systems consisting of a collection of interconnected physical and virtual machines. With increasing request and profit of cloud computing infrastructure, diverse computing processes can be executed on cloud environment. Many organizations and individuals around the world depend on the cloud computing environments infrastructure to carry their applications, platform, and infrastructure. One of the major and essential issues in this environment related to allocating incoming tasks to suitable virtual machine (cloud task scheduling). Cloud task scheduling is classified as optimization problem, and there are several meta-heuristic algorithms have been anticipated to solve and optimize this problem. Good task scheduler should execute its scheduling technique on altering environment and the types of incoming task set. In this research project a cloud task scheduling methodology based on ant colony optimization ACO algorithm, we call it ACO-TS Ant Colony Optimization for Task Scheduling has been proposed and compared with different scheduling algorithms (Random, First Come First Serve FCFS, and Fastest Processor to the Largest Task First FPLTF). Ant Colony Optimization (ACO) is random optimization search method that will be used for assigning incoming tasks to available virtual machines VMs. The main role of proposed algorithm is to minimizing the makespan of certain tasks set and maximizing resource utilization by balance the load among virtual machines. The proposed scheduling algorithm was evaluated by using Cloudsim toolkit framework. Finally after analyzing and evaluating the performance of experimental results we find that the proposed algorithm ACO-TS perform better than Random, FCFS, and FPLTF algorithms in each of the makespaan and resource utilization.Keywords: cloud Task scheduling, ant colony optimization (ACO), cloudsim, cloud computing
Procedia PDF Downloads 4213221 Quantitative Analysis of Contract Variations Impact on Infrastructure Project Performance
Authors: Soheila Sadeghi
Abstract:
Infrastructure projects often encounter contract variations that can significantly deviate from the original tender estimates, leading to cost overruns, schedule delays, and financial implications. This research aims to quantitatively assess the impact of changes in contract variations on project performance by conducting an in-depth analysis of a comprehensive dataset from the Regional Airport Car Park project. The dataset includes tender budget, contract quantities, rates, claims, and revenue data, providing a unique opportunity to investigate the effects of variations on project outcomes. The study focuses on 21 specific variations identified in the dataset, which represent changes or additions to the project scope. The research methodology involves establishing a baseline for the project's planned cost and scope by examining the tender budget and contract quantities. Each variation is then analyzed in detail, comparing the actual quantities and rates against the tender estimates to determine their impact on project cost and schedule. The claims data is utilized to track the progress of work and identify deviations from the planned schedule. The study employs statistical analysis using R to examine the dataset, including tender budget, contract quantities, rates, claims, and revenue data. Time series analysis is applied to the claims data to track progress and detect variations from the planned schedule. Regression analysis is utilized to investigate the relationship between variations and project performance indicators, such as cost overruns and schedule delays. The research findings highlight the significance of effective variation management in construction projects. The analysis reveals that variations can have a substantial impact on project cost, schedule, and financial outcomes. The study identifies specific variations that had the most significant influence on the Regional Airport Car Park project's performance, such as PV03 (additional fill, road base gravel, spray seal, and asphalt), PV06 (extension to the commercial car park), and PV07 (additional box out and general fill). These variations contributed to increased costs, schedule delays, and changes in the project's revenue profile. The study also examines the effectiveness of project management practices in managing variations and mitigating their impact. The research suggests that proactive risk management, thorough scope definition, and effective communication among project stakeholders can help minimize the negative consequences of variations. The findings emphasize the importance of establishing clear procedures for identifying, assessing, and managing variations throughout the project lifecycle. The outcomes of this research contribute to the body of knowledge in construction project management by demonstrating the value of analyzing tender, contract, claims, and revenue data in variation impact assessment. However, the research acknowledges the limitations imposed by the dataset, particularly the absence of detailed contract and tender documents. This constraint restricts the depth of analysis possible in investigating the root causes and full extent of variations' impact on the project. Future research could build upon this study by incorporating more comprehensive data sources to further explore the dynamics of variations in construction projects.Keywords: contract variation impact, quantitative analysis, project performance, claims analysis
Procedia PDF Downloads 403220 Biogeography Based CO2 and Cost Optimization of RC Cantilever Retaining Walls
Authors: Ibrahim Aydogdu, Alper Akin
Abstract:
In this study, the development of minimizing the cost and the CO2 emission of the RC retaining wall design has been performed by Biogeography Based Optimization (BBO) algorithm. This has been achieved by developing computer programs utilizing BBO algorithm which minimize the cost and the CO2 emission of the RC retaining walls. Objective functions of the optimization problem are defined as the minimized cost, the CO2 emission and weighted aggregate of the cost and the CO2 functions of the RC retaining walls. In the formulation of the optimum design problem, the height and thickness of the stem, the length of the toe projection, the thickness of the stem at base level, the length and thickness of the base, the depth and thickness of the key, the distance from the toe to the key, the number and diameter of the reinforcement bars are treated as design variables. In the formulation of the optimization problem, flexural and shear strength constraints and minimum/maximum limitations for the reinforcement bar areas are derived from American Concrete Institute (ACI 318-14) design code. Moreover, the development length conditions for suitable detailing of reinforcement are treated as a constraint. The obtained optimum designs must satisfy the factor of safety for failure modes (overturning, sliding and bearing), strength, serviceability and other required limitations to attain practically acceptable shapes. To demonstrate the efficiency and robustness of the presented BBO algorithm, the optimum design example for retaining walls is presented and the results are compared to the previously obtained results available in the literature.Keywords: bio geography, meta-heuristic search, optimization, retaining wall
Procedia PDF Downloads 3993219 Design and Optimization of a Small Hydraulic Propeller Turbine
Authors: Dario Barsi, Marina Ubaldi, Pietro Zunino, Robert Fink
Abstract:
A design and optimization procedure is proposed and developed to provide the geometry of a high efficiency compact hydraulic propeller turbine for low head. For the preliminary design of the machine, classic design criteria, based on the use of statistical correlations for the definition of the fundamental geometric parameters and the blade shapes are used. These relationships are based on the fundamental design parameters (i.e., specific speed, flow coefficient, work coefficient) in order to provide a simple yet reliable procedure. Particular attention is paid, since from the initial steps, on the correct conformation of the meridional channel and on the correct arrangement of the blade rows. The preliminary geometry thus obtained is used as a starting point for the hydrodynamic optimization procedure, carried out using a CFD calculation software coupled with a genetic algorithm that generates and updates a large database of turbine geometries. The optimization process is performed using a commercial approach that solves the turbulent Navier Stokes equations (RANS) by exploiting the axial-symmetric geometry of the machine. The geometries generated within the database are therefore calculated in order to determine the corresponding overall performance. In order to speed up the optimization calculation, an artificial neural network (ANN) based on the use of an objective function is employed. The procedure was applied for the specific case of a propeller turbine with an innovative design of a modular type, specific for applications characterized by very low heads. The procedure is tested in order to verify its validity and the ability to automatically obtain the targeted net head and the maximum for the total to total internal efficiency.Keywords: renewable energy conversion, hydraulic turbines, low head hydraulic energy, optimization design
Procedia PDF Downloads 1503218 Cylindrical Spacer Shape Optimization for Enhanced Inhalation Therapy
Authors: Shahab Azimi, Siamak Arzanpour, Anahita Sayyar
Abstract:
Asthma and Chronic obstructive pulmonary disease (COPD) are common lung diseases that have a significant global impact. Pressurized metered dose inhalers (pMDIs) are widely used for treatment, but they can have limitations such as high medication release speed resulting in drug deposition in the mouth or oral cavity and difficulty achieving proper synchronization with inhalation by users. Spacers are add-on devices that improve the efficiency of pMDIs by reducing the release speed and providing space for aerosol particle breakup to have finer and medically effective medication. The aim of this study is to optimize the size and cylindrical shape of spacers to enhance their drug delivery performance. The study was based on fluid dynamics theory and employed Ansys software for simulation and optimization. Results showed that optimization of the spacer's geometry greatly influenced its performance and improved drug delivery. This study provides a foundation for future research on enhancing the efficiency of inhalation therapy for lung diseases.Keywords: asthma, COPD, pressurized metered dose inhalers, spacers, CFD, shape optimization
Procedia PDF Downloads 973217 Structural Optimization of Shell and Arched Structures
Authors: Mitchell Gohnert, Ryan Bradley
Abstract:
This paper reviews some fundamental concepts of structural optimization, which are based on the type of materials used in construction and the shape of the structure. The first step in structural optimization is to break down all internal forces in a structure into fundamental stresses, which are tensions and compressions. Knowing the stress patterns directs our selection of structural shapes and the most appropriate type of construction material. In our selection of materials, it is essential to understand all construction materials have flaws, or micro-cracks, which reduce the capacity of the material, especially when subjected to tensions. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure also has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.Keywords: arches, economy of stresses, material strength, optimization, shells
Procedia PDF Downloads 1163216 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 653215 Three-Dimensional Off-Line Path Planning for Unmanned Aerial Vehicle Using Modified Particle Swarm Optimization
Authors: Lana Dalawr Jalal
Abstract:
This paper addresses the problem of offline path planning for Unmanned Aerial Vehicles (UAVs) in complex three-dimensional environment with obstacles, which is modelled by 3D Cartesian grid system. Path planning for UAVs require the computational intelligence methods to move aerial vehicles along the flight path effectively to target while avoiding obstacles. In this paper Modified Particle Swarm Optimization (MPSO) algorithm is applied to generate the optimal collision free 3D flight path for UAV. The simulations results clearly demonstrate effectiveness of the proposed algorithm in guiding UAV to the final destination by providing optimal feasible path quickly and effectively.Keywords: obstacle avoidance, particle swarm optimization, three-dimensional path planning unmanned aerial vehicles
Procedia PDF Downloads 4103214 Optimization Design of Superposition Wave Form Automotive Exhaust Bellows Structure
Authors: Zhang Jianrun, He Tangling
Abstract:
Superposition wave form automotive exhaust bellows is a new type of bellows, which has the characteristics of large compensation, good vibration isolation performance and long life. It has been paid more and more attention and applications in automotive exhaust pipe system. Aiming at the lack of current design methods of superposition wave form automotive exhaust bellows, this paper proposes a response surface parameter optimization method where the fatigue life and vibration transmissibility of the bellows are set as objectives. The parametric modeling of bellow structure is also adopted to achieve the high efficiency in the design. The approach proposed in this paper provides a new way for the design of superposition wave form automotive exhaust bellows. It embodies good engineering application value.Keywords: superposition wave form, exhaust bellows, optimization, vibration, fatigue life
Procedia PDF Downloads 963213 Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method
Authors: Mamidi Ramakrishna Rao
Abstract:
Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.Keywords: direct search, DFIG, equivalent circuit parameters, optimization
Procedia PDF Downloads 256