Search results for: linear parameter-varying
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3346

Search results for: linear parameter-varying

2956 Alternative Mathematical form for Determining the Effectiveness of High-LET Radiations at Lower Doses Region

Authors: Abubaker A. Yousif, Muhamad S. Yasir

Abstract:

The Effectiveness of lower doses of high-LET radiations is not accurately determined by using energy-based physical parameters such as absorbed dose and radio-sensitivity parameters. Therefore, an attempt has been carried out in this research to propose alternative parameter that capable to quantify the effectiveness of these high LET radiations at lower doses regions. The linear energy transfer and mean free path are employed to achieve this objective. A new mathematical form of the effectiveness of high-LET radiations at lower doses region has been formulated. Based on this parameter, the optimized effectiveness of high-LET radiations occurs when the energy of charged particles is deposited at spacing of 2 nm for primary ionization.

Keywords: effectiveness, low dose, radiation mean free path, linear energy transfer

Procedia PDF Downloads 461
2955 Transient Hygrothermoelastic Behavior in an Infinite Annular Cylinder with Internal Heat Generation by Linear Dependence Theory of Coupled Heat and Moisture

Authors: Tasneem Firdous Islam, G. D. Kedar

Abstract:

The aim of this paper is to study the effect of internal heat generation in a transient infinitely long annular cylinder subjected to hygrothermal loadings. The linear dependence theory of moisture and temperature is derived based on Dufour and Soret effect. The meticulous solutions of temperature, moisture, and thermal stresses are procured by using the Hankel transform technique. The influence of the internal heat source on the radial aspect is examined for coupled and uncoupled cases. In the present study, the composite material T300/5208 is considered, and the coupled and uncoupled cases are analyzed. The results obtained are computed numerically and illustrated graphically.

Keywords: temperature, moisture, hygrothermoelasticity, internal heat generation, annular cylinder

Procedia PDF Downloads 115
2954 Tensile strength and Elastic Modulus of Nanocomposites Based on Polypropylene/Linear Low Density Polyethylene/Titanium Dioxide Nanoparticles

Authors: Faramarz Ashenai Ghasemi, Ismail Ghasemi, Sajad Daneshpayeh

Abstract:

In this study, tensile strength and elastic modulus of nanocomposites based on polypropylene/ linear low density polyethylene/ nano titanium dioxide (PP/LLDPE/TiO2) were studied. The samples were produced using a co-rotating twin screw extruder including 0, 2, 4 Wt .% of nano particles, and 20, 40, 60 Wt.% of LLDPE. The styrene-ethylene-butylene-styrene (SEBS) was used as comptabiliser. Tensile strength and elastic modulus were evaluated. The results showed that modulus was increased by 7% with addition of nano particles in comparison to PP/LLDPE. In addition, tensile strength was decreased.

Keywords: PP/LLDPE/TiO2, nanocomposites, elastic modulus, tensile strength

Procedia PDF Downloads 528
2953 Fuzzy-Sliding Controller Design for Induction Motor Control

Authors: M. Bouferhane, A. Boukhebza, L. Hatab

Abstract:

In this paper, the position control of linear induction motor using fuzzy sliding mode controller design is proposed. First, the indirect field oriented control LIM is derived. Then, a designed sliding mode control system with an integral-operation switching surface is investigated, in which a simple adaptive algorithm is utilized for generalised soft-switching parameter. Finally, a fuzzy sliding mode controller is derived to compensate the uncertainties which occur in the control, in which the fuzzy logic system is used to dynamically control parameter settings of the SMC control law. The effectiveness of the proposed control scheme is verified by numerical simulation. The experimental results of the proposed scheme have presented good performances compared to the conventional sliding mode controller.

Keywords: linear induction motor, vector control, backstepping, fuzzy-sliding mode control

Procedia PDF Downloads 489
2952 Estimation of Desktop E-Wastes in Delhi Using Multivariate Flow Analysis

Authors: Sumay Bhojwani, Ashutosh Chandra, Mamita Devaburman, Akriti Bhogal

Abstract:

This article uses the Material flow analysis for estimating e-wastes in the Delhi/NCR region. The Material flow analysis is based on sales data obtained from various sources. Much of the data available for the sales is unreliable because of the existence of a huge informal sector. The informal sector in India accounts for more than 90%. Therefore, the scope of this study is only limited to the formal one. Also, for projection of the sales data till 2030, we have used regression (linear) to avoid complexity. The actual sales in the years following 2015 may vary non-linearly but we have assumed a basic linear relation. The purpose of this study was to know an approximate quantity of desktop e-wastes that we will have by the year 2030 so that we start preparing ourselves for the ineluctable investment in the treatment of these ever-rising e-wastes. The results of this study can be used to install a treatment plant for e-wastes in Delhi.

Keywords: e-wastes, Delhi, desktops, estimation

Procedia PDF Downloads 258
2951 Effect of Mica Content in Sand on Site Response Analyses

Authors: Volkan Isbuga, Joman M. Mahmood, Ali Firat Cabalar

Abstract:

This study presents the site response analysis of mica-sand mixtures available in certain parts of the world including Izmir, a highly populated city and located in a seismically active region in western part of Turkey. We performed site response analyses by employing SHAKE, an equivalent linear approach, for the micaceous soil deposits consisting of layers with different amount of mica contents and thicknesses. Dynamic behavior of micaceous sands such as shear modulus reduction and damping ratio curves are input for the ground response analyses. Micaceous sands exhibit a unique dynamic response under a scenario earthquake with a magnitude of Mw=6. Results showed that higher amount of mica caused higher spectral accelerations.

Keywords: micaceous sands, site response, equivalent linear approach, SHAKE

Procedia PDF Downloads 340
2950 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural

Authors: Baeza S. Roberto

Abstract:

The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.

Keywords: neural network, dry relaxation, knitting, linear regression

Procedia PDF Downloads 585
2949 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient

Authors: Anjanna Matta, P. A. L. Narayana

Abstract:

An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleight number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.

Keywords: linear stability analysis, heat source, porous medium, mass flow

Procedia PDF Downloads 721
2948 Linear fractional differential equations for second kind modified Bessel functions

Authors: Jorge Olivares, Fernando Maass, Pablo Martin

Abstract:

Fractional derivatives have been considered recently as a way to solve different problems in Engineering. In this way, second kind modified Bessel functions are considered here. The order α fractional differential equations of second kind Bessel functions, Kᵥ(x), are studied with simple initial conditions. The Laplace transform and Caputo definition of fractional derivatives are considered. Solutions have been found for ν=1/3, 1/2, 2/3, -1/3, -1/2 and (-2/3). In these cases, the solutions are the sum of two hypergeometric functions. The α fractional derivatives have been for α=1/3, 1/2 and 2/3, and the above values of ν. No convergence has been found for the integer values of ν Furthermore when α has been considered as a rational found m/p, no general solution has been found. Clearly, this case is more difficult to treat than those of first kind Bessel Function.

Keywords: Caputo, modified Bessel functions, hypergeometric, linear fractional differential equations, transform Laplace

Procedia PDF Downloads 342
2947 Evaluation of Quasi-Newton Strategy for Algorithmic Acceleration

Authors: T. Martini, J. M. Martínez

Abstract:

An algorithmic acceleration strategy based on quasi-Newton (or secant) methods is displayed for address the practical problem of accelerating the convergence of the Newton-Lagrange method in the case of convergence to critical multipliers. Since the Newton-Lagrange iteration converges locally at a linear rate, it is natural to conjecture that quasi-Newton methods based on the so called secant equation and some minimal variation principle, could converge superlinearly, thus restoring the convergence properties of Newton's method. This strategy can also be applied to accelerate the convergence of algorithms applied to fixed-points problems. Computational experience is reported illustrating the efficiency of this strategy to solve fixed-point problems with linear convergence rate.

Keywords: algorithmic acceleration, fixed-point problems, nonlinear programming, quasi-newton method

Procedia PDF Downloads 489
2946 Estimation of Harmonics in Three-Phase and Six-Phase-Phase (Multi-Phase) Load Circuits

Authors: Zakir Husain, Deepak Kumar

Abstract:

The harmonics are very harmful within an electrical system and can have serious consequences such as reducing the life of apparatus, stress on cable and equipment etc. This paper cites extensive analytical study of harmonic characteristics of multiphase (six-phase) and three-phase system equipped with two and three level inverters for non-linear loads. Multilevel inverter has elevated voltage capability with voltage limited devices, low harmonic distortion, abridged switching losses. Multiphase technology also pays a promising role in harmonic reduction. Matlab simulation is carried out to compare the advantage of multi-phase over three phase systems equipped with two or three level inverters for non-linear load harmonic reduction. The extensive simulation results are presented based on case studies.

Keywords: fast Fourier transform (FFT), harmonics, inverter, ripples, total harmonic distortion (THD)

Procedia PDF Downloads 552
2945 Stability of Hybrid Stochastic Systems

Authors: Manlika Ratchagit

Abstract:

This paper is concerned with robust mean square stability of uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust mean square stability for the uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.

Keywords: robust mean square stability, discrete-time stochastic systems, hybrid systems, interval time-varying delays, Lyapunov functional, linear matrix inequalities

Procedia PDF Downloads 485
2944 Non-Linear Dynamic Analyses of Grouted Pile-Sleeve Connection

Authors: Mogens Saberi

Abstract:

The focus of this article is to present the experience gained from the design of a grouted pile-sleeve connection and to present simple design expressions which can be used in the preliminary design phase of such connections. The grout pile-sleeve connection serves as a connection between an offshore jacket foundation and pre-installed piles located in the seabed. The jacket foundation supports a wind turbine generator resulting in significant dynamic loads on the connection. The connection is designed with shear keys in order to optimize the overall design but little experience is currently available in the use of shear keys in such connections. It is found that the consequence of introducing shear keys in the design is a very complex stress distribution which requires special attention due to significant fatigue loads. An optimal geometrical shape of the shear keys is introduced in order to avoid large stress concentration factors and a relatively easy fabrication. The connection is analysed in ANSYS Mechanical where the grout is modelled by a non-linear material model which allows for cracking of the grout material and captures the elastic-plastic behaviour of the grout material. Special types of finite elements are used in the interface between the pile sleeve and the grout material to model the slip surface between the grout material and the steel. Based on the performed finite element modelling simple design expressions are introduced.

Keywords: fatigue design, non-linear finite element modelling, structural dynamics, simple design expressions

Procedia PDF Downloads 384
2943 New Results on Stability of Hybrid Stochastic Systems

Authors: Manlika Rajchakit

Abstract:

This paper is concerned with robust mean square stability of uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust mean square stability for the uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.

Keywords: robust mean square stability, discrete-time stochastic systems, hybrid systems, interval time-varying delays, lyapunov functional, linear matrix inequalities

Procedia PDF Downloads 429
2942 Loss of the Skin Barrier after Dermal Application of the Low Molecular Methyl Siloxanes: Volatile Methyl Siloxanes, VMS Silicones

Authors: D. Glamowska, K. Szymkowska, K. Mojsiewicz- Pieńkowska, K. Cal, Z. Jankowski

Abstract:

Introduction: The integrity of the outermost layer of skin (stratum corneum) is vital to the penetration of various compounds, including toxic substances. Barrier function of skin depends of its structure. The barrier function of the stratum corneum is provided by patterned lipid lamellae (binlayer). However, a lot of substances, including the low molecular methyl siloxanes (volatile methyl siloxanes, VMS) have an impact on alteration the skin barrier due to damage of stratum corneum structure. VMS belong to silicones. They are widely used in the pharmaceutical as well as cosmetic industry. Silicones fulfill the role of ingredient or excipient in medicinal products and the excipient in personal care products. Due to the significant human exposure to this group of compounds, an important aspect is toxicology of the compounds and safety assessment of products. Silicones in general opinion are considered as a non-toxic substances, but there are some data about their negative effect on living organisms through the inhaled or oral application. However, the transdermal route has not been described in the literature as a possible alternative route of penetration. The aim of the study was to verify the possibility of penetration of the stratum corneum, further permeation into the deeper layers of the skin (epidermis and dermis) as well as to the fluid acceptor by VMS. Methods: Research methodology was developed based on the OECD and WHO guidelines. In ex-vivo study, the fluorescence microscope and ATR FT-IR spectroscopy was used. The Franz- type diffusion cells were used to application of the VMS on the sample of human skin (A=0.65 cm) for 24h. The stratum corneum at the application site was tape-stripped. After separation of epidermis, relevant dyes: fluorescein, sulforhodamine B, rhodamine B hexyl ester were put on and observations were carried in the microscope. To confirm the penetration and permeation of the cyclic or linear VMS and thus the presence of silicone in the individual layers of the skin, spectra ATR FT-IR of the sample after application of silicone and H2O (control sample) were recorded. The research included comparison of the intesity of bands in characteristic positions for silicones (1263 cm-1, 1052 cm-1 and 800 cm-1). Results: and Conclusions The results present that cyclic and linear VMS are able to overcome the barrier of the skin. Influence of them on damage of corneocytes of the stratum corneum was observed. This phenomenon was due to distinct disturbances in the lipid structure of the stratum corneum. The presence of cyclic and linear VMS were identified in the stratum corneum, epidermis as well as in the dermis by both fluorescence microscope and ATR FT-IR spectroscopy. This confirms that the cyclic and linear VMS can penetrate to stratum corneum and permeate through the human skin layers. Apart from this they cause changes in the structure of the skin. Results show to possible absorption into the blood and lymphathic vessels by the VMS with linear and cyclic structure.

Keywords: low molecular methyl siloxanes, volatile methyl siloxanes, linear and cyclic siloxanes, skin penetration, skin permeation

Procedia PDF Downloads 344
2941 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins

Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan

Abstract:

Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.

Keywords: cognition, generalized correlation coefficient, GWAS, twins

Procedia PDF Downloads 124
2940 Use of SUDOKU Design to Assess the Implications of the Block Size and Testing Order on Efficiency and Precision of Dulce De Leche Preference Estimation

Authors: Jéssica Ferreira Rodrigues, Júlio Silvio De Sousa Bueno Filho, Vanessa Rios De Souza, Ana Carla Marques Pinheiro

Abstract:

This study aimed to evaluate the implications of the block size and testing order on efficiency and precision of preference estimation for Dulce de leche samples. Efficiency was defined as the inverse of the average variance of pairwise comparisons among treatments. Precision was defined as the inverse of the variance of treatment means (or effects) estimates. The experiment was originally designed to test 16 treatments as a series of 8 Sudoku 16x16 designs being 4 randomized independently and 4 others in the reverse order, to yield balance in testing order. Linear mixed models were assigned to the whole experiment with 112 testers and all their grades, as well as their partially balanced subgroups, namely: a) experiment with the four initial EU; b) experiment with EU 5 to 8; c) experiment with EU 9 to 12; and b) experiment with EU 13 to 16. To record responses we used a nine-point hedonic scale, it was assumed a mixed linear model analysis with random tester and treatments effects and with fixed test order effect. Analysis of a cumulative random effects probit link model was very similar, with essentially no different conclusions and for simplicity, we present the results using Gaussian assumption. R-CRAN library lme4 and its function lmer (Fit Linear Mixed-Effects Models) was used for the mixed models and libraries Bayesthresh (default Gaussian threshold function) and ordinal with the function clmm (Cumulative Link Mixed Model) was used to check Bayesian analysis of threshold models and cumulative link probit models. It was noted that the number of samples tested in the same session can influence the acceptance level, underestimating the acceptance. However, proving a large number of samples can help to improve the samples discrimination.

Keywords: acceptance, block size, mixed linear model, testing order, testing order

Procedia PDF Downloads 321
2939 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji

Abstract:

In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.

Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical

Procedia PDF Downloads 463
2938 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.

Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis

Procedia PDF Downloads 393
2937 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland

Authors: Alireza Ansariyar, Safieh Laaly

Abstract:

Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates CAVs’ fuel consumption and air pollutants (C.O., PM, and NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.

Keywords: connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models

Procedia PDF Downloads 445
2936 Contrasted Mean and Median Models in Egyptian Stock Markets

Authors: Mai A. Ibrahim, Mohammed El-Beltagy, Motaz Khorshid

Abstract:

Emerging Markets return distributions have shown significance departure from normality were they are characterized by fatter tails relative to the normal distribution and exhibit levels of skewness and kurtosis that constitute a significant departure from normality. Therefore, the classical Markowitz Mean-Variance is not applicable for emerging markets since it assumes normally-distributed returns (with zero skewness and kurtosis) and a quadratic utility function. Moreover, the Markowitz mean-variance analysis can be used in cases of moderate non-normality and it still provides a good approximation of the expected utility, but it may be ineffective under large departure from normality. Higher moments models and median models have been suggested in the literature for asset allocation in this case. Higher moments models have been introduced to account for the insufficiency of the description of a portfolio by only its first two moments while the median model has been introduced as a robust statistic which is less affected by outliers than the mean. Tail risk measures such as Value-at Risk (VaR) and Conditional Value-at-Risk (CVaR) have been introduced instead of Variance to capture the effect of risk. In this research, higher moment models including the Mean-Variance-Skewness (MVS) and Mean-Variance-Skewness-Kurtosis (MVSK) are formulated as single-objective non-linear programming problems (NLP) and median models including the Median-Value at Risk (MedVaR) and Median-Mean Absolute Deviation (MedMAD) are formulated as a single-objective mixed-integer linear programming (MILP) problems. The higher moment models and median models are compared to some benchmark portfolios and tested on real financial data in the Egyptian main Index EGX30. The results show that all the median models outperform the higher moment models were they provide higher final wealth for the investor over the entire period of study. In addition, the results have confirmed the inapplicability of the classical Markowitz Mean-Variance to the Egyptian stock market as it resulted in very low realized profits.

Keywords: Egyptian stock exchange, emerging markets, higher moment models, median models, mixed-integer linear programming, non-linear programming

Procedia PDF Downloads 314
2935 Optimality Conditions for Weak Efficient Solutions Generated by a Set Q in Vector Spaces

Authors: Elham Kiyani, S. Mansour Vaezpour, Javad Tavakoli

Abstract:

In this paper, we first introduce a new distance function in a linear space not necessarily endowed with a topology. The algebraic concepts of interior and closure are useful to study optimization problems without topology. So, we define Q-weak efficient solutions generated by the algebraic interior of a set Q, where Q is not necessarily convex. Studying nonconvex vector optimization is valuable since, for a convex cone K in topological spaces, we have int(K)=cor(K), which means that topological interior of a convex cone K is equal to the algebraic interior of K. Moreover, we used the scalarization technique including the distance function generated by the vectorial closure of a set to characterize these Q-weak efficient solutions. Scalarization is a useful approach for solving vector optimization problems. This technique reduces the optimization problem to a scalar problem which tends to be an optimization problem with a real-valued objective function. For instance, Q-weak efficient solutions of vector optimization problems can be characterized and computed as solutions of appropriate scalar optimization problems. In the convex case, linear functionals can be used as objective functionals of the scalar problems. But in the nonconvex case, we should present a suitable objective function. It is the aim of this paper to present a new distance function that be useful to obtain sufficient and necessary conditions for Q-weak efficient solutions of general optimization problems via scalarization.

Keywords: weak efficient, algebraic interior, vector closure, linear space

Procedia PDF Downloads 228
2934 The Implementation of Secton Method for Finding the Root of Interpolation Function

Authors: Nur Rokhman

Abstract:

A mathematical function gives relationship between the variables composing the function. Interpolation can be viewed as a process of finding mathematical function which goes through some specified points. There are many interpolation methods, namely: Lagrange method, Newton method, Spline method etc. For some specific condition, such as, big amount of interpolation points, the interpolation function can not be written explicitly. This such function consist of computational steps. The solution of equations involving the interpolation function is a problem of solution of non linear equation. Newton method will not work on the interpolation function, for the derivative of the interpolation function cannot be written explicitly. This paper shows the use of Secton method to determine the numerical solution of the function involving the interpolation function. The experiment shows the fact that Secton method works better than Newton method in finding the root of Lagrange interpolation function.

Keywords: Secton method, interpolation, non linear function, numerical solution

Procedia PDF Downloads 379
2933 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows

Authors: J. P. Panda, K. Sasmal, H. V. Warrior

Abstract:

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.

Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD

Procedia PDF Downloads 202
2932 Non-Linear Static Pushover Analysis of 15 Storied Reinforced Concrete Building Structure with Shear Wall

Authors: Hamid Nikzad, Shinta Yoshitomi

Abstract:

In this paper, nonlinear static pushover analysis is performed on 15 storied RC building structure with a shear wall to evaluate the seismic performance of the building. Section sizes of the members are obtained based on structural optimization method utilizing MATLAB frame optimizer, then the structure is simulated and designed in ETABS program conforming ACI 318-14 design code. The pushover curve has been generated by pushing the top node of the structure to the limited target displacement. Members failure due to the formation of plastic hinges, considering shear wall-frame structure was observed and the result of this study is presented based on current regulation of FEMA356, ASCE7-10, and ACI 318-14 design criteria

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures

Procedia PDF Downloads 158
2931 Effect of Genotype and Sex on Morphometric Traits of Turkey

Authors: I. O. Dudusola, I. Ogunjimi

Abstract:

This study was carried out to determine the effect of sex and genotype on morphometric traits of turkey (Meleagris gallopavo) in a turkey population. Linear body measurements were taken on 150 turkeys. 70 exotic turkeys which include both males (20) and Females (50) and 80 locally adapted turkeys which include males (30) and females (50). The study was conducted at the Turkey Unit of the Teaching and Research Farm, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria. The linear body measurements taken and recorded were the beak length, head length, neck length, body length, keel length, wingspan, wing length, drumstick, Shank length, toe length, tail length and body girth all taken in centimetres (cm). The recorded variables were analyzed with SAS (2008). Duncan multiple range test was used to detect differences among means. Variation was noted between male and female turkeys in favour of the male turkeys as an expression of sexual dimorphism for all studied traits. The male is found to be significantly higher (p <0.05) than the females for all the morphometric traits measured both for the local and exotic type. The exotic type is found to be significantly higher (p <0.05) than the local type for all the morphometric traits measured. The interaction is higher significantly (p <0.05) in the exotic genotype and in the male sex in relation with the morphometric trait especially in the beak length, neck length, body length, keel length, drumstick, shank length and the toe length.

Keywords: exotic type, linear measurement, local type, morphometric traits, Meleagris gallopavo

Procedia PDF Downloads 329
2930 Chemometric Estimation of Inhibitory Activity of Benzimidazole Derivatives by Linear Least Squares and Artificial Neural Networks Modelling

Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić

Abstract:

The subject of this paper is to correlate antibacterial behavior of benzimidazole derivatives with their molecular characteristics using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on the inhibitory activity of benzimidazole derivatives against Staphylococcus aureus. The data were processed by linear least squares (LLS) and artificial neural network (ANN) procedures. The LLS mathematical models have been developed as a calibration models for prediction of the inhibitory activity. The quality of the models was validated by leave one out (LOO) technique and by using external data set. High agreement between experimental and predicted inhibitory acivities indicated the good quality of the derived models. These results are part of the CMST COST Action No. CM1306 "Understanding Movement and Mechanism in Molecular Machines".

Keywords: Antibacterial, benzimidazoles, chemometric, QSAR.

Procedia PDF Downloads 316
2929 Trajectory Tracking Controller Based on Normalized Right Coprime Factorization Technique for the Ball and Plate System

Authors: Martins Olatunbosun Babatunde, Muhammed Bashir Muazu, Emmanuel Adewale Adedokun

Abstract:

This paper presents the development of a double-loop trajectory-tracking controller for the ball and plate system (BPS) using the Normalized Right Coprime Factorization (NRCF) scheme.The Linear Algebraic (LA) method is used to design the inner loop required to stabilize the ball, while H-infinity NRCF method, that involved the lead-lag compensator design approach, is used to develop the outer loop that controls the plate. Simulation results show that the plate was stabilized at 0.2989 seconds and the ball was able to settle after 0.9646 seconds, with a trajectory tracking error of 0.0036. This shows that the controller has good adaptability and robustness.

Keywords: ball and plate system, normalized right coprime factorization, linear algebraic method, compensator, controller, tracking.

Procedia PDF Downloads 141
2928 Modeling and Optimal Control of Hybrid Unmanned Aerial Vehicles with Wind Disturbance

Authors: Sunsoo Kim, Niladri Das, Raktim Bhattacharya

Abstract:

This paper addresses modeling and control of a six-degree-of-freedom unmanned aerial vehicle capable of vertical take-off and landing in the presence of wind disturbances. We design a hybrid vehicle that combines the benefits of both the fixed-wing and the rotary-wing UAVs. A non-linear model for the hybrid vehicle is rapidly built, combining rigid body dynamics, aerodynamics of wing, and dynamics of the motor and propeller. Further, we design a H₂ optimal controller to make the UAV robust to wind disturbances. We compare its results against that of proportional-integral-derivative and linear-quadratic regulator based control. Our proposed controller results in better performance in terms of root mean squared errors and time responses during two scenarios: hover and level- flight.

Keywords: hybrid UAVs, VTOL, aircraft modeling, H2 optimal control, wind disturbances

Procedia PDF Downloads 156
2927 A Linear Relation for Voltage Unbalance Factor Evaluation in Three-Phase Electrical Power System Using Space Vector

Authors: Dana M. Ragab, Jasim A Ghaeb

Abstract:

The Voltage Unbalance Factor (VUF) index is recommended to evaluate system performance under unbalanced operation. However, its calculation requires complex algebra which limits its use in the field. Furthermore, one system cycle is required at least to detect unbalance using the VUF. Ideally unbalance mitigation must be performed within 10 ms for 50 Hz systems. In this work, a linear relation for VUF evaluation in three-phase electrical power system using space vector (SV) is derived. It is proposed to determine the voltage unbalance quickly and accurately and to overcome the constraints associated with the traditional methods of VUF evaluation. Aqaba-Qatrana-South Amman (AQSA) power system is considered to study the system performance under unbalanced conditions. The results show that both the complexity of calculations and the time required to evaluate VUF are reduced significantly.

Keywords: power quality, space vector, unbalance evaluation, three-phase power system

Procedia PDF Downloads 189