Search results for: photovoltaic production
7531 Highway Lighting of the 21st Century is Smart, but is it Cost Efficient?
Authors: Saurabh Gupta, Vanshdeep Parmar, Sri Harsha Reddy Yelly, Michele Baker, Elizabeth Bigler, Kunhee Choi
Abstract:
It is known that the adoption of solar powered LED highway lighting systems or sensory LED highway lighting systems can dramatically reduce energy consumption by 55 percent when compared to conventional on-grid High Pressure Sodium (HPS) lamps that are widely applied to most highways. However, an initial high installation cost for building the infrastructure of solar photovoltaic devices hampers a wider adoption of such technologies. This research aims to examine currently available state-of-the-art solar photovoltaic and sensory technologies, identify major obstacles, and analyze each technology to create a benchmarking metrics from the benefit-cost analysis perspective. The on-grid HPS lighting systems will serve as the baseline for this study to compare it with other lighting alternatives such as solar and sensory LED lighting systems. This research will test the validity of the research hypothesis that alternative LED lighting systems produce more favorable benefit-cost ratios and the added initial investment costs are recouped by the savings in the operation and maintenance cost. The payback period of the excess investment and projected savings over the life-cycle of the selected lighting systems will be analyzed by utilizing the concept of Net Present Value (NPV). Researchers believe that if this study validates the research hypothesis, it can promote a wider adoption of alternative lighting systems that will eventually save millions of taxpayer dollars in the long-run.Keywords: lighting systems, sensory and solar PV, benefit cost analysis, net present value
Procedia PDF Downloads 3517530 Recent Climate Variability and Crop Production in the Central Highlands of Ethiopia
Authors: Arragaw Alemayehu, Woldeamlak Bewket
Abstract:
The aim of this study was to understand the influence of current climate variability on crop production in the central highlands of Ethiopia. We used monthly rainfall and temperature data from 132 points each representing a pixel of 10×10 km. The data are reconstructions based on station records and meteorological satellite observations. Production data of the five major crops in the area were collected from the Central Statistical Agency for the period 2004-2013 and for the main cropping season, locally known as Meher. The production data are at the Enumeration Area (EA ) level and hence the best available dataset on crop production. The results show statistically significant decreasing trends in March–May (Belg) rainfall in the area. However, June – September (Kiremt) rainfall showed increasing trends in Efratana Gidim and Menz Gera Meder which the latter is statistically significant. Annual rainfall also showed positive trends in the area except Basona Werana where significant negative trends were observed. On the other hand, maximum and minimum temperatures showed warming trends in the study area. Correlation results have shown that crop production and area of cultivation have positive correlation with rainfall, and negative with temperature. When the trends in crop production are investigated, most crops showed negative trends and below average production was observed. Regression results have shown that rainfall was the most important determinant of crop production in the area. It is concluded that current climate variability has a significant influence on crop production in the area and any unfavorable change in the local climate in the future will have serious implications for household level food security. Efforts to adapt to the ongoing climate change should begin from tackling the current climate variability and take a climate risk management approach.Keywords: central highlands, climate variability, crop production, Ethiopia, regression, trend
Procedia PDF Downloads 4387529 Optimizing Cellulase Production from Municipal Solid Wastes (MSW) Following a Solid State Fermentation (SSF) by Trichoderma reesei and Aspergillus niger
Authors: Jwan J. Abdullah, Greetham Darren, Gregory A, Tucker, Chenyu Du
Abstract:
Solid-state fermentation (SSF) is an alternative to liquid fermentations for the production of commercially important products such as antibiotics, single cell proteins, enzymes, organic acids, or biofuels from lignocellulosic material. This paper describes the optimisation of SSF on municipal solid waste (MSW) for the production of cellulase enzyme. Production of cellulase enzymes was optimised by Trichoderma reesei or Aspergillus niger for temperature, moisture content, inoculation, and period of incubation. Also, presence of minerals, and alternative carbon and nitrogen sources. Optimisation revealed that production of cellulolytic enzymes was optimal when using Trichoderma spp at 30°C with an incubation period of 168 hours with a 60% moisture content. Crude enzymes produced from MSW, by Trichoderma were evaluated for the saccharification of MSW and compared with activity of a commercially available enzyme, results demonstrated that MSW can be used as inexpensive lignocellulosic material for the production of cellulase enzymes using Trichoderma reesei.Keywords: SSF, enzyme hydrolysis, municipal solid waste (MSW), optimizing conditions, enzyme hydrolysis
Procedia PDF Downloads 5557528 Modeling of Hydrogen Production by Inductively Coupled Methane Plasma for Input Power Pin=700W
Authors: Abdelatif Gadoum, Djilali Benyoucef, Mouloudj Hadj, Alla Eddine Toubal Maamar, Mohamed Habib Allah Lahoual
Abstract:
Hydrogen occurs naturally in the form of chemical compounds, most often in water and hydrocarbons. The main objective of this study is 2D modeling of hydrogen production in inductively coupled plasma in methane at low pressure. In the present model, we include the motions and the collisions of both neutral and charged particles by considering 19 species (i.e in total ; neutrals, radicals, ions, and electrons), and more than 120 reactions (electron impact with methane, neutral-neutral, neutral-ions and surface reactions). The results show that the rate conversion of methane reach 90% and the hydrogen production is about 30%.Keywords: hydrogen production, inductively coupled plasma, fluid model, methane plasma
Procedia PDF Downloads 1607527 Design, Control and Implementation of 300Wp Single Phase Photovoltaic Micro Inverter for Village Nano Grid Application
Authors: Ramesh P., Aby Joseph
Abstract:
Micro Inverters provide Module Embedded Solution for harvesting energy from small-scale solar photovoltaic (PV) panels. In addition to higher modularity & reliability (25 years of life), the MicroInverter has inherent advantages such as avoidance of long DC cables, eliminates module mismatch losses, minimizes partial shading effect, improves safety and flexibility in installations etc. Due to the above-stated benefits, the renewable energy technology with Solar Photovoltaic (PV) Micro Inverter becomes more widespread in Village Nano Grid application ensuring grid independence for rural communities and areas without access to electricity. While the primary objective of this paper is to discuss the problems related to rural electrification, this concept can also be extended to urban installation with grid connectivity. This work presents a comprehensive analysis of the power circuit design, control methodologies and prototyping of 300Wₚ Single Phase PV Micro Inverter. This paper investigates two different topologies for PV Micro Inverters, based on the first hand on Single Stage Flyback/ Forward PV Micro-Inverter configuration and the other hand on the Double stage configuration including DC-DC converter, H bridge DC-AC Inverter. This work covers Power Decoupling techniques to reduce the input filter capacitor size to buffer double line (100 Hz) ripple energy and eliminates the use of electrolytic capacitors. The propagation of the double line oscillation reflected back to PV module will affect the Maximum Power Point Tracking (MPPT) performance. Also, the grid current will be distorted. To mitigate this issue, an independent MPPT control algorithm is developed in this work to reject the propagation of this double line ripple oscillation to PV side to improve the MPPT performance and grid side to improve current quality. Here, the power hardware topology accepts wide input voltage variation and consists of suitably rated MOSFET switches, Galvanically Isolated gate drivers, high-frequency magnetics and Film capacitors with a long lifespan. The digital controller hardware platform inbuilt with the external peripheral interface is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the PV Micro Inverter is written in C language and was developed using code composer studio Integrated Development Environment (IDE). In this work, the prototype hardware for the Single Phase Photovoltaic Micro Inverter with Double stage configuration was developed and the comparative analysis between the above mentioned configurations with experimental results will be presented.Keywords: double line oscillation, micro inverter, MPPT, nano grid, power decoupling
Procedia PDF Downloads 1337526 Schedule a New Production Plan by Heuristic Methods
Authors: Hanife Merve Öztürk, Sıdıka Dalgan
Abstract:
In this project, a capacity analysis study is done at TAT A. Ş. Maret Plant. Production capacity of products which generate 80% of sales amount are determined. Obtained data entered the LEKIN Scheduling Program and we get production schedules by using heuristic methods. Besides heuristic methods, as mathematical model, disjunctive programming formulation is adapted to flexible job shop problems by adding a new constraint to find optimal schedule solution.Keywords: scheduling, flexible job shop problem, shifting bottleneck heuristic, mathematical modelling
Procedia PDF Downloads 4017525 Increasing Participation of KUD (Rural Unit Cooperative) Through 'Kemal Propuri' System to Independence Farmers
Authors: Ikrima Zaleda Zia, Devi Fitri Kumalasari, Rosita Khusna, Farah Hidayati, Ilham Fajrul Haq, Amin Yusuf Efendi
Abstract:
Fertilizer is one of the production factors that are important to agriculture. Fertilizers contribution to the agricultural sector improvement is quite high. Fertilizers scarcity on the society are giving effect to agricultural sector, that is decreasing farmers production. Through a system called Kemal Propuri, society will be taught how to be independent, especially in terms of supplying the fertilizer and how to earn extra income besides of relying on the agriculture production. This research aims to determine implementation measures of Kemal Propuri in realizing farmers independence. This research was designed to use descriptive research with a qualitative approach. In this case, writers are trying to make an illustration of the increasing role of KUD (rural unit cooperative) through Kemal Propuri system (Independence System Through Individual Fertilizer Production) towards farmer independence. It can be concluded that Kemal Propuri system can contribute in order to achieve farmers independence. Independence fertilizer production will overcome farmers dependence of the subsidized fertilizer from the government.Keywords: Kemal Propuri, KUD (Rural Unit Cooperative), independence farmers, fertilizer production
Procedia PDF Downloads 3867524 Performance Evaluation of Production Schedules Based on Process Mining
Authors: Kwan Hee Han
Abstract:
External environment of enterprise is rapidly changing majorly by global competition, cost reduction pressures, and new technology. In these situations, production scheduling function plays a critical role to meet customer requirements and to attain the goal of operational efficiency. It deals with short-term decision making in the production process of the whole supply chain. The major task of production scheduling is to seek a balance between customer orders and limited resources. In manufacturing companies, this task is so difficult because it should efficiently utilize resource capacity under the careful consideration of many interacting constraints. At present, many computerized software solutions have been utilized in many enterprises to generate a realistic production schedule to overcome the complexity of schedule generation. However, most production scheduling systems do not provide sufficient information about the validity of the generated schedule except limited statistics. Process mining only recently emerged as a sub-discipline of both data mining and business process management. Process mining techniques enable the useful analysis of a wide variety of processes such as process discovery, conformance checking, and bottleneck analysis. In this study, the performance of generated production schedule is evaluated by mining event log data of production scheduling software system by using the process mining techniques since every software system generates event logs for the further use such as security investigation, auditing and error bugging. An application of process mining approach is proposed for the validation of the goodness of production schedule generated by scheduling software systems in this study. By using process mining techniques, major evaluation criteria such as utilization of workstation, existence of bottleneck workstations, critical process route patterns, and work load balance of each machine over time are measured, and finally, the goodness of production schedule is evaluated. By using the proposed process mining approach for evaluating the performance of generated production schedule, the quality of production schedule of manufacturing enterprises can be improved.Keywords: data mining, event log, process mining, production scheduling
Procedia PDF Downloads 2797523 Create a Model of Production and Marketing Strategies in Alignment with Business Strategy Using QFD Approach
Authors: Hamed Saremi, Shahla Saremi
Abstract:
In today's competitive world, organizations are expected to surpass the competitors and benefit from the resources and benefits. Therefore, organizations need to improve the current performance is felt more than ever that this requires to identify organizational optimal strategies, and consider all strategies simultaneously. In this study, to enhance competitive advantage and according to customer requirements, alignment between business, production and marketing strategies, House of Quality (QFD) approach has been used and zero-one linear programming model has been studied. First, the alignment between production and marketing strategies with business strategy, independent weights of these strategies is calculated. Then with using QFD approach the aligned weights of optimal strategies in each production and marketing field will be obtained and finally the aligned marketing strategies selection with the purpose of allocating budget and specialist human resource to marketing functions will be done that lead to increasing competitive advantage and benefit.Keywords: marketing strategy, business strategy, strategy alignment, house of quality deployment, production strategy
Procedia PDF Downloads 6057522 Production of Poly-β-Hydroxybutyrate (PHB) by a Thermophilic Strain of Bacillus and Pseudomonas Species
Authors: Patience Orobosa Olajide
Abstract:
Five hydrocarbon degrading bacterial strains isolated from contaminated environment were investigated with respect to polyhydroxybutyrate (PHB) biosynthesis. Screening for bioplastic production was done on assay mineral salts agar medium containing 0.2% poly (3-hydroxybutyrate) as the sole carbon source. Two of the test bacteria were positive for PHB biosynthesis and were identified based on gram staining, biochemical tests, 16S rRNA gene sequence analysis as Pseudomonas aeruginosa and Bacillus licheniformis which grew at 37 and up to 65 °C respectively, thus suggesting the later to be thermotolerant. In this study, the effects of different carbon and nitrogen sources on PHB production in these strains were investigated. Maximum PHB production was obtained in 48 hr for the two strains and amounted to yields of 72.86 and 62.22 percentages for Bacillus licheniformis and Pseudomonas aeruginosa respectively. In these strains, glycine was the most efficient carbon sources for the production of PHB compared with other carbon (glucose, lactose, sucrose, Arabinose) and nitrogen (L- glycine, L-cysteine, DL-Tryptophan, and Potassium Nitrate) sources. The screening of microbial strains for industrial PHB production should be based on several factors including the cell’s capability to mineralize an inexpensive substrate, rate of growth and the extent of polymer accumulation.Keywords: bacteria, poly-3-hydroxybutyrate (PHB), hydrocarbon, thermotolerant
Procedia PDF Downloads 1977521 Extension Services Impact On Stingless Bee Production And Profitability In Malaysia
Authors: Ibrahim Aliyu Isaha, Mohd Mansor Ismailb , Salim Hassanc, Norsida Bint Man
Abstract:
The Global and National income derive from a stingless beekeeping project is a new source of wealth to Malaysia. A common stingless bee species, Trigona itama, potential production through effective utilization of highly competent agents of extension services will lead to higher output that guaranteed maximum income. The study covers a sample beekeepers in ten states and it was designed to examine various impacts of extension services as variables in enhancing sustainable stingless beekeeping production. In addition, the study also determined the profitability of stingless beekeeping production through technology transfer and human resource development. Correlation and Regression analyses were used on a sample size of 87 stingless beekeepers representing 72% of filled questionnaires. The cost-benefit analysis showed participants received lucrative monthly income of more than rm3500. The results indicated positive outcome from extension services that increased production, and hence, generated better additional income to participants. In summary, it is possible for the extension services to increase output of stingless beekeeping through technology transferKeywords: extension services, malaysia, profitability, stingless bee, trigona itama production
Procedia PDF Downloads 637520 Nano-Texturing of Single Crystalline Silicon via Cu-Catalyzed Chemical Etching
Authors: A. A. Abaker Omer, H. B. Mohamed Balh, W. Liu, A. Abas, J. Yu, S. Li, W. Ma, W. El Kolaly, Y. Y. Ahmed Abuker
Abstract:
We have discovered an important technical solution that could make new approaches in the processing of wet silicon etching, especially in the production of photovoltaic cells. During its inferior light-trapping and structural properties, the inverted pyramid structure outperforms the conventional pyramid textures and black silicone. The traditional pyramid textures and black silicon can only be accomplished with more advanced lithography, laser processing, etc. Importantly, our data demonstrate the feasibility of an inverted pyramidal structure of silicon via one-step Cu-catalyzed chemical etching (CCCE) in Cu (NO3)2/HF/H2O2/H2O solutions. The effects of etching time and reaction temperature on surface geometry and light trapping were systematically investigated. The conclusion shows that the inverted pyramid structure has ultra-low reflectivity of ~4.2% in the wavelength of 300~1000 nm; introduce of Cu particles can significantly accelerate the dissolution of the silicon wafer. The etching and the inverted pyramid structure formation mechanism are discussed. Inverted pyramid structure with outstanding anti-reflectivity includes useful applications throughout the manufacture of semi-conductive industry-compatible solar cells, and can have significant impacts on industry colleagues and populations.Keywords: Cu-catalyzed chemical etching, inverted pyramid nanostructured, reflection, solar cells
Procedia PDF Downloads 1547519 Improvement of the Reliability and the Availability of a Production System
Authors: Lakhoua Najeh
Abstract:
Aims of the work: The aim of this paper is to improve the reliability and the availability of a Packer production line of cigarettes based on two methods: The SADT method (Structured Analysis Design Technique) and the FMECA approach (Failure Mode Effects and Critically Analysis). The first method enables us to describe the functionality of the Packer production line of cigarettes and the second method enables us to establish an FMECA analysis. Methods: The methodology adopted in order to contribute to the improvement of the reliability and the availability of a Packer production line of cigarettes has been proposed in this paper, and it is based on the use of Structured Analysis Design Technique (SADT) and Failure mode, effects, and criticality analysis (FMECA) methods. This methodology consists of using a diagnosis of the existing of all of the equipment of a production line of a factory in order to determine the most critical machine. In fact, we use, on the one hand, a functional analysis based on the SADT method of the production line and on the other hand, a diagnosis and classification of mechanical and electrical failures of the line production by their criticality analysis based on the FMECA approach. Results: Based on the methodology adopted in this paper, the results are the creation and the launch of a preventive maintenance plan. They contain the different elements of a Packer production line of cigarettes; the list of the intervention preventive activities and their period of realization. Conclusion: The diagnosis of the existing state helped us to found that the machine of cigarettes used in the Packer production line of cigarettes is the most critical machine in the factory. Then this enables us in the one hand, to describe the functionality of the production line of cigarettes by SADT method and on the other hand, to study the FMECA machine in order to improve the availability and the performance of this machine.Keywords: production system, diagnosis, SADT method, FMECA method
Procedia PDF Downloads 1427518 Model of Production and Marketing Strategies in Alignment with Business Strategy using QFD Approach
Authors: Hamed Saremi, Suzan Taghavy, Shahla Saremi
Abstract:
In today's competitive world, organizations are expected to surpass the competitors and benefit from the resources and benefits. Therefore, organizations need to improve the current performance is felt more than ever that this requires to identify organizational optimal strategies, and consider all strategies simultaneously. In this study, to enhance competitive advantage and according to customer requirements, alignment between business, production and marketing strategies, House of Quality (QFD) approach has been used and zero-one linear programming model has been studied. First, the alignment between production and marketing strategies with business strategy, independent weights of these strategies is calculated. Then with using QFD approach the aligned weights of optimal strategies in each production and marketing field will be obtained and finally the aligned marketing strategies selection with the purpose of allocating budget and specialist human resource to marketing functions will be done that lead to increasing competitive advantage and benefit.Keywords: strategy alignment, house of quality deployment, production strategy, marketing strategy, business strategy
Procedia PDF Downloads 4357517 Life Cycle-Based Analysis of Meat Production: Ecosystem Impacts
Authors: Michelle Zeyuan Ma, Hermann Heilmeier
Abstract:
Recently, meat production ecosystem impacts initiated many hot discussions and researchers, and it is a difficult implementation to reduce such impacts due to the demand of meat products. It calls for better management and control of ecosystem impacts from every aspects of meat production. This article analyzes the ecosystem impacts of meat production based on meat products life cycle. The analysis shows that considerable ecosystem impacts are caused by different meat production steps: initial establishment phase, animal raising, slaughterhouse processing, meat consumption, and wastes management. Based on this analysis, the impacts are summarized as: leading factor for biodiversity loss; water waste, land use waste and land degradation; greenhouse gases emissions; pollution to air, water, and soil; related major diseases. The article also provides a discussion on a solution-sustainable food system, which could help in reducing ecosystem impacts. The analysis method is based on the life cycle level, it provides a concept of the whole meat industry ecosystem impacts, and the analysis result could be useful to manage or control meat production ecosystem impacts from investor, producer and consumer sides.Keywords: eutrophication, life cycle based analysis, sustainable food, waste management
Procedia PDF Downloads 2207516 Direct Current Grids in Urban Planning for More Sustainable Urban Energy and Mobility
Authors: B. Casper
Abstract:
The energy transition towards renewable energies and drastically reduced carbon dioxide emissions in Germany drives multiple sectors into a transformation process. Photovoltaic and on-shore wind power are predominantly feeding in the low and medium-voltage grids. The electricity grid is not laid out to allow an increasing feed-in of power in low and medium voltage grids. Electric mobility is currently in the run-up phase in Germany and still lacks a significant amount of charging stations. The additional power demand by e-mobility cannot be supplied by the existing electric grids in most cases. The future demands in heating and cooling of commercial and residential buildings are increasingly generated by heat-pumps. Yet the most important part in the energy transition is the storage of surplus energy generated by photovoltaic and wind power sources. Water electrolysis is one way to store surplus energy known as power-to-gas. With the vehicle-to-grid technology, the upcoming fleet of electric cars could be used as energy storage to stabilize the grid. All these processes use direct current (DC). The demand of bi-directional flow and higher efficiency in the future grids can be met by using DC. The Flexible Electrical Networks (FEN) research campus at RWTH Aachen investigates interdisciplinary about the advantages, opportunities, and limitations of DC grids. This paper investigates the impact of DC grids as a technological innovation on the urban form and urban life. Applying explorative scenario development, analyzation of mapped open data sources on grid networks and research-by-design as a conceptual design method, possible starting points for a transformation to DC medium voltage grids could be found. Several fields of action have emerged in which DC technology could become a catalyst for future urban development: energy transition in urban areas, e-mobility, and transformation of the network infrastructure. The investigation shows a significant potential to increase renewable energy production within cities with DC grids. The charging infrastructure for electric vehicles will predominantly be using DC in the future because fast and ultra fast charging can only be achieved with DC. Our research shows that e-mobility, combined with autonomous driving has the potential to change the urban space and urban logistics fundamentally. Furthermore, there are possible win-win-win solutions for the municipality, the grid operator and the inhabitants: replacing overhead transmission lines by underground DC cables to open up spaces in contested urban areas can lead to a positive example of how the energy transition can contribute to a more sustainable urban structure. The outlook makes clear that target grid planning and urban planning will increasingly need to be synchronized.Keywords: direct current, e-mobility, energy transition, grid planning, renewable energy, urban planning
Procedia PDF Downloads 1267515 Testing a Flexible Manufacturing System Facility Production Capacity through Discrete Event Simulation: Automotive Case Study
Authors: Justyna Rybicka, Ashutosh Tiwari, Shane Enticott
Abstract:
In the age of automation and computation aiding manufacturing, it is clear that manufacturing systems have become more complex than ever before. Although technological advances provide the capability to gain more value with fewer resources, sometimes utilisation of the manufacturing capabilities available to organisations is difficult to achieve. Flexible manufacturing systems (FMS) provide a unique capability to manufacturing organisations where there is a need for product range diversification by providing line efficiency through production flexibility. This is very valuable in trend driven production set-ups or niche volume production requirements. Although FMS provides flexible and efficient facilities, its optimal set-up is key in achieving production performance. As many variables are interlinked due to the flexibility provided by the FMS, analytical calculations are not always sufficient to predict the FMS’ performance. Simulation modelling is capable of capturing the complexity and constraints associated with FMS. This paper demonstrates how discrete event simulation (DES) can address complexity in an FMS to optimise the production line performance. A case study of an automotive FMS is presented. The DES model demonstrates different configuration options depending on prioritising objectives: utilisation and throughput. Additionally, this paper provides insight into understanding the impact of system set-up constraints on the FMS performance and demonstrates the exploration into the optimal production set-up.Keywords: discrete event simulation, flexible manufacturing system, capacity performance, automotive
Procedia PDF Downloads 3277514 Numerical Modeling of Artisanal and Small Scale Mining of Coltan in the African Great Lakes Region
Authors: Sergio Perez Rodriguez
Abstract:
Coltan Artisanal and Small-Scale Mining (ASM) production from Africa's Great Lakes region has previously been addressed at large scales, notably from regional to country levels. The current findings address the unresolved issue of a production model of ASM of coltan ore by an average Democratic Republic of Congo (DRC) mineworker, which can be used as a reference for a similar characterization of the daily labor of counterparts from other countries in the region. To that end, the Fundamental Equation of Mineral Production has been applied, considering a miner's average daily output of coltan, estimated in the base of gross statistical data gathered from reputable sources. Results indicate daily yields of individual miners in the order of 300 g of coltan ore, with hourly peaks of production in the range of 30 to 40 g of the mineral. Yields are expected to be in the order of 5 g or less during the least productive hours. These outputs are expected to be achieved during the halves of the eight to ten hours of daily working sessions that these artisanal laborers can attend during the mining season.Keywords: coltan, mineral production, production to reserve ratio, artisanal mining, small-scale mining, ASM, human work, Great Lakes region, Democratic Republic of Congo
Procedia PDF Downloads 767513 Subsea Processing: Deepwater Operation and Production
Authors: Md Imtiaz, Sanchita Dei, Shubham Damke
Abstract:
In recent years, there has been a rapidly accelerating shift from traditional surface processing operations to subsea processing operation. This shift has been driven by a number of factors including the depletion of shallow fields around the world, technological advances in subsea processing equipment, the need for production from marginal fields, and lower initial upfront investment costs compared to traditional production facilities. Moving production facilities to the seafloor offers a number of advantage, including a reduction in field development costs, increased production rates from subsea wells, reduction in the need for chemical injection, minimization of risks to worker ,reduction in spills due to hurricane damage, and increased in oil production by enabling production from marginal fields. Subsea processing consists of a range of technologies for separation, pumping, compression that enables production from offshore well without the need for surface facilities. At present, there are two primary technologies being used for subsea processing: subsea multiphase pumping and subsea separation. Multiphase pumping is the most basic subsea processing technology. Multiphase pumping involves the use of boosting system to transport the multiphase mixture through pipelines to floating production vessels. The separation system is combined with single phase pumps or water would be removed and either pumped to the surface, re-injected, or discharged to the sea. Subsea processing can allow for an entire topside facility to be decommissioned and the processed fluids to be tied back to a new, more distant, host. This type of application reduces costs and increased both overall facility and integrity and recoverable reserve. In future, full subsea processing could be possible, thereby eliminating the need for surface facilities.Keywords: FPSO, marginal field, Subsea processing, SWAG
Procedia PDF Downloads 4137512 In vitro Evaluation of the Anti-Methanogenic Properties of Australian Native and Some Exotic Plants with a View of Their Potential Role in Management of Ruminant Livestock Emissions
Authors: Philip Vercoe, Ali Hardan
Abstract:
Samples of 29 Australian wild natives and exotic plants were tested in vitro batch rumen culture system for their methanogenic characteristics and potential usage as feed or antimicrobial to enhance sustainable livestock ruminant production system. The plants were tested for their in vitro rumen fermentation end products properties which include: methane production, total gas pressure, concentrations of total volatile fatty acids, ammonia, and acetate to propionate ratio. All of the plants were produced less methane than the positive control (i.e., oaten chaff) in vitro. Nearly 50 % of plants inhibiting methane by over 50% in comparison to the control. Eremophila granitica had the strongest inhibitory effect about 92 % on methane production comparing with oaten chaff. The exotic weed Arctotheca calendula (Capeweed) had the highest concentration of volatile fatty acids production as well as the highest in total gas pressure among all plants and the control. Some of the acacia species have the lowest production of total gas pressure. The majority of the plants produced more ammonia than the oaten chaff control. The plant species that produced the most ammonia was Codonocarpus cotinifolius, producing over 3 times as much methane as oaten chaff control while the lowest was Eremophila galeata. There was strong positive correlation between methane production and total gas production as well as between total gas production and the concentration of VFA produced with R² = 0.74, R² = 0.84, respectively. While there was weak positive correlation between methane production and the acetate to propionate ratio as well as between the concentration of VFA produced and methane production with R² = 0.41, R² = 0.52, respectively.Keywords: in vitro Rumen Fermentation, methane, wild Australian native plants, forages
Procedia PDF Downloads 3437511 Factors Affecting the Results of in vitro Gas Production Technique
Authors: O. Kahraman, M. S. Alatas, O. B. Citil
Abstract:
In determination of values of feeds which, are used in ruminant nutrition, different methods are used like in vivo, in vitro, in situ or in sacco. Generally, the most reliable results are taken from the in vivo studies. But because of the disadvantages like being hard, laborious and expensive, time consuming, being hard to keep the experiment conditions under control and too much samples are needed, the in vitro techniques are more preferred. The most widely used in vitro techniques are two-staged digestion technique and gas production technique. In vitro gas production technique is based on the measurement of the CO2 which is released as a result of microbial fermentation of the feeds. In this review, the factors affecting the results obtained from in vitro gas production technique (Hohenheim Feed Test) were discussed. Some factors must be taken into consideration when interpreting the findings obtained in these studies and also comparing the findings reported by different researchers for the same feeds. These factors were discussed in 3 groups: factors related to animal, factors related to feeds and factors related with differences in the application of method. These factors and their effects on the results were explained. Also it can be concluded that the use of in vitro gas production technique in feed evaluation routinely can be contributed to the comprehensive feed evaluation, but standardization is needed in this technique to attain more reliable results.Keywords: In vitro, gas production technique, Hohenheim feed test, standardization
Procedia PDF Downloads 5997510 Risk Assessment Results in Biogas Production from Agriculture Biomass
Authors: Sandija Zeverte-Rivza, Irina Pilvere, Baiba Rivza
Abstract:
The use of renewable energy sources incl. biogas has become topical in accordance with the increasing demand for energy, decrease of fossil energy resources and the efforts to reduce greenhouse gas emissions as well as to increase energy independence from the territories where fossil energy resources are available. As the technologies of biogas production from agricultural biomass develop, risk assessment and risk management become necessary for farms producing such a renewable energy. The need for risk assessments has become particularly topical when discussions on changing the biogas policy in the EU take place, which may influence the development of the sector in the future, as well as the operation of existing biogas facilities and their income level. The current article describes results of the risk assessment for farms producing biomass from agriculture biomass in Latvia, the risk assessment system included 24 risks, that affect the whole biogas production process and the obtained results showed the high significance of political and production risks.Keywords: biogas production, risks, risk assessment, biosystems engineering
Procedia PDF Downloads 4157509 Fuzzy Adaptive Control of an Intelligent Hybrid HPS (Pvwindbat), Grid Power System Applied to a Dwelling
Authors: A. Derrouazin, N. Mekkakia-M, R. Taleb, M. Helaimi, A. Benbouali
Abstract:
Nowadays the use of different sources of renewable energy for the production of electricity is the concern of everyone, as, even impersonal domestic use of the electricity in isolated sites or in town. As the conventional sources of energy are shrinking, a need has arisen to look for alternative sources of energy with more emphasis on its optimal use. This paper presents design of a sustainable Hybrid Power System (PV-Wind-Storage) assisted by grid as supplementary sources applied to case study residential house, to meet its entire energy demand. A Fuzzy control system model has been developed to optimize and control flow of power from these sources. This energy requirement is mainly fulfilled from PV and Wind energy stored in batteries module for critical load of a residential house and supplemented by grid for base and peak load. The system has been developed for maximum daily households load energy of 3kWh and can be scaled to any higher value as per requirement of individual /community house ranging from 3kWh/day to 10kWh/day, as per the requirement. The simulation work, using intelligent energy management, has resulted in an optimal yield leading to average reduction in cost of electricity by 50% per day.Keywords: photovoltaic (PV), wind turbine, battery, microcontroller, fuzzy control (FC), Matlab
Procedia PDF Downloads 6487508 Optimizing Design Parameters for Efficient Saturated Steam Production in Fire Tube Boilers: A Cost-Effective Approach
Authors: Yoftahe Nigussie Worku
Abstract:
This research focuses on advancing fire tube boiler technology by systematically optimizing design parameters to achieve efficient saturated steam production. The main objective is to design a high-performance boiler with a production capacity of 2000kg/h at a 12-bar design pressure while minimizing costs. The methodology employs iterative analysis, utilizing relevant formulas, and considers material selection and production methods. The study successfully results in a boiler operating at 85.25% efficiency, with a fuel consumption rate of 140.37kg/hr and a heat output of 1610kW. Theoretical importance lies in balancing efficiency, safety considerations, and cost minimization. The research addresses key questions on parameter optimization, material choices, and safety-efficiency balance, contributing valuable insights to fire tube boiler design.Keywords: safety consideration, efficiency, production methods, material selection
Procedia PDF Downloads 667507 Finding the Theory of Riba Avoidance: A Scoping Review to Set the Research Agenda
Authors: Randa Ismail Sharafeddine
Abstract:
The Islamic economic system is distinctive in that it implicitly recognizes money as a separate, independent component of production capable of assuming risk and so entitled to the same reward as other Entrepreneurial Factors of Production (EFP). Conventional theory does not identify money capital explicitly as a component of production; rather, interest is recognized as a reward for capital, the interest rate is the cost of money capital, and it is also seen as a cost of physical capital. The conventional theory of production examines how diverse non-entrepreneurial resources (Land, Labor, and Capital) are selected; however, the economic theory community is largely unaware of the reasons why these resources choose to remain as non-entrepreneurial resources as opposed to becoming entrepreneurial resources. Should land, labor, and financial asset owners choose to work for others in return for rent, income, or interest, or should they engage in entrepreneurial risk-taking in order to profit. This is a decision made often in the actual world, but it has never been effectively treated in economic theory. This article will conduct a critical analysis of the conventional classification of factors of production and propose a classification for resource allocation and income distribution (Rent, Wages, Interest, and Profits) that is more rational, even within the conventional theoretical framework for evaluating and developing production and distribution theories. Money is an essential component of production in an Islamic economy, and it must be used to sustain economic activity.Keywords: financial capital, production theory, distribution theory, economic activity, riba avoidance, institution of participation
Procedia PDF Downloads 917506 Carbon Footprint and Exergy Destruction Footprint in White Wine Production Line
Authors: Mahmut Genc, Seda Genc
Abstract:
Wine is the most popular alcoholic drink in the World with 274.4 million of hectoliter annual production in the year of 2015. The wine industry is very important for some regions as well as creating significant value in their economies. This industry is very sensitive to the global warming since viticulture highly depends on climate and geographical region. Sustainability concept is a crucial issue for the wine industry and sustainability performances of wine production processes should be determined. Although wine production industry is an energy intensive sector as a whole, the most energy intensive products are widely used both in the viti and vinicultural process. In this study, gate-to-gate LCA approach in energy resource utilization and global warming potential impacts for white wine production line were attempted and carbon footprint and exergy destruction footprint were calculated, accordingly. As a result, carbon footprint and exergy destruction footprint values were calculated to be 1.75 kg CO2eq and 365.3kW, respectively.Keywords: carbon footprint, exergy analysis, exergy destruction footprint, white wine
Procedia PDF Downloads 2717505 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm
Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene
Abstract:
Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest
Procedia PDF Downloads 1187504 The Effects of Neurospora crassa-Fermented Palm Kernel Cake in the Diet on the Production Performance and Egg-Yolk Quality of Arab Laying-Hens
Authors: Yose Rizal, Nuraini, Mirnawati, Maria Endo Mahata, Rio Darman, Dendi Kurniawan
Abstract:
An experiment had been conducted to determine the effects of several levels of Neurospora crassa- fermented palm kernel cake in the diet on the production performance and egg-yolk quality of Arab laying-hens, and to obtain the appropriate level of this fermented palm kernel cake for reducing the utilization of concentrated feed in the diet. Three hundred Arab laying-hens of 72 weeks old were employed in this experiment, and randomly assigned to four treatments (0, 7.25, 10.15, and 13.05% fermented palm kernel cake in diets) in a completely randomized design with five replicates. Measured variables were production performance (feed consumption, egg-mass production, feed conversion, egg weight and hen-day egg production), and egg-yolk quality (ether extract and cholesterol contents, and egg-yolk color index). Results of experiment indicated that feed consumption, egg-mass production, feed conversion, egg weight, hen-day egg production and egg-yolk color index were not influenced (P>0.05) by diets. However, the ether extract and cholesterol contents of egg-yolk were very significantly reduced (P<0.01) by diets. In conclusion, Neurospora crassa-fermented palm kernel cake could be included up to 13.05% to effectively replace 45% concentrated feed in Arab laying-hens diet without adverse effect on the production performance.Keywords: neurospora crassa-fermented palm kernel cake, Arab laying-hens, production performance, ether extract, cholesterol, egg-yolk color index
Procedia PDF Downloads 7407503 Analysis on Solar Panel Performance and PV-Inverter Configuration for Tropical Region
Authors: Eko Adhi Setiawan, Duli Asih Siregar, Aiman Setiawan
Abstract:
Solar energy is abundant in nature, particularly in the tropics which have peak sun hour that can reach 8 hours per day. In the fabrication process, Photovoltaic’s (PV) performance are tested in standard test conditions (STC). It specifies a module temperature of 25°C, an irradiance of 1000 W/ m² with an air mass 1.5 (AM1.5) spectrum and zero wind speed. Thus, the results of the performance testing of PV at STC conditions cannot fully represent the performance of PV in the tropics. For example Indonesia, which has a temperature of 20-40°C. In this paper, the effect of temperature on the choice of the 5 kW AC inverter topology on the PV system such as the Central Inverter, String Inverter and AC-Module specifically for the tropics will be discussed. The proper inverter topology can be determined by analysis of the effect of temperature and irradiation on the PV panel. The effect of temperature and irradiation will be represented in the characteristics of I-V and P-V curves. PV’s characteristics on high temperature would be analyzed using Solar panel modeling through MATLAB Simulink based on mathematical equations that form Solar panel’s characteristic curve. Based on PV simulation, it is known then that temperature coefficients of short circuit current (ISC), open circuit voltage (VOC), and maximum output power (PMAX) consecutively as high as 0.56%/oC, -0.31%/oC and -0.4%/oC. Those coefficients can be used to calculate PV’s electrical parameters such as ISC, VOC, and PMAX in certain earth’s surface’s certain point. Then, from the parameters, the utility of the 5 kW AC inverter system can be determined. As the result, for tropical area, string inverter topology has the highest utility rates with 98, 80 %. On the other hand, central inverter and AC-Module Topology has utility rates of 92.69 % and 87.7 % eventually.Keywords: Photovoltaic, PV-Inverter Configuration, PV Modeling, Solar Panel Characteristics.
Procedia PDF Downloads 3797502 Effect of Solvents in the Extraction and Stability of Anthocyanin from the Petals of Caesalpinia pulcherrima for Natural Dye-Sensitized Solar Cell
Authors: N. Prabavathy, R. Balasundaraprabhu, S. Shalini, Dhayalan Velauthapillai, S. Prasanna, N. Muthukumarasamy
Abstract:
Dye sensitized solar cell (DSSC) has become a significant research area due to their fundamental and scientific importance in the area of energy conversion. Synthetic dyes as sensitizer in DSSC are efficient and durable but they are costlier, toxic and have the tendency to degrade. Natural sensitizers contain plant pigments such as anthocyanin, carotenoid, flavonoid, and chlorophyll which promote light absorption as well as injection of charges to the conduction band of TiO2 through the sensitizer. But, the efficiency of natural dyes is not up to the mark mainly due to instability of the pigment such as anthocyanin. The stability issues in vitro are mainly due to the effect of solvents on extraction of anthocyanins and their respective pH. Taking this factor into consideration, in the present work, the anthocyanins were extracted from the flower Caesalpinia pulcherrima (C. pulcherrimma) with various solvents and their respective stability and pH values are discussed. The usage of citric acid as solvent to extract anthocyanin has shown good stability than other solvents. It also helps in enhancing the sensitization properties of anthocyanins with Titanium dioxide (TiO2) nanorods. The IPCE spectra show higher photovoltaic performance for dye sensitized TiO2nanorods using citric acid as solvent. The natural DSSC using citric acid as solvent shows a higher efficiency compared to other solvents. Hence citric acid performs to be a safe solvent for natural DSSC in boosting the photovoltaic performance and maintaining the stability of anthocyanins.Keywords: Caesalpinia pulcherrima, citric acid, dye sensitized solar cells, TiO₂ nanorods
Procedia PDF Downloads 290