Search results for: long term potenciations
7145 Dynamic Effects of Energy Consumption, Economic Growth, International Trade and Urbanization on Environmental Degradation in Nigeria
Authors: Abdulkarim Yusuf
Abstract:
Motivation: A crucial but difficult goal for governments and policymakers in Nigeria in recent years has been the sustainability of economic growth. This goal must be accomplished by regulating or lowering greenhouse gas emissions, which calls for switching to a low- or zero-carbon production system. The lack of in-depth empirical studies on the environmental impact of socioeconomic variables on Nigeria and a number of unresolved issues from earlier research is what led to the current study. Objective: This study fills an important empirical gap by investigating the existence of an Environmental Kuznets Curve hypothesis and the long and short-run dynamic impact of socioeconomic variables on ecological sustainability in Nigeria. Data and method: Annual time series data covering the period 1980 to 2020 and the Autoregressive Distributed Lag technique in the presence of structural breaks were adopted for this study. Results: The empirical findings support the existence of the environmental Kuznets curve hypothesis for Nigeria in the long and short run. Energy consumption and total import exacerbate environmental deterioration in the long and short run, whereas total export improves environmental quality in the long and short run. Financial development, which contributed to a conspicuous decrease in the level of environmental destruction in the long run, escalated it in the short run. In contrast, urbanization caused a significant increase in environmental damage in the long run but motivated a decrease in biodiversity loss in the short run. Implications: The government, policymakers, and all energy stakeholders should take additional measures to ensure the implementation and diversification of energy sources to accommodate more renewable energy sources that emit less carbon in order to promote efficiency in Nigeria's production processes and lower carbon emissions. In order to promote the production and trade of environmentally friendly goods, they should also revise and strengthen environmental policies. With affordable, dependable, and sustainable energy use for higher productivity and inclusive growth, Nigeria will be able to achieve its long-term development goals of good health and wellbeing.Keywords: economic growth, energy consumption, environmental degradation, environmental Kuznets curve, urbanization, Nigeria
Procedia PDF Downloads 547144 Combined Treatment of Estrogen-Receptor Positive Breast Microtumors with 4-Hydroxytamoxifen and Novel Non-Steroidal Diethyl Stilbestrol-Like Analog Produces Enhanced Preclinical Treatment Response and Decreased Drug Resistance
Authors: Sarah Crawford, Gerry Lesley
Abstract:
This research is a pre-clinical assessment of anti-cancer effects of novel non-steroidal diethyl stilbestrol-like estrogen analogs in estrogen-receptor positive/ progesterone-receptor positive human breast cancer microtumors of MCF 7 cell line. Tamoxifen analog formulation (Tam A1) was used as a single agent or in combination with therapeutic concentrations of 4-hydroxytamoxifen, currently used as a long-term treatment for the prevention of breast cancer recurrence in women with estrogen receptor positive/ progesterone receptor positive malignancies. At concentrations ranging from 30-50 microM, Tam A1 induced microtumor disaggregation and cell death. Incremental cytotoxic effects correlated with increasing concentrations of Tam A1. Live tumor microscopy showed that microtumos displayed diffuse borders and substrate-attached cells were rounded-up and poorly adherent. A complete cytotoxic effect was observed using 40-50 microM Tam A1 with time course kinetics similar to 4-hydroxytamoxifen. Combined treatment with TamA1 (30-50 microM) and 4-hydroxytamoxifen (10-15 microM) induced a highly cytotoxic, synergistic combined treatment response that was more rapid and complete than using 4-hydroxytamoxifen as a single agent therapeutic. Microtumors completely dispersed or formed necrotic foci indicating a highly cytotoxic combined treatment response. Moreover, breast cancer microtumors treated with both 4-hydroxytamoxifen and Tam A1 displayed lower levels of long-term post-treatment regrowth, a critical parameter of primary drug resistance, than observed for 4-hydroxytamoxifen when used as a single agent therapeutic. Tumor regrowth at 6 weeks post-treatment with either single agent 4-hydroxy tamoxifen, Tam A1 or a combined treatment was assessed for the development of drug resistance. Breast cancer cells treated with both 4-hydroxytamoxifen and Tam A1 displayed significantly lower levels of post-treatment regrowth, indicative of decreased drug resistance, than observed for either single treatment modality. The preclinical data suggest that combined treatment involving the use of tamoxifen analogs may be a novel clinical approach for long-term maintenance therapy in patients with estrogen-receptor positive/progesterone-receptor positive breast cancer receiving hormonal therapy to prevent disease recurrence. Detailed data on time-course, IC50 and tumor regrowth assays post- treatment as well as a proposed mechanism of action to account for observed synergistic drug effects will be presented.Keywords: 4-hydroxytamoxifen, tamoxifen analog, drug-resistance, microtumors
Procedia PDF Downloads 687143 Rethinking the Air Quality Health Index: Harmonizing Health Protection and Climate Mitigation
Authors: Kimberly Tasha Jiayi Tang, Changqing Lin, Zhe Wang, Tze-Wai Wong, Md. Shakhaoat Hossain, Jian Yu, Alexis Lau
Abstract:
Hong Kong has practiced a risk-based Air Quality Health Index (AQHI) system that sums hospitalization risks associated with short-term exposure to air pollu-tants. As an air pollution risk communication tool, it informs the public about the current air quality, anchoring around the World Health Organization's (WHO) 2005 Air Quality Guidelines (AQGs). Given the WHO's recent update in 2021, assessing how Hong Kong’s air quality risk communication can be en-hanced using these updated guidelines is essential. Hong Kong’s AQHI is lim-ited by solely focusing on short-term health risks, which could lead the public to underestimate cumulative health impacts. Therefore, we propose the intro-duction of a composite AQHI that reports both long-term and short-term health risks. Additionally, the WHO interim targets will be considered as anchor points for various health risk categories. Furthermore, with the increasing ozone levels in Hong Kong and Southern China due to improved NOx mitigation measures, it has been a challenging task in balancing health protection against climate mitigation. However, our findings present a promising outlook. Despite the rise in ozone levels, the combined health risks in Hong Kong and Guang-dong have seen a decline, largely due to reductions in NO2 and PM concentra-tions, both having significant health implications. By shifting from a concentra-tion-based approach to a health risk-based system like the AQHI, our study highlights the prospective of harmonizing health protection and climate mitiga-tion goals. This health-focused framework suggests that rigorous NOx controls can effective-ly serve both objectives in parallel.Keywords: air quality management, air quality health index, health risk management, air pollution
Procedia PDF Downloads 727142 Macroeconomic Policy Coordination and Economic Growth Uncertainty in Nigeria
Authors: Ephraim Ugwu, Christopher Ehinomen
Abstract:
Despite efforts by the Nigerian government to harmonize the macroeconomic policy implementations by establishing various committees to resolve disputes between the fiscal and monetary authorities, it is still evident that the federal government had continued its expansionary policy by increasing spending, thus creating huge budget deficit. This study evaluates the effect of macroeconomic policy coordination on economic growth uncertainty in Nigeria from 1980 to 2020. Employing the Auto regressive distributed lag (ARDL) bound testing procedures, the empirical results shows that the error correction term, ECM(-1), indicates a negative sign and is significant statistically with the t-statistic value of (-5.612882 ). Therefore, the gap between long run equilibrium value and the actual value of the dependent variable is corrected with speed of adjustment equal to 77% yearly. The long run coefficient results showed that the estimated coefficients of the intercept term indicates that other things remains the same (ceteris paribus), the economics growth uncertainty will continue reduce by 7.32%. The coefficient of the fiscal policy variable, PUBEXP, indicates a positive sign and significant statistically. This implies that as the government expenditure increases by 1%, economic growth uncertainty will increase by 1.67%. The coefficient of monetary policy variable MS also indicates a positive sign and insignificant statistically. The coefficients of merchandise trade variable, TRADE and exchange rate EXR show negative signs and significant statistically. This indicate that as the country’s merchandise trade and the rate of exchange increases by 1%, the economic growth uncertainty reduces by 0.38% and 0.06%, respectively. This study, therefore, advocate for proper coordination of monetary, fiscal and exchange rate policies in order to actualize the goal of achieving a stable economic growth.Keywords: macroeconomic, policy coordination, growth uncertainty, ARDL, Nigeria
Procedia PDF Downloads 1307141 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: deep learning, long short term memory, energy, renewable energy load forecasting
Procedia PDF Downloads 2667140 Long-Term Treatment Efficiency of an Integrated Constructed Wetland System for the Removal of Pollutants Using Biomaterials/ Cork and Date Palm By-Product
Authors: Khadija Kraiem, Salma Bessadok, Dorra Tabassi, Atef Jaouani
Abstract:
This study investigated the long-term impact of incorporating biowaste (i.e., cork and date stones) as a natural and cost-effective alternative to traditional substrates (e.g., gravel) in constructed wetlands (CWs). Results showed that pollutant removal efficiency was significantly improved after the addition of biowaste under different hydraulic retention time (HRT) conditions. The addition of cork in vertical flow constructed wetlands (VFCWs) improved chemical oxygen demand (COD) removal from 64% to 86%. Similarly, in horizontal flow constructed wetlands (HFCWs), COD removal increased from 67% to 81% with cork and 85% with date seeds. In terms of ammonium removal, cork in VFCWs increased efficiency from 34% to 56%, while in HFCWs, it improved from 24% to 47% with cork and reached 44% with date stones. Furthermore, our data showed that the addition of biowastes improved the removal of micropollutants, such as bisphenol A (BPA) and diclofenac (DFC), with the highest removal of BPA of 86% and DFC of 89% observed in the date seeds wetland. However, no significant changes were observed in pathogens removal. The evaluation of the impact of biowaste addition on the contribution of plant species and its interaction with hydraulic retention time (HRT) was also conducted for pollutant removal. The addition of biowaste resulted in a decrease in the required HRT for effective contaminant elimination, but it had no notable impact on the contribution of plant species. To summarize, our findings indicate that utilizing biowastes in artificial wetlands for the treatment of wastewater with various pollutants can result in synergistic effects, presenting potential benefits in terms of both efficiency and cost-effectiveness.Keywords: constructed wetlands, cork, date stones, pollutant removal, wastewater
Procedia PDF Downloads 227139 Coffee Consumption Has No Acute Effects on Glucose Metabolism in Healthy Men: A Randomized Crossover Clinical Trial
Authors: Caio E. G. Reis, Sara Wassell, Adriana L. Porto, Angélica A. Amato, Leslie J. C. Bluck, Teresa H. M. da Costa
Abstract:
Background: Multiple epidemiologic studies have consistently reported association between increased coffee consumption and a lowered risk of Type 2 Diabetes Mellitus. However, the mechanisms behind this finding have not been fully elucidated. Objective: We investigate the effect of coffee (caffeinated and decaffeinated) on glucose effectiveness and insulin sensitivity using the stable isotope minimal model protocol with oral glucose administration in healthy men. Design: Fifteen healthy men underwent 5 arms randomized crossover single-blinding (researchers) clinical trial. They consumed decaffeinated coffee, caffeinated coffee (with and without sugar), and controls – water (with and without sugar) followed 1 hour by an oral glucose tolerance test (75 g of available carbohydrate) with intravenous labeled dosing interpreted by the two compartment minimal model (225 minutes). One-way ANOVA with Bonferroni adjustment were used to compare the effects of the tested beverages on glucose metabolism parameters. Results: Decaffeinated coffee resulted in 29% and 85% higher insulin sensitivity compared with caffeinated coffee and water, respectively, and the caffeinated coffee showed 15% and 60% higher glucose effectiveness compared with decaffeinated coffee and water, respectively. However, these differences were not significant (p > 0.10). In overall analyze (0 – 225 min) there were no significant differences on glucose effectiveness, insulin sensitivity, and glucose and insulin area under the curve between the groups. The beneficial effects of coffee did not seem to act in the short-term (hours) on glucose metabolism parameters mainly on insulin sensitivity indices. The benefits of coffee consumption occur in the long-term (years) as has been shown in the reduction of Type 2 Diabetes Mellitus risk in epidemiological studies. The clinical relevance of the present findings is that there is no need to avoid coffee as the drink choice for healthy people. Conclusions: The findings of this study demonstrate that the consumption of caffeinated and decaffeinated coffee with or without sugar has no acute effects on glucose metabolism in healthy men. Further researches, including long-term interventional studies, are needed to fully elucidate the mechanisms behind the coffee effects on reduced risk for Type 2 Diabetes Mellitus.Keywords: coffee, diabetes mellitus type 2, glucose, insulin
Procedia PDF Downloads 4367138 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling
Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou
Abstract:
In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change
Procedia PDF Downloads 2617137 Sustainability of Urban Affordable Housing in Malaysia
Authors: Lim Poh Im
Abstract:
This paper examines the current strategic and planning issues in the provision of affordable housing in urban centres in Malaysia from the perspective of sustainability. Sustainability here refers to social sustainability such as the need to address urban poverty and ensure better quality of life; economic sustainability in ensuring that the financial mechanisms are healthy and stable in the long-run, and to a lesser extent, environmental sustainability in reducing pollution related problems and building footprint. The Malaysian affordable housing sector has undergone tremendous transformations since the sixties, transcending from the earlier social housing catering to the poorer strata of the society, to the current state of housing woes plaguing the young urban middle class. The increase in urban land prices and construction costs, coupled with rampant property speculative and manipulative activities have resulted in situations of housing that are largely unaffordable even to the middle income sector of the urban populations. To overcome such scenario, the public as well as private sectors in the recent years, have came up with various intermediate, as well as medium-term policies aimed to curb the burning housing needs of the urban populations. Key strategies include financial intervention in regulating the interests rates, imposing property gain taxes; loosening the requirement for density and other planning requirements, faster approval of projects, compulsory contribution from developers, etc. Some of the policies are commendable, while others are ad-hoc by nature, and are not able to resolve the long-term socio-economic challenges. This paper discusses and examines the issues from the ‘sustainability’ perspective, focusing on key fiscal, land use and planning policies, as well as the more subtle (but important) political and institutional factors shaping the provision of mass housing for the urban populations in Malaysia.Keywords: affordable housing, urban housing, sustainable housing, planning for urban housing
Procedia PDF Downloads 4437136 A Qualitative Study of Children’s Experiences of Living with Long-COVID
Authors: Camille Alexis-Garsee, Nicola Payne
Abstract:
One consequence of the pandemic has been the debilitating health impact that some people experience over a longer period of time, known as long-COVID. This has been predominately researched in adults; however, there is emerging evidence on the effects of long-COVID in children. Research has indicated over half of children who contracted COVID-19 experienced persistent symptoms four months after a confirmed diagnosis. There is little research on the impact of this on children and their families. This study aimed to explore the experiences of children with long-COVID, to enable further understanding of the impacts and needs within this group. Semi-structured interviews, facilitated by children’s drawings, were conducted with 15 children (aged 9-16, 9 females). Inductive thematic analysis was used to analyze the data. The findings tell a story of loss, change and of resilience. Many children were unable to engage in normal daily activities and were unable to attend school, however, all employed self-management techniques to cope with symptoms and were positive for the future. Four main themes were identified: (1) Education challenges: although some schools tried to accommodate the child’s new limitations with provision of flexi-attendance, online classes and a reduced timetable, children struggled to keep up with their schoolwork and needed more support; (2) Disrupted relationships: children felt socially isolated; they were forced to give up co and extra-curricular activities, were no longer in contact with friendship groups and missed out on key experiences with friends and family; (3) Diverse health-related challenges: children’s symptoms affected daily functioning but were also triggers for changes in thoughts and mood; (4) Coping and resilience: children actively engaged in symptom management and were able to ‘self-pace’ and/or employ distraction activities to cope. They were also focused on living a ‘normal’ life and looked to the future with great positivity. A key challenge of the long-term effects of COVID is recognizing and treating the illness in children and the subsequent impact on multiple aspects of their lives. Even though children described feeling disconnected in many ways, their life goals were still important. A multi-faceted approach is needed for management of this illness, with a focus on helping these children successfully reintegrate into society and achieve their dreams.Keywords: children’s illness experience, COVID-19, long-COVID in children, long-COVID kids, qualitative research
Procedia PDF Downloads 667135 Examining Macroeconomics Determinants of Inflation Rate in Somalia
Authors: Farhia Hassan Mohamed
Abstract:
This study examined the macroeconomic factors that affect the inflation Rate in Somalia using quarterly time series data from 1991q1 to 2017q4 retired from World Development Indicators and SESRIC. It employed the vector error correction model (VECM) and Granger Causality method to measure the long-run and short-run causality of the GDP, inflation exchange rate, and unemployment. The study confirmed that there is one cointegration equation between GDP, exchange rate, inflation, and unemployment in Somalia. However, the VECM model's result indicates a long-run relationship among variables. The VEC Granger causality/Block Exogeneity Wald test result confirmed that all covariates are statistically significant at 5% and are Granger's cause of inflation in the short term. Finally, the impulse response result showed that inflation responds negatively to the shocks from the exchange rate and unemployment rate and positively to GDP and itself. Drawing from the empirical findings, the study makes several policy recommendations for both the monetary and Government sides.Keywords: CPI, OP, exchange rate, inflation ADF, Johansen, PP, VECM, impulse, ECT
Procedia PDF Downloads 467134 The Effect of a New Reimbursement Policy for Discharge Planning Service
Authors: Chueh Chi-An, Chan Hui-Ya
Abstract:
Background and Aim: National Health Insurance (NHI) Administration released a new reimbursement policy for hospital patients who received a superior discharge plan on April 1, 2016. Each case could be claimed 1,500 points for fee-of service with related documents. The policy is considered a solution to help reducing the crowding in the emergency department, the length of stay of hospital, unplanned readmission rate and unplanned ER visit. This study aim is to explore the effect of the new reimbursement policy for discharge planning service in a medical center. Methods: The discharge team explained to general wards the new policy and encouraged early assessment, communication and connecting to community care for patients. They stated the benefit from the policy and asked documenting for reimbursement claiming from April to May 2016. The imbursement fee of NHI declaration from June 2015 to October 2017 was collected. The indicators included hospital occupancy rate, hospital bed turnover rate, long-term hospitalization rate, and patients’ satisfaction were analyzed after the policy implemented. Results: The results showed that the amount of service declaration was increasing from 2 cases in February 2016 to 110 cases in October 2017, the application rate was increasing from 0.029% to 1.576% of all inpatient cases, and the average payment from NHI was around 148,500 NT dollars per month in 2017. There are no significant differences in the indicators among hospital occupancy rate, hospital bed turnover rate, long-term hospitalization rate, and patients’ satisfaction. Conclusion: To provide a good discharge plan require a specialized case manager, the new reimbursement policy is too complicated and the total fee-of-service hospital could claim is too limited to hiring one. The results suggest more strategies combine with the new reimbursement policy will be needed.Keywords: discharge planning, reimbursement, unplanned ER visit, readmission rate
Procedia PDF Downloads 1747133 Russian pipeline natural gas export strategy under uncertainty
Authors: Koryukaeva Ksenia, Jinfeng Sun
Abstract:
Europe has been a traditional importer of Russian natural gas for more than 50 years. In 2021, Russian state-owned company Gazprom supplied about a third of all gas consumed in Europe. The Russia-Europe mutual dependence in terms of natural gas supplies has been causing many concerns about the energy security of the two sides for a long period of time. These days the issue has become more urgent than ever considering recent Russian invasion in Ukraine followed by increased large-scale geopolitical conflicts, making the future of Russian natural gas supplies and global gas markets as well highly uncertain. Hence, the main purpose of this study is to get insight into the possible futures of Russian pipeline natural gas exports by a scenario planning method based on Monte-Carlo simulation within LUSS model framework, and propose Russian pipeline natural gas export strategies based on the obtained scenario planning results. The scenario analysis revealed that recent geopolitical disputes disturbed the traditional, longstanding model of Russian pipeline gas exports, and, as a result, the prospects and the pathways for Russian pipeline gas on the world markets will differ significantly from those before 2022. Specifically, our main findings show, that (i) the events of 2022 generated many uncertainties for the long-term future of Russian pipeline gas export perspectives on both western and eastern supply directions, including geopolitical, regulatory, economic, infrastructure and other uncertainties; (ii) according to scenario modelling results, Russian pipeline exports will face many challenges in the future, both on western and eastern directions. A decrease in pipeline gas exports will inevitably affect country’s natural gas production and significantly reduce fossil fuel export revenues, jeopardizing the energy security of the country; (iii) according to proposed strategies, in order to ensure the long-term stable export supplies in the changing environment, Russia may need to adjust its traditional export strategy by performing export flows and product diversification, entering new markets, adapting its contracting mechanism, increasing competitiveness and gaining a reputation of a reliable gas supplier.Keywords: Russian natural gas, Pipeline natural gas, Uncertainty, Scenario simulation, Export strategy
Procedia PDF Downloads 607132 Minimally Invasive Open Lumbar Discectomy with Nucleoplasty and Annuloplasty as a Technique for Effective Reduction of Both Axial and Radicular Pain
Authors: Wael Elkholy, Ashraf Sakr, Mahmoud Qandeel, Adam Elkholy
Abstract:
Lumbar disc herniation is a common pathology that may cause significant low back pain and radicular pain that could profoundly impair daily life activities of individuals. Patients who undergo surgical treatment for lumbar disc herniation usually present with radiculopathy along with low back pain (LBP) instead of radiculopathy alone. When discectomy is performed, improvement in leg radiating pain is observed due to spinal nerve irritation. However, long-term LBP due to degenerative changes in the disc may occur postoperatively. In addition, limited research has been reported on the short-term (within 1 year) improvement in LBP after discectomy. In this study we would like to share our minimally invasive open technique for lumbar discectomy with annuloplasty and nuceloplasty as a technique for effective reduction of both axial and radicular pain.Keywords: nucleoplasty, sinuvertebral nerve cauterization, annuloplasty, discogenic low back pain, axial pain, radicular pain, minimally invasive lumbar discectomy
Procedia PDF Downloads 687131 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu
Authors: Ammarah Irum, Muhammad Ali Tahir
Abstract:
Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language
Procedia PDF Downloads 727130 A Panel Cointegration Analysis for Macroeconomic Determinants of International Housing Market
Authors: Mei-Se Chien, Chien-Chiang Lee, Sin-Jie Cai
Abstract:
The main purpose of this paper is to investigate the long-run equilibrium and short-run dynamics of international housing prices when macroeconomic variables change. We apply the Pedroni’s, panel cointegration, using the unbalanced panel data analysis of 33 countries over the period from 1980Q1 to 2013Q1, to examine the relationships among house prices and macroeconomic variables. Our empirical results of panel data cointegration tests support the existence of a cointegration among these macroeconomic variables and house prices. Besides, the empirical results of panel DOLS further present that a 1% increase in economic activity, long-term interest rates, and construction costs cause house prices to respectively change 2.16%, -0.04%, and 0.22% in the long run. Furthermore, the increasing economic activity and the construction cost would cause stronger impacts on the house prices for lower income countries than higher income countries. The results lead to the conclusion that policy of house prices growth can be regarded as economic growth for lower income countries. Finally, in America region, the coefficient of economic activity is the highest, which displays that increasing economic activity causes a faster rise in house prices there than in other regions. There are some special cases whereby the coefficients of interest rates are significantly positive in America and Asia regions.Keywords: house prices, macroeconomic variables, panel cointegration, dynamic OLS
Procedia PDF Downloads 3917129 The Impact of Natural Resources on Financial Development: The Global Perspective
Authors: Remy Jonkam Oben
Abstract:
Using a time series approach, this study investigates how natural resources impact financial development from a global perspective over the 1980-2019 period. Some important determinants of financial development (economic growth, trade openness, population growth, and investment) have been added to the model as control variables. Unit root tests have revealed that all the variables are integrated into order one. Johansen's cointegration test has shown that the variables are in a long-run equilibrium relationship. The vector error correction model (VECM) has estimated the coefficient of the error correction term (ECT), which suggests that the short-run values of natural resources, economic growth, trade openness, population growth, and investment contribute to financial development converging to its long-run equilibrium level by a 23.63% annual speed of adjustment. The estimated coefficients suggest that global natural resource rent has a statistically-significant negative impact on global financial development in the long-run (thereby validating the financial resource curse) but not in the short-run. Causality test results imply that neither global natural resource rent nor global financial development Granger-causes each other.Keywords: financial development, natural resources, resource curse hypothesis, time series analysis, Granger causality, global perspective
Procedia PDF Downloads 1707128 Holistic Solutions for Overcoming Fluoride Contamination Challenges in West Bengal, India: A Socio-economic Study on Water Quality, Infrastructure, and Community Engagement
Authors: Rajkumar Ghosh, Shyama Pada Gorai
Abstract:
Access to safe drinking water is a fundamental human right; however, regions like Purulia, Bankura, Birbhum, Malda, Dinajpur in West Bengal, India, face formidable challenges due to heightened fluoride levels. This paper delves into the hurdles of fresh drinking water production, presenting comprehensive solutions derived from literature reviews, field surveys, and scientific analyses. Encompassing fluoride-affected areas in Purulia, Bankura, Birbhum, Malda, North-South Dinajpur, and South 24 Parganas, the study emphasizes an integrated and sustainable approach. Employing a multidisciplinary methodology, combining scientific analysis and community engagement, the study identifies key factors influencing water quality and proposes sustainable strategies. Elevated fluoride concentrations exceeding international health standards (Purulia: 0.126 – 8.16 mg/L, Bankura: 0.1 – 12.2 mg/L, Malda: 0.1 – 4.54 mg/L, Birbhum: 0.023 – 18 mg/L) necessitate urgent intervention. Infrastructure deficiencies impede water treatment and distribution, while limited awareness obstructs community participation. The proposed solutions embrace advanced water treatment technologies, infrastructure development, community education, and sustainable water management practices. This comprehensive effort aims to provide clean drinking water, safeguarding the health of affected populations. Building on these foundations, the study explores the potential of rooftop rainwater harvesting as an effective and sustainable strategy to mitigate challenges in fresh drinking water production. By addressing fluoride contamination concerns and promoting community involvement, this approach presents a holistic solution to water quality issues in affected regions. The findings underscore the importance of integrating sustainable practices with community engagement to achieve long-term water security in Purulia, Bankura, Birbhum, Malda, North-South Dinajpur, and South 24 Parganas. This study serves as a cornerstone for further research and policy development, addressing fluoride contamination's impact on public health in affected areas. Recommendations include the establishment of long-term monitoring programs to assess the effectiveness of implemented solutions and conducting health impact studies to understand the long-term effects of fluoride contamination on the local population.Keywords: fluoride mitigation, rainwater harvesting, water quality, sustainable water management, community engagement
Procedia PDF Downloads 727127 Long Term Love Relationships Analyzed as a Dynamic System with Random Variations
Authors: Nini Johana Marín Rodríguez, William Fernando Oquendo Patino
Abstract:
In this work, we model a coupled system where we explore the effects of steady and random behavior on a linear system like an extension of the classic Strogatz model. This is exemplified by modeling a couple love dynamics as a linear system of two coupled differential equations and studying its stability for four types of lovers chosen as CC='Cautious- Cautious', OO='Only other feelings', OP='Opposites' and RR='Romeo the Robot'. We explore the effects of, first, introducing saturation, and second, adding a random variation to one of the CC-type lover, which will shape his character by trying to model how its variability influences the dynamics between love and hate in couple in a long run relationship. This work could also be useful to model other kind of systems where interactions can be modeled as linear systems with external or internal random influence. We found the final results are not easy to predict and a strong dependence on initial conditions appear, which a signature of chaos.Keywords: differential equations, dynamical systems, linear system, love dynamics
Procedia PDF Downloads 3537126 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics
Authors: Mia Françoise
Abstract:
This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa
Procedia PDF Downloads 987125 Neural Networks Based Prediction of Long Term Rainfall: Nine Pilot Study Zones over the Mediterranean Basin
Authors: Racha El Kadiri, Mohamed Sultan, Henrique Momm, Zachary Blair, Rachel Schultz, Tamer Al-Bayoumi
Abstract:
The Mediterranean Basin is a very diverse region of nationalities and climate zones, with a strong dependence on agricultural activities. Predicting long term (with a lead of 1 to 12 months) rainfall, and future droughts could contribute in a sustainable management of water resources and economical activities. In this study, an integrated approach was adopted to construct predictive tools with lead times of 0 to 12 months to forecast rainfall amounts over nine subzones of the Mediterranean Basin region. The following steps were conducted: (1) acquire, assess and intercorrelate temporal remote sensing-based rainfall products (e.g. The CPC Merged Analysis of Precipitation [CMAP]) throughout the investigation period (1979 to 2016), (2) acquire and assess monthly values for all of the climatic indices influencing the regional and global climatic patterns (e.g., Northern Atlantic Oscillation [NOI], Southern Oscillation Index [SOI], and Tropical North Atlantic Index [TNA]); (3) delineate homogenous climatic regions and select nine pilot study zones, (4) apply data mining methods (e.g. neural networks, principal component analyses) to extract relationships between the observed rainfall and the controlling factors (i.e. climatic indices with multiple lead-time periods) and (5) use the constructed predictive tools to forecast monthly rainfall and dry and wet periods. Preliminary results indicate that rainfall and dry/wet periods were successfully predicted with lead zones of 0 to 12 months using the adopted methodology, and that the approach is more accurately applicable in the southern Mediterranean region.Keywords: rainfall, neural networks, climatic indices, Mediterranean
Procedia PDF Downloads 3127124 A Damage Level Assessment Model for Extra High Voltage Transmission Towers
Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang
Abstract:
Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.Keywords: damage level monitoring, drift ratio, fragility curve, smart grid, transmission tower
Procedia PDF Downloads 2997123 A Review on Water Models of Surface Water Environment
Authors: Shahbaz G. Hassan
Abstract:
Water quality models are very important to predict the changes in surface water quality for environmental management. The aim of this paper is to give an overview of the water qualities, and to provide directions for selecting models in specific situation. Water quality models include one kind of model based on a mechanistic approach, while other models simulate water quality without considering a mechanism. Mechanistic models can be widely applied and have capabilities for long-time simulation, with highly complexity. Therefore, more spaces are provided to explain the principle and application experience of mechanistic models. Mechanism models have certain assumptions on rivers, lakes and estuaries, which limits the application range of the model, this paper introduces the principles and applications of water quality model based on the above three scenarios. On the other hand, mechanistic models are more easily to compute, and with no limit to the geographical conditions, but they cannot be used with confidence to simulate long term changes. This paper divides the empirical models into two broad categories according to the difference of mathematical algorithm, models based on artificial intelligence and models based on statistical methods.Keywords: empirical models, mathematical, statistical, water quality
Procedia PDF Downloads 2657122 A Discrete Event Simulation Model For Airport Runway Operations Optimization (Case Study)
Authors: Awad Khireldin, Colin Law
Abstract:
Runways are the major infrastructure of airports around the world. Efficient operations of runways are key to ensure that airports are running smoothly with minimal delays. There are many factors that affect the efficiency of runway operations, such as the aircraft wake separation, runways system configuration, the fleet mix, and the runways separation distance. This paper aims to address how to maximize runway operations using a Discrete Event Simulation model. A case study of Cairo International Airport (CIA) is developed to maximize the utilizing of three parallel runways using a simulation model. Different scenarios have been designed where every runway could be assigned for arrival, departure, or mixed operations. A benchmarking study was also included to compare the actual to the proposed results to spot the potential improvements. The simulation model shows that there is a significant difference in utilization and delays between the actual and the proposed ones, there are several recommendations that can be provided to airport management, in the short and long term, to increase the efficiency and to reduce the delays. By including the recommendation with different operations scenarios, such as upgrading the airport slot Coordination from Level 1 to Level 2 in the short term. In the long run, discuss the possibilities to increase the International Air Transport association (IATA) slot coordination to Level 3 as more flights are expected to be handled by the airport. Technological advancements such as radar in the approach full airside simulation model could improve the airport performance where the airport is recommended to review the standard operations procedures with the appropriate authorities. Also, the airport can adopt a future operational plan to accommodate the forecasted additional traffic density in case of adding a fourth terminal building to increase the airport capacity.Keywords: airport performance, runway, discrete event simulation, capacity, airside
Procedia PDF Downloads 1317121 Ground Track Assessment Using Electrical Resistivity Tomography Application
Authors: Noryani Natasha Yahaya, Anas Ibrahim, Juraidah Ahmad, Azura Ahmad, Mohd Ikmal Fazlan Rosli, Zailan Ramli, Muhd Sidek Muhd Norhasri
Abstract:
The subgrade formation is an important element of the railway structure which holds overall track stability. Conventional track maintenance involves many substructure component replacements, as well as track re-ballasting on a regular basis is partially contributed to the embankment's long-term settlement problem. For subgrade long-term stability analysis, the geophysical method is commonly being used to diagnose those hidden sources/mechanisms of track deterioration problems that the normal visual method is unable to detect. Electrical resistivity tomography (ERT) is one of the applicable geophysical tools that are helpful in railway subgrade inspection/track monitoring due to its flexibility and reliability of the analysis. The ERT was conducted at KM 23.0 of Pinang Tunggal track to investigate the subgrade of railway track through the characterization/mapping on track formation profiling which was directly generated using 2D analysis of Res2dinv software. The profiles will allow examination of the presence and spatial extent of a significant subgrade layer and screening of any poor contact of soil boundary. Based on the finding, there is a mix/interpretation/intermixing of an interlayer between the sub-ballast and the sand. Although the embankment track considered here is at no immediate risk of settlement effect or any failure, the regular monitoring of track’s location will allow early correction maintenance if necessary. The developed data of track formation clearly shows the similarity of the side view with the assessed track. The data visualization in the 2D section of the track embankment agreed well with the initial assumption based on the main element structure general side view.Keywords: ground track, assessment, resistivity, geophysical railway, method
Procedia PDF Downloads 1557120 Effect of Term of Preparation on Performance of Cool Chamber Stored White Poplar Hardwood Cuttings in Nursery
Authors: Branislav Kovačević, Andrej Pilipović, Zoran Novčić, Marina Milović, Lazar Kesić, Milan Drekić, Saša Pekeč, Leopold Poljaković Pajnik, Saša Orlović
Abstract:
Poplars present one of the most important tree species used for phytoremediation in the northern hemisphere. They can be used either as direct “cleaners” of the contaminated soils or as buffer zones preventing the contaminant plume to the surrounding environment. In order to produce appropriate planting material for this purpose, there is a long process of the breeding of the most favorable candidates. Although the development of the poplar propagation technology has been evolving for decades, white poplar nursery production, as well as the establishment of short-rotation coppice plantations, still considerably depends on the success of hardwood cuttings’ survival. This is why easy rooting is among the most desirable properties in white poplar breeding. On the other hand, there are many opportunities for the optimization of the technological procedures in order to meet the demands of particular genotype (clonal technology). In this study the effect of the term of hardwood cuttings’ preparation of four white poplar clones on their survival and further growth of rooted cuttings in nursery conditions were tested. There were three terms of cuttings’ preparation: the beginning of February (2nd Feb 2023), the beginning of March (3rd Mar 2023) and the end of March (21nd Mar 2023), which is regarded as the standard term. The cuttings were stored in cool chamber at 2±2°C. All cuttings were planted on the same date (11th Apr 2023), in soil prepared with rotary tillage, and then cultivated by usual nursey procedures. According to the results obtained after the bud set (29th Sept 2023) there were significant differences in the survival and growth of rooted cuttings between examined terms of cutting preparation. Also, there were significant differences in the reaction of examined clones on terms of cutting preparation. In total, the best results provided cuttings prepared at the first term (2nd Feb 2023) (survival rate of 39.4%), while performance after two later preparation terms was significantly poorer (20.5% after second and 16.5% after third term). These results stress the significance of dormancy preservation in cuttings of examined white poplar clones for their survival, which could be especially important in context of climate change. Differences in clones’ reaction to term of cutting preparation suggest necessity of adjustment of the technology to the needs of particular clone i.e. design of clone specific technology.Keywords: rooting, Populus alba, nursery, clonal technology
Procedia PDF Downloads 657119 Gel-Based Autologous Chondrocyte Implantation (GACI) in the Knee: Multicentric Short Term Study
Authors: Shaival Dalal, Nilesh Shah, Dinshaw Pardiwala, David Rajan, Satyen Sanghavi, Charul Bhanji
Abstract:
Autologous Chondrocyte Implantation (ACI) is used worldwide since 1998 to treat cartilage defect. GEL based ACI is a new tissue-engineering technique to treat full thickness cartilage defect with fibrin and thrombin as scaffold for chondrocytes. Purpose of this study is to see safety and efficacy of gel based ACI for knee cartilage defect in multiple centres with different surgeons. Gel-based Autologous Chondrocyte Implantation (GACI) has shown effectiveness in treating isolated cartilage defect of knee joint. Long term results are still needed to be studied. This study was followed-up up to two years and showed benefit to patients. All enrolled patients with a mean age of 28.5 years had an average defect size of3 square centimeters, and were grade IV as per ICRS grading. All patients were followed up several times and at several intervals at 6th week, 8th week, 11th week, 17th week, 29th week, 57th week after surgery. The outcomes were measured based on the IKDC (subjective and objective) and MOCART scores.Keywords: knee, chondrocyte, autologous chondrocyte implantation, fibrin gel based
Procedia PDF Downloads 3807118 Bianchi Type- I Viscous Fluid Cosmological Models with Stiff Matter and Time Dependent Λ- Term
Authors: Rajendra Kumar Dubey
Abstract:
Einstein’s field equations with variable cosmological term Λ are considered in the presence of viscous fluid for Bianchi type I space time. Exact solutions of Einstein’s field equations are obtained by assuming cosmological term Λ Proportional to (R is a scale factor and m is constant). We observed that the shear viscosity is found to be responsible for faster removal of initial anisotropy in the universe. The physical significance of the cosmological models has also been discussed.Keywords: bianchi type, I cosmological model, viscous fluid, cosmological constant Λ
Procedia PDF Downloads 5287117 The Role of Executive Attention and Literacy on Consumer Memory
Authors: Fereshteh Nazeri Bahadori
Abstract:
In today's competitive environment, any company that aims to operate in a market, whether industrial or consumer markets, must know that it cannot address all the tastes and demands of customers at once and serve them all. The study of consumer memory is considered an important subject in marketing research, and many companies have conducted studies on this subject and the factors affecting it due to its importance. Therefore, the current study tries to investigate the relationship between consumers' attention, literacy, and memory. Memory has a very close relationship with learning. Memory is the collection of all the information that we have understood and stored. One of the important subjects in consumer behavior is information processing by the consumer. One of the important factors in information processing is the mental involvement of the consumer, which has attracted a lot of attention in the past two decades. Since consumers are the turning point of all marketing activities, successful marketing begins with understanding why and how consumers behave. Therefore, in the current study, the role of executive attention and literacy on consumers' memory has been investigated. The results showed that executive attention and literacy would play a significant role in the long-term and short-term memory of consumers.Keywords: literacy, consumer memory, executive attention, psychology of consumer behavior
Procedia PDF Downloads 967116 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 60